Volume 15 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Rui Xu, Hengyuan Yu, Yichen Wang, Boyu Li, Yong Chen, Xuesong Liu, Tengfei Xu. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract[J]. Journal of Pharmaceutical Analysis, 2025, 15(2): 101101. doi: 10.1016/j.jpha.2024.101101
Citation: Rui Xu, Hengyuan Yu, Yichen Wang, Boyu Li, Yong Chen, Xuesong Liu, Tengfei Xu. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract[J]. Journal of Pharmaceutical Analysis, 2025, 15(2): 101101. doi: 10.1016/j.jpha.2024.101101

Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract

doi: 10.1016/j.jpha.2024.101101
Funds:

This work was supported by the National Natural Science Foundations of China (Grant No.: 82204584) and Liaoning Provincial Science and Technology Projects, China (Project No.: 2021JH1/10400055).

  • Received Date: Jun. 14, 2024
  • Accepted Date: Sep. 10, 2024
  • Rev Recd Date: Aug. 29, 2024
  • Publish Date: Sep. 16, 2024
  • Natural products (NPs) have historically been a fundamental source for drug discovery. Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents, and corresponding targets. In the present study, an innovative natural product virtual screening-interaction-phenotype (NP-VIP) strategy that integrates virtual screening, chemical proteomics, and metabolomics to identify and validate the bioactive targets of NPs. This approach reduces false positive results and enhances the efficiency of target identification. Salvia miltiorrhiza (SM), a herb with recognized therapeutic potential against ischemic stroke (IS), was used to illustrate the workflow. Utilizing virtual screening, chemical proteomics, and metabolomics, potential therapeutic targets for SM in the IS treatment were identified, totaling 29, 100, and 78, respectively. Further analysis via the NP-VIP strategy highlighted five high-confidence targets, including poly [ADP-ribose] polymerase 1 (PARP1), signal transducer and activator of transcription 3 (STAT3), amyloid precursor protein (APP), glutamate-ammonia ligase (GLUL), and glutamate decarboxylase 67 (GAD67). These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM. The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research, proposing a comprehensive approach that could be adapted for broader pharmacological explorations.

  • loading
  • [1]
    X. Chen, Y. Wang, N. Ma, et al., Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification, Signal Transduct. Targeted Ther. 5 (2020), 72.
    [2]
    A.G. Atanasov, S.B. Zotchev, V.M. Dirsch, et al., Natural products in drug discovery: Advances and opportunities, Nat. Rev. Drug Discov. 20 (2021) 200-216.
    [3]
    C. Zhang, G. Chen, G. Tang, et al., Multi-component Chinese medicine formulas for drug discovery: State of the art and future perspectives, Acta Mater. Med. 2 (2023): 106-125.
    [4]
    J. Wang, C. Xu, Y.K. Wong, et al., Artemisinin, the magic drug discovered from traditional Chinese medicine, Engineering 5 (2019) 32-39.
    [5]
    J. Zhu, J. Wang, F. Sun, et al., Vincristine, irinotecan, and temozolomide in patients with relapsed/refractory neuroblastoma, Front. Oncol. 12 (2022), 804310.
    [6]
    M. Barber, P.M. Waterworth, Antibacterial activity of the penicillins, Br. Med. J. 1 (1962) 1159-1164.
    [7]
    L. Durmaz, H. Kiziltas, L. Guven, et al., Antioxidant, antidiabetic, anticholinergic, and antiglaucoma effects of magnofluorine, Molecules 27 (2022), 5902.
    [8]
    H. Kiziltas, A.C. Goren, S.H. Alwasel, et al., Sahlep (Dactylorhiza osmanica): Phytochemical analyses by LC-HRMS, molecular docking, antioxidant activity, and enzyme inhibition profiles, Molecules 27 (2022), 6907.
    [9]
    J. Fang, C. Liu, Q. Wang, et al., In silico polypharmacology of natural products, Brief. Bioinformation 19 (2018) 1153-1171.
    [10]
    B. Karahalil, Overview of systems biology and omics technologies, Curr. Med. Chem. 23 (2016) 4221-4230.
    [11]
    P.P. Parvatikar, S. Patil, K. Khaparkhuntikar, et al., Artificial intelligence: Machine learning approach for screening large database and drug discovery, Antivir. Res. 220 (2023), 105740.
    [12]
    J. Lyu, S. Wang, T.E. Balius, et al., Ultra-large library docking for discovering new chemotypes, Nature 566 (2019) 224-229.
    [13]
    Z. Wang, H. Sun, X. Yao, et al., Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power, Phys. Chem. Chem. Phys. 18 (2016) 12964-12975.
    [14]
    D. Szklarczyk, A. Santos, C. von Mering, et al., STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data, Nucleic Acids Res. 44 (2016) D380-D384.
    [15]
    D.S. Wishart, Y.D. Feunang, A.C. Guo, et al., DrugBank 5.0: A major update to the DrugBank database for 2018, Nucleic Acids Res. 46 (2018) D1074-D1082.
    [16]
    A.G. Maldonado, J.P. Doucet, M. Petitjean, et al., Molecular similarity and diversity in chemoinformatics: From theory to applications, Mol. Divers. 10 (2006) 39-79.
    [17]
    F. Guo, C. Jiang, Y. Xi, et al., Investigation of pharmacological mechanism of natural product using pathway fingerprints similarity based on “drug-target-pathway” heterogenous network, J. Cheminf. 13 (2021), 68.
    [18]
    M. Duran-Frigola, E. Pauls, O. Guitart-Pla, et al., Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker, Nat. Biotechnol. 38 (2020) 1087-1096.
    [19]
    K.T. Barglow, B.F. Cravatt, Activity-based protein profiling for the functional annotation of enzymes, Nat. Methods 4 (2007) 822-827.
    [20]
    Y. Tu, L. Tan, H. Tao, et al., CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products, Phytomedicine 116 (2023), 154862.
    [21]
    H.M. Ismail, V.E. Barton, M. Panchana, et al., A click chemistry-based proteomic approach reveals that 1, 2, 4-trioxolane and artemisinin antimalarials share a common protein alkylation profile, Angew. Chem. Int. Ed Engl. 55 (2016) 6401-6405.
    [22]
    Q. Yue, Z. Cao, S. Guan, et al., Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network, Mol. Cell. Proteomics 7 (2008) 949-961.
    [23]
    P.D. Dearmond, Y. Xu, E.C. Strickland, et al., Thermodynamic analysis of protein-ligand interactions in complex biological mixtures using a shotgun proteomics approach, J. Proteome Res. 10 (2011) 4948-4958.
    [24]
    R. Jafari, H. Almqvist, H. Axelsson, et al., The cellular thermal shift assay for evaluating drug target interactions in cells, Nat. Protoc. 9 (2014) 2100-2122.
    [25]
    N. Li, Y. Zhang, J. Lv, et al., Protective effects of ginsenoside CK against oxidative stress-induced neuronal damage, assessed with 1H-NMR-based metabolomics, Acta Mater. Med. 1 (2022): 392-399.
    [26]
    C. Tao, J. Wang, Z. Gu, et al., Network pharmacology and metabolomics elucidate the underlying mechanisms of Venenum Bufonis in the treatment of colorectal cancer, J. Ethnopharmacol. 317 (2023), 116695.
    [27]
    X. Xie, Y. Xu, X. Zhou, et al., The protective effect of an extract of Salvia miltiorrhiza Bunge (Danshen) on cerebral ischemic injury in animal models: A systematic review and meta-analysis, J. Ethnopharmacol. 317 (2023), 116772.
    [28]
    Y. Luo, C. Wang, J. Hesse-Fong, et al., Application of Chinese medicine in acute and critical medical conditions, Am. J. Chin. Med. 47 (2019) 1223-1235.
    [29]
    I.L. Hung, Y.C. Hung, L. Wang, et al., Chinese herbal products for ischemic stroke, Am. J. Chin. Med. 43 (2015) 1365-1379.
    [30]
    M. Gaetani, P. Sabatier, A.A. Saei, et al., Proteome integral solubility alteration: A high-throughput proteomics assay for target deconvolution, J. Proteome Res. 18 (2019) 4027-4037.
    [31]
    C. Yao, L. Wang, E. Stancliffe, et al., Dose-response metabolomics to understand biochemical mechanisms and off-target drug effects with the TOXcms software, Anal. Chem. 92 (2020) 1856-1864.
    [32]
    J. Ren, L. Fu, S.H. Nile, et al., Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications, Front. Pharmacol. 10 (2019), 753.
    [33]
    M. Zampieri, From the metabolic profiling of drug response to drug mode of action, Curr. Opin. Struct. Biol. 10 (2018) 26-33.
    [34]
    D. Holbrook-Smith, S. Durot, U. Sauer, High-throughput metabolomics predicts drug-target relationships for eukaryotic proteins, Mol. Syst. Biol. 18 (2022), e10767.
    [35]
    Y. Zhu, F. Wang, J. Han, et al., Untargeted and targeted mass spectrometry reveal the effects of theanine on the central and peripheral metabolomics of chronic unpredictable mild stress-induced depression in juvenile rats, J. Pharm. Anal. 13 (2023) 73-87.
    [36]
    W. Wei, H.J. Li, W. Yang, et al., An integrated strategy for comprehensive characterization of metabolites and metabolic profiles of bufadienolides from Venenum Bufonis in rats, J. Pharm. Anal. 12 (2022) 136-144.
    [37]
    L.S. Schneider, Ginkgo biloba extract and preventing Alzheimer disease, JAMA 300 (2008) 2306-2308.
    [38]
    A. Oudin, N. Papon, V. Courdavault, Metabolic engineering of the paclitaxel anticancer drug, Cell Res. 34 (2024) 475-476.
    [39]
    Y. Xu, J. Zhang, GW25-E5201 the mechanism research of Compound Danshen dripping pills accuring myocardial infarction from the TLR4-NF-κB - PECAM-1 pathways, J. Am. Coll. Cardiol. 64 (2014), C46.
    [40]
    Y. Yang, X. Li, G. Chen, et al., Traditional Chinese medicine compound (Tongxinluo) and clinical outcomes of patients with acute myocardial infarction: The CTS-AMI randomized clinical trial, JAMA 330 (2023) 1534-1545.
    [41]
    S.J. van Wijk, G.J. Hageman, Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion, Free Radic. Biol. Med. 39 (2005) 81-90.
    [42]
    N. Khoury, K.B. Koronowski, J.I. Young, et al., The NAD+-dependent family of sirtuins in cerebral ischemia and preconditioning, Antioxidants Redox Signal. 28 (2018) 691-710.
    [43]
    G.E. Abdelkarim, K. Gertz, C. Harms, et al., Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke, Int. J. Mol. Med. 7 (2001) 255-260.
    [44]
    Z. Liang, G. Wu, C. Fan, et al., The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke, Prog. Neurobiol. 137 (2016) 1-16.
    [45]
    Y. Huang, S. Gao, Z. Gong, et al., Mechanism of Sanhua Decoction in the treatment of ischemic stroke based on network pharmacology methods and experimental verification, BioMed Res. Int. 2022 (2022), 7759402.
    [46]
    D. Hefter, A. Draguhn, APP as a protective factor in acute neuronal insults, Front. Mol. Neurosci. 10 (2017), 22.
    [47]
    L. Zhu, L. Zhu, J. Tan, et al., Suppression of miR-130a-3p attenuates oxygen-glucose deprivation/reoxygenation-induced dendritic spine loss by promoting APP, Front. Neurosci. 15 (2021), 601850.
    [48]
    A. Kumar, L. Zou, X. Yuan, et al., N-methyl-D-aspartate receptors: Transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model, J. Neurosci. Res. 67 (2002) 781-786.
    [49]
    G. Michalettos, K. Ruscher, Crosstalk between GABAergic neurotransmission and inflammatory cascades in the post-ischemic brain: Relevance for stroke recovery, Front. Cell. Neurosci. 16 (2022), 807911.
    [50]
    Y. Zhong, P. Peng, M. Zhang, et al., Effect of S-nitrosylation of RIP3 induced by cerebral ischemia on its downstream signaling pathway, J. Stroke Cerebrovasc. Dis. 31 (2022), 106516.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (578) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return