Citation: | Jiayu Zhou, Ziyi Wu, Ping Zhao. Luteolin and its antidepressant properties: From mechanism of action to potential therapeutic application[J]. Journal of Pharmaceutical Analysis, 2025, 15(4): 101097. doi: 10.1016/j.jpha.2024.101097 |
[1] |
N. Bains, S. Abdijadid, Major Depressive Disorder, StatPearls Publishing, Treasure Island, 2024.
|
[2] |
Global Burden of Disease Study 2013 Collaborators, Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013, Lancet 386 (2015) 743-800.
|
[3] |
A. Werner-Seidler, K. Huckvale, M.E. Larsen, et al., A trial protocol for the effectiveness of digital interventions for preventing depression in adolescents: The Future Proofing Study, Trials 21 (2020), 2.
|
[4] |
L. Rindner, G. Stromme, L. Nordeman, et al., Prevalence of somatic and urogenital symptoms as well as psychological health in women aged 45 to 55 attending primary health care: A cross-sectional study, BMC Womens Health 17 (2017), 128.
|
[5] |
H.M. Derry, A.C. Padin, J.L. Kuo, et al., Sex differences in depression: Does inflammation play a role? Curr. Psychiatry Rep. 17 (2015), 78.
|
[6] |
M. Nollet, W. Wisden, N.P. Franks, Sleep deprivation and stress: A reciprocal relationship, Interface Focus 10 (2020), 20190092.
|
[7] |
K.A. Dudek, L. Dion-Albert, M. Lebel, et al., Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression, Proc. Natl. Acad. Sci. USA 117 (2020) 3326-3336.
|
[8] |
R. Gilgoff, L. Singh, K. Koita, et al., Adverse childhood experiences, outcomes, and interventions, Pediatr. Clin. North Am. 67 (2020) 259-273.
|
[9] |
M.F. Juruena, F. Eror, A.J. Cleare, et al., The role of early life stress in HPA axis and anxiety. In: Anxiety Disorders, Springer, Singapore, 2020, pp. 141-153.
|
[10] |
E. Roohi, N. Jaafari, F. Hashemian, On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflammation 18 (2021), 45.
|
[11] |
J. Song, W. Ma, X. Gu, et al., Metabolomic signatures and microbial community profiling of depressive rat model induced by adrenocorticotrophic hormone, J. Transl. Med. 17 (2019), 224.
|
[12] |
M.J. Berridge, Vitamin D and depression: Cellular and regulatory mechanisms, Pharmacol. Rev. 69 (2017) 80-92.
|
[13] |
P. Cuijpers, S. Quero, C. Dowrick, et al., Psychological treatment of depression in primary care: Recent developments, Curr. Psychiatry Rep. 21 (2019), 129.
|
[14] |
E. Hertenstein, E. Trinca, M. Wunderlin, et al., Cognitive behavioral therapy for insomnia in patients with mental disorders and comorbid insomnia: A systematic review and meta-analysis, Sleep Med. Rev. 62 (2022), 101597.
|
[15] |
G. Hu, M. Zhang, Y. Wang, et al., Potential of heterogeneous compounds as antidepressants: A narrative review, Int. J. Mol. Sci. 23 (2022), 13776.
|
[16] |
S. Subramanian, R. Lopez, C.F. Zorumski, et al., Electroconvulsive therapy in treatment resistant depression, J. Neurol. Sci. 434 (2022), 120095.
|
[17] |
L.M. Behlke, E.J. Lenze, R.M. Carney, The cardiovascular effects of newer antidepressants in older adults and those with or at high risk for cardiovascular diseases, CNS Drugs 34 (2020) 1133-1147.
|
[18] |
M. Xie, H. Wang, T. Gao, et al., The protective effect of luteolin on the depression-related dry eye disorder through Sirt1/NF-κB/NLRP3 pathway, Aging 15 (2023) 261-275.
|
[19] |
C. Wu, Q. Xu, X. Chen, et al., Delivery luteolin with folacin-modified nanoparticle for glioma therapy, Int. J. Nanomedicine 14 (2019) 7515-7531.
|
[20] |
Z. Ashaari, M.A.R. Hadjzadeh, G. Hassanzadeh, et al., The flavone luteolin improves central nervous system disorders by different mechanisms: A review, J. Mol. Neurosci. 65 (2018) 491-506.
|
[21] |
M. Ashrafizadeh, Z. Ahmadi, T. Farkhondeh, et al., Autophagy regulation using luteolin: New insight into its anti-tumor activity, Cancer Cell Int. 20 (2020), 537.
|
[22] |
L. Zhang, R. Lu, R. Xu, et al., Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors, Heliyon 9 (2023), e15618.
|
[23] |
X. Liu, S. Ouyang, B. Yu, et al., PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach, Nucleic Acids Res. 38 (2010) W609-W614.
|
[24] |
A. Daina, O. Michielin, V. Zoete, SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res. 47 (2019) W357-W364.
|
[25] |
W. Liu, L. Wang, J. Zhang, Peanut shell extract and luteolin regulate lipid metabolism and induce browning in 3T3-L1 adipocytes, Foods 11 (2022), 2696.
|
[26] |
A.X. Gao, T.C.X. Xia, Z. Peng, et al., The ethanolic extract of peanut shell attenuates the depressive-like behaviors of mice through modulation of inflammation and gut microbiota, Food Res. Int. 168 (2023), 112765.
|
[27] |
B.K. Vazhayil, S.S. Rajagopal, T. Thangavelu, et al., Neuroprotective effect of Clerodendrum serratum Linn. leaves extract against acute restraint stress-induced depressive-like behavioral symptoms in adult mice, Indian J. Pharmacol. 49 (2017) 34-41.
|
[28] |
M.O. Villareal, K. Sasaki, D. Margout, et al., Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells, Cytotechnology 68 (2016) 2567-2578.
|
[29] |
K. Sasaki, A. El Omri, S. Kondo, et al., Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation, Behav. Brain Res. 238 (2013) 86-94.
|
[30] |
M. Nisar, Antidepressant screening and flavonoids isolation from Eremostachys laciniata (L) Bunge, Afr. J. Agric. Res. 10 (2011) 1696-1699.
|
[31] |
X. Zhu, S. Wu, Y. Zhou, et al., The pharmacological actions of Danzhi-Xiaoyao-San on depression involve lysophosphatidic acid and microbiota-gut-brain axis: Novel insights from a systems pharmacology analysis of a double-blind, randomized, placebo-controlled clinical trial, J. Biomol. Struct. Dyn. (2023) 1-16.
|
[32] |
X. Feng, Y. Bi, J. Wang, et al., Discovery of the potential novel pharmacodynamic substances from Zhi-zi-Hou-Po Decoction based on the concept of co-decoction reaction and analysis strategy, Front. Pharmacol. 12 (2022), 830558.
|
[33] |
S. Zhang, Y. Lu, W. Chen, et al., Network pharmacology and experimental evidence: PI3K/AKT signaling pathway is involved in the antidepressive roles of Chaihu Shugan San, Drug Des. Devel. Ther. 15 (2021) 3425-3441.
|
[34] |
W. Zhou, H. Zhang, X. Wang, et al., Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis, Phytomedicine 95 (2022), 153837.
|
[35] |
Z. Liu, H. Huang, Y. Yu, et al., Exploring the potential molecular mechanism of the Shugan Jieyu capsule in the treatment of depression through network pharmacology, molecular docking, and molecular dynamics simulation, Curr. Comput. Aided Drug Des. 20 (2024) 501-517.
|
[36] |
Z. Ding, F. Xu, Q. Sun, et al., Exploring the mechanism of action of herbal medicine (Gan-Mai-da-zao decoction) for poststroke depression based on network pharmacology and molecular docking, Evid. Based Complement. Alternat. Med. 2021 (2021), 2126967.
|
[37] |
N. Yuan, L. Gong, K. Tang, et al., An integrated pharmacology-based analysis for antidepressant mechanism of Chinese herbal formula Xiao-Yao-San, Front. Pharmacol. 11 (2020), 284.
|
[38] |
M. Assogna, E.P. Casula, I. Borghi, et al., Effects of palmitoylethanolamide combined with luteoline on frontal lobe functions, high frequency oscillations, and GABAergic transmission in patients with frontotemporal dementia, J. Alzheimers Dis. 76 (2020) 1297-1308.
|
[39] |
A. Taliou, E. Zintzaras, L. Lykouras, et al., An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders, Clin. Ther. 35 (2013) 592-602.
|
[40] |
G. Sabrina Anzollin, L. Zaki, T.M. Perin, et al., Antidepressant-like effect of Campomanesia xanthocarpa seeds in mice: Involvement of the monoaminergic system, J. Tradit. Complementary Med. 12 (2022) 309-317.
|
[41] |
Y. Zhong, Q. Du, Z. Wang, et al., Antidepressant effect of Perilla frutescens essential oil through monoamine neurotransmitters and BDNF/TrkB signal pathway, J. Ethnopharmacol. 318 (2024), 116840.
|
[42] |
K. Kohler-Forsberg, V.H. Dam, B. Ozenne, et al., Serotonin 4 receptor brain binding in major depressive disorder and association with memory dysfunction, JAMA Psychiatry 80 (2023) 296-304.
|
[43] |
B. Sur, B. Lee, Luteolin reduces fear, anxiety, and depression in rats with post-traumatic stress disorder, Anim. Cells Syst. 26 (2022) 174-182.
|
[44] |
S. Zhu, S. Lei, S. Zhou, et al., Luteolin shows antidepressant-like effect by inhibiting and downregulating plasma membrane monoamine transporter (PMAT, Slc29a4), J. Funct. Foods 54 (2019) 440-448.
|
[45] |
Y. Bandaruk, R. Mukai, J. Terao, Cellular uptake of quercetin and luteolin and their effects on monoamine oxidase-a in human neuroblastoma SH-SY5Y cells, Toxicol. Rep. 1 (2014) 639-649.
|
[46] |
H. Mohler, The GABA system in anxiety and depression and its therapeutic potential, Neuropharmacology 62 (2012) 42-53.
|
[47] |
Y. Li, A hypothesis of monoamine (5-HT)-Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery, Pharmacol. Ther. 208 (2020), 107494.
|
[48] |
B. Luscher, J.L. Maguire, U. Rudolph, et al., GABAA receptors as targets for treating affective and cognitive symptoms of depression, Trends Pharmacol. Sci. 44 (2023) 586-600.
|
[49] |
J.B. de la Pena, C.A. Kim, H.L. Lee, et al., Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABAA receptor, Arch. Pharm. Res. 37 (2014) 263-269.
|
[50] |
J. Zhao, W. Jiang, X. Wang, et al., Exercise, brain plasticity, and depression, CNS Neurosci. Ther. 26 (2020) 885-895.
|
[51] |
A. Wu, J. Zhang, Neuroinflammation, memory, and depression: New approaches to hippocampal neurogenesis, J. Neuroinflammation 20 (2023), 283.
|
[52] |
R.S. Duman, G.K. Aghajanian, G. Sanacora, et al., Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants, Nat. Med. 22 (2016) 238-249.
|
[53] |
J.H. Krystal, E.T. Kavalali, L.M. Monteggia, Ketamine and rapid antidepressant action: New treatments and novel synaptic signaling mechanisms, Neuropsychopharmacology 49 (2024) 41-50.
|
[54] |
A.N. Tartt, M.B. Mariani, R. Hen, et al., Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications, Mol. Psychiatry 27 (2022) 2689-2699.
|
[55] |
Y. Cheng, X. Wang, Y. Yu, et al., Noise induced depression-like behavior, neuroinflammation and synaptic plasticity impairments: The protective effects of luteolin, Neurochem. Res. 47 (2022) 3318-3330.
|
[56] |
K. Liu, H. Li, N. Zeng, et al., Exploration of the core pathways and potential targets of luteolin treatment on late-onset depression based on cerebrospinal fluid proteomics, Int. J. Mol. Sci. 24 (2023), 3485.
|
[57] |
A.S. Akinrinde, O.E. Adebiyi, Neuroprotection by luteolin and Gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats, Neurotoxicology 74 (2019) 252-263.
|
[58] |
S. Bhatt, A.N. Nagappa, C.R. Patil, Role of oxidative stress in depression, Drug Discov. Today 25 (2020) 1270-1276.
|
[59] |
T. Behl, T. Rana, G.H. Alotaibi, et al., Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression, Biomed. Pharmacother. 146 (2022), 112545.
|
[60] |
P. Czarny, P. Wigner, P. Galecki, et al., The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression, Prog. Neuropsychopharmacol Biol. Psychiatry 80 (2018) 309-321.
|
[61] |
S. Jimenez-Fernandez, M. Gurpegui, D. Garrote-Rojas, et al., Oxidative stress parameters and antioxidants in adults with unipolar or bipolar depression versus healthy controls: Systematic review and meta-analysis, J. Affect. Disord. 314 (2022) 211-221.
|
[62] |
H. Wang, M. Jin, M. Xie, et al., Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials, J. Affect. Disord. 323 (2023) 264-279.
|
[63] |
T. Mokhtari, M. Lu, A.E. El-Kenawy, Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors, Int. Immunopharmacol. 122 (2023), 110520.
|
[64] |
X. Huang, B. Hussain, J. Chang, Peripheral inflammation and blood-brain barrier disruption: Effects and mechanisms, CNS Neurosci. Ther. 27 (2021) 36-47.
|
[65] |
L. Yshii, E. Pasciuto, P. Bielefeld, et al., Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation, Nat. Immunol. 23 (2022) 878-891.
|
[66] |
B. Li, W. Yang, T. Ge, et al., Stress induced microglial activation contributes to depression, Pharmacol. Res. 179 (2022), 106145.
|
[67] |
H. Wang, Y. He, Z. Sun, et al., Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression, J. Neuroinflammation 19 (2022), 132.
|
[68] |
R.J. Tynan, J. Weidenhofer, M. Hinwood, et al., A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia, Brain Behav. Immun. 26 (2012) 469-479.
|
[69] |
Z. Li, Q. Wang, Z. Zhang, et al., A20, as a downstream factor of Nrf2, is involved in the anti-neuroinflammatory and antidepressant-like effects of luteolin, J. Funct. Foods 99 (2022), 105305.
|
[70] |
M. Achour, F. Ferdousi, K. Sasaki, et al., Luteolin modulates neural stem cells fate determination: in vitro study on human neural stem cells, and in vivo study on LPS-Induced depression mice model, Front. Cell Dev. Biol. 9 (2021), 753279.
|
[71] |
TanaT. Nakagawa, Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimer’s disease, Biochem. Biophys. Res. Commun. 588 (2022) 168-174.
|
[72] |
A.M.K. Choi, S.W. Ryter, B. Levine, Autophagy in human health and disease, N. Engl. J. Med. 368 (2013) 651-662.
|
[73] |
W.C. Godwin, G.F. Hoffmann, T.J. Gray, et al., Imaging of morphological and biochemical hallmarks of apoptosis with optimized optogenetic tools, J. Biol. Chem. 294 (2019) 16918-16929.
|
[74] |
N. Mizushima, M. Komatsu, Autophagy: Renovation of cells and tissues, Cell 147 (2011) 728-741.
|
[75] |
H. Wu, J. Pu, P.R. Krafft, et al., The molecular mechanisms between autophagy and apoptosis: Potential role in central nervous system disorders, Cell. Mol. Neurobiol. 35 (2015) 85-99.
|
[76] |
Y. Liu, C. Mao, S. Liu, et al., Proline dehydrogenase in cancer: Apoptosis, autophagy, nutrient dependency and cancer therapy, Amino Acids 53 (2021) 1891-1902.
|
[77] |
M. Abate, A. Festa, M. Falco, et al., Mitochondria as playmakers of apoptosis, autophagy and senescence, Semin. Cell Dev. Biol. 98 (2020) 139-153.
|
[78] |
M. Zheng, T.D. Kanneganti, The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis), Immunol. Rev. 297 (2020) 26-38.
|
[79] |
Q. Zhu, P. Meng, Y. Han, et al., Luteolin induced hippocampal neuronal pyroptosis inhibition by regulation of miR-124-3p/TNF-α/TRAF6 axis in mice affected by breast-cancer-related depression, Evid. Based Complement. Alternat. Med. 2022 (2022), 2715325.
|
[80] |
R. Crupi, I. Paterniti, A. Ahmad, et al., Effects of palmitoylethanolamide and luteolin in an animal model of anxiety/depression, CNS Neurol. Disord. Drug Targets 12 (2013) 989-1001.
|
[81] |
X. Wu, H. Xu, N. Zeng, et al., Luteolin alleviates depression-like behavior by modulating glycerophospholipid metabolism in the hippocampus and prefrontal cortex of LOD rats, CNS Neurosci. Ther. 30 (2024), e14455.
|
[82] |
S.A. Oakes, F.R. Papa, The role of endoplasmic reticulum stress in human pathology, Annu. Rev. Pathol. 10 (2015) 173-194.
|
[83] |
S.M. Palomino, A.A. Levine, J. Wahl, et al., Inhibition of HSP90 preserves blood-brain barrier integrity after cortical spreading depression, Pharmaceutics 14 (2022), 1665.
|
[84] |
S. Shim, S. Lee, C. Kim, et al., Effects of air transportation cause physiological and biochemical changes indicative of stress leading to regulation of chaperone expression levels and corticosterone concentration, Exp. Anim. 58 (2009) 11-17.
|
[85] |
G. Slifirski, M. Krol, J. Turlo, 5-HT receptors and the development of new antidepressants, Int. J. Mol. Sci. 22 (2021), 9015.
|
[86] |
M. Fuchikami, S. Yamamoto, S. Morinobu, et al., The potential use of histone deacetylase inhibitors in the treatment of depression, Prog. Neuropsychopharmacol Biol. Psychiatry 64 (2016) 320-324.
|
[87] |
P. Baumeister, D. Dong, Y. Fu, et al., Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis, Mol. Cancer Ther. 8 (2009) 1086-1094.
|
[88] |
M. Ishisaka, K. Kakefuda, M. Yamauchi, et al., Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress, Biol. Pharm. Bull. 34 (2011) 1481-1486.
|
[89] |
T. Liwinski, U.E. Lang, Folate and its significance in depressive disorders and suicidality: A comprehensive narrative review, Nutrients 15 (2023), 3859.
|
[90] |
E.T. Petridou, A.A. Kousoulis, T. Michelakos, et al., Folate and B12 serum levels in association with depression in the aged: A systematic review and meta-analysis, Aging Ment. Health 20 (2016) 965-973.
|
[91] |
D. Zhou, Z. Li, Y. Sun, et al., Early life stage folic acid deficiency delays the neurobehavioral development and cognitive function of rat offspring by hindering de novo telomere synthesis, Int. J. Mol. Sci. 23 (2022), 6948.
|
[92] |
H. Li, K. Liu, N. Zeng, et al., Luteolin enhances choroid plexus 5-MTHF brain transport to promote hippocampal neurogenesis in LOD rats, Front. Pharmacol. 13 (2022), 826568.
|
[93] |
P.K. Parekh, S.B. Johnson, C. Liston, Synaptic mechanisms regulating mood state transitions in depression, Annu. Rev. Neurosci. 45 (2022) 581-601.
|
[94] |
X. Li, T. Teng, W. Yan, et al., AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models, Transl. Psychiatry 13 (2023), 200.
|
[95] |
Y. Chen, Y. Yu, J. Qiao, et al., Mineralocorticoid receptor excessive activation involved in glucocorticoid-related brain injury, Biomed. Pharmacother. 122 (2020), 109695.
|
[96] |
C. Ly, A.C. Greb, L.P. Cameron, et al., Psychedelics promote structural and functional neural plasticity, Cell Rep. 23 (2018) 3170-3182.
|
[97] |
A. Nobis, D. Zalewski, E. Samaryn, et al., Urine 3-nitrotyrosine and serum HDL as potential biomarkers of depression, J. Clin. Med. 12 (2023), 377.
|
[98] |
N. Ji, M. Lei, Y. Chen, et al., How oxidative stress induces depression? ASN Neuro 15 (2023), 17590914231181037.
|
[99] |
H.M. Almohaimeed, M.H. Al-Zahrani, M.S. Almuhayawi, et al., Accelerating effect of Cucurbita pepo L. fruit extract on excisional wound healing in depressed rats is mediated through its anti-inflammatory and antioxidant effects, Nutrients 14 (2022), 3336.
|
[100] |
P. Li, I.T. Hsiao, C.Y. Liu, et al., Beta-amyloid deposition in patients with major depressive disorder with differing levels of treatment resistance: A pilot study, EJNMMI Res. 7 (2017), 24.
|
[101] |
E. Thiels, B.I. Kanterewicz, L.T. Knapp, et al., Protein phosphatase-mediated regulation of protein kinase C during long-term depression in the adult hippocampus in vivo, J. Neurosci. 20 (2000) 7199-7207.
|
[102] |
J. Gao, X. Hu, H. Yang, et al., Distinct roles of protein phosphatase 1 bound on neurabin and spinophilin and its regulation in AMPA receptor trafficking and LTD induction, Mol. Neurobiol. 55 (2018) 7179-7186.
|
[103] |
X. Hu, Q. Huang, X. Yang, et al., Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus, J. Neurosci. 27 (2007) 4674-4686.
|
[104] |
Y.C. Lin, G. Cheung, E. Porter, et al., The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells, J. Biol. Chem. 298 (2022), 102110.
|
[105] |
T. Higashi, Y. Nagura, K. Shimada, et al., Studies on neurosteroids XXVI. Fluoxetine-evoked changes in rat brain and serum levels of neuroactive androgen, 5 alpha-androstane-3 alpha,17 beta-diol, Biol. Pharm. Bull. 32 (2009) 1636-1638.
|
[106] |
S.L. Lightman, M.T. Birnie, B.L. Conway-Campbell, Dynamics of ACTH and cortisol secretion and implications for disease, Endocr. Rev. 41 (2020), bnaa002.
|
[107] |
T. Rana, T. Behl, A. Sehgal, et al., Exploring the role of neuropeptides in depression and anxiety, Prog. Neuropsychopharmacol Biol. Psychiatry 114 (2022), 110478.
|
[108] |
D.F. Swaab, A. Bao, P.J. Lucassen, The stress system in the human brain in depression and neurodegeneration, Ageing Res. Rev. 4 (2005) 141-194.
|
[109] |
H. Ostlund, E. Keller, Y.L. Hurd, Estrogen receptor gene expression in relation to neuropsychiatric disorders, Ann. N Y Acad. Sci. 1007 (2003) 54-63.
|
[110] |
X. Yan, C. Feng, Q. Liu, et al., Vagal afferents mediate antinociception of estrogen in a rat model of visceral pain: The involvement of intestinal mucosal mast cells and 5-hydroxytryptamine 3 signaling, J. Pain 15 (2014) 204-217.
|
[111] |
D.W. Brann, Y. Lu, J. Wang, et al., Brain-derived estrogen and neural function, Neurosci. Biobehav. Rev. 132 (2022) 793-817.
|
[112] |
P. Llaneza, M.P. Garcia-Portilla, D. Llaneza-Suarez, et al., Depressive disorders and the menopause transition, Maturitas 71 (2012) 120-130.
|
[113] |
F. Kondo, M. Tachi, M. Gosho, et al., Changes in hypothalamic neurotransmitter and prostanoid levels in response to NMDA, CRF, and GLP-1 stimulation, Anal. Bioanal. Chem. 407 (2015) 5261-5272.
|
[114] |
K.A. Pavlov, D.A. Chistiakov, V.P. Chekhonin, Genetic determinants of aggression and impulsivity in humans, J. Appl. Genet. 53 (2012) 61-82.
|
[115] |
S. Suresh, S.S. Ankul, C. Vellapandian, Bisphenol A exposure links to exacerbation of memory and cognitive impairment: A systematic review of the literature, Neurosci. Biobehav. Rev. 143 (2022), 104939.
|
[116] |
X. An, X. Yao, B. Li, et al., Role of BDNF-mTORC1 signaling pathway in female depression, Neural Plast. 2021 (2021), 6619515.
|
[117] |
D. Lu, L. Yang, F. Wang, et al., Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19), J. Agric. Food Chem. 60 (2012) 8411-8418.
|
[118] |
B.M. Markaverich, K. Shoulars, M.A. Rodriguez, Luteolin regulation of estrogen signaling and cell cycle pathway genes in MCF-7 human breast cancer cells, Int. J. Biomed. Sci. 7 (2011) 101-111.
|
[119] |
Z. Hou, J. Zhang, K. Yu, et al., Irisin ameliorates the postoperative depressive-like behavior by reducing the surface expression of epidermal growth factor receptor in mice, Neurochem. Int. 135 (2020), 104705.
|
[120] |
D.M. Anson, R.M. Wilcox, E.D. Huseman, et al., Luteolin decreases epidermal growth factor receptor-mediated cell proliferation and induces apoptosis in glioblastoma cell lines, Basic Clin. Pharmacol. Toxicol. 123 (2018) 678-686.
|
[121] |
E.J. Lee, S.Y. Oh, M.K. Sung, Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells, Food Chem. Toxicol. 50 (2012) 4136-4143.
|
[122] |
C.C. Tsao, J. Baumann, S. Huang, et al., Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome, Angiogenesis 24 (2021) 823-842.
|
[123] |
A. Ahluwalia, A.S. Tarnawski, Critical role of hypoxia sensor: HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing, Curr. Med. Chem. 19 (2012) 90-97.
|
[124] |
Z. Shi, J. Jing, Z. Xue, et al., Stellate ganglion block ameliorated central post-stroke pain with comorbid anxiety and depression through inhibiting HIF-1α/NLRP3 signaling following thalamic hemorrhagic stroke, J. Neuroinflammation 20 (2023), 82.
|
[125] |
G. Li, M. Zhao, X. Cheng, et al., FG-4592 improves depressive-like behaviors through HIF-1-mediated neurogenesis and synapse plasticity in rats, Neurotherapeutics 17 (2020) 664-675.
|
[126] |
O.O. Ogunshola, A. Al-Ahmad, HIF-1 at the blood-brain barrier: A mediator of permeability? High Alt. Med. Biol. 13 (2012) 153-161.
|
[127] |
E. Monti, E. Marras, P. Prini, et al., Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells, Eur. J. Pharmacol. 881 (2020), 173210.
|
[128] |
B.S. Miller, A.D. Rogol, R.G. Rosenfeld, The history of the insulin-like growth factor system, Horm. Res. Paediatr. 95 (2022) 619-630.
|
[129] |
H. Zhao, X. Zhao, X. Cao, et al., Age-dependent neuroimmune modulation of IGF-1R in the traumatic mice, Immun. Ageing 9 (2012), 12.
|
[130] |
M. First, I. Gil-Ad, M. Taler, et al., The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression, J. Mol. Neurosci. 45 (2011) 246-255.
|
[131] |
N. Balasuriya, N.E. Davey, J.L. Johnson, et al., Phosphorylation-dependent substrate selectivity of protein kinase B (AKT1), J. Biol. Chem. 295 (2020) 8120-8134.
|
[132] |
Y. Lu, C. Wang, Z. Xue, et al., PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13, Int. J. Neuropsychopharmacol. 18 (2014), pyu110.
|
[133] |
S. liu, T. Li, H. Liu, et al., Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex, Behav. Brain Res. 302 (2016) 191-199.
|
[134] |
H. Ni, Z. Guo, Y. Wu, et al., The crucial role that hippocampus Cyclooxygenase-2 plays in memory, Eur. J. Neurosci. 58 (2023) 4123-4136.
|
[135] |
M.D. Ferrer, C. Busquets-Cortes, X. Capo, et al., Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases, Curr. Med. Chem. 26 (2019) 3225-3241.
|
[136] |
Y. Xu, Y. Liu, K. Li, et al., COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion, Mol. Neurobiol. 59 (2022) 1619-1631.
|
[137] |
J.L. Madrigal, M.A. Moro, I. Lizasoain, et al., Induction of cyclooxygenase-2 accounts for restraint stress-induced oxidative status in rat brain, Neuropsychopharmacology 28 (2003) 1579-1588.
|
[138] |
T. Shirata, S. Yano, K. Noto, et al., Jitteriness/anxiety syndrome caused by coadministration of celecoxib, a selective COX-2 inhibitor, with escitalopram and trazodone in a patient with depression and spondylolisthesis, Neuropsychopharmacol. Rep. 43 (2023) 264-266.
|
[139] |
C. Wang, F. Zhang, S. Jiang, et al., Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease, Sci. Rep. 6 (2016), 20352.
|
[140] |
N.A. Kimbrel, A.E. Ashley-Koch, X.J. Qin, et al., Identification of novel, replicable genetic risk loci for suicidal thoughts and behaviors among US military veterans, JAMA Psychiatry 80 (2023) 135-145.
|
[141] |
D. Sun, C. Cheng, K. Moschke, et al., Extensive structure modification on luteolin-cinnamic acid conjugates leading to BACE1 inhibitors with optimal pharmacological properties, Molecules 25 (2019), 102.
|
[142] |
C. Manach, J.L. Donovan, Pharmacokinetics and metabolism of dietary flavonoids in humans, Free Radic. Res. 38 (2004) 771-785.
|
[143] |
T. Chen, L. Li, X. Lu, et al., Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract, J. Agric. Food Chem. 55 (2007) 273-277.
|
[144] |
S.M. Wittemer, M. Ploch, T. Windeck, et al., Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans, Phytomedicine 12 (2005) 28-38.
|
[145] |
A. Kure, K. Nakagawa, M. Kondo, et al., Metabolic fate of luteolin in rats: Its relationship to anti-inflammatory effect, J. Agric. Food Chem. 64 (2016) 4246-4254.
|
[146] |
L.C. Lin, Y. Pai, T.H. Tsai, Isolation of Luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats, J. Agric. Food Chem. 63 (2015) 7700-7706.
|
[147] |
P. Zhou, L. Li, S. Luo, et al., Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin, J. Agric. Food Chem. 56 (2008) 296-300.
|
[148] |
Z. Wang, M. Zeng, Z. Wang, et al., Dietary luteolin: A narrative review focusing on its pharmacokinetic properties and effects on glycolipid metabolism, J. Agric. Food Chem. 69 (2021) 1441-1454.
|
[149] |
H. Dang, M.H.W. Meng, H. Zhao, et al., Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies, J. Nanopart. Res. 16 (2014), 2347.
|
[150] |
D. Sawmiller, S. Li, M. Shahaduzzaman, et al., Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury, Int. J. Mol. Sci. 15 (2014) 895-904.
|
[151] |
E. De Leo, M.A. Elmonem, S.P. Berlingerio, et al., Cell-based phenotypic drug screening identifies luteolin as candidate therapeutic for nephropathic cystinosis, J. Am. Soc. Nephrol. 31 (2020) 1522-1537.
|
[152] |
M. Shabbir, T. Afsar, S. Razak, et al., Phytochemical analysis and Evaluation of hepatoprotective effect of Maytenus royleanus leaves extract against anti-tuberculosis drug induced liver injury in mice, Lipids Health Dis. 19 (2020), 46.
|
[153] |
M. Imran, A. Rauf, T. Abu-Izneid, et al., Luteolin, a flavonoid, as an anticancer agent: A review, Biomed. Pharmacother. 112 (2019), 108612.
|
[154] |
J. Xiong, K. Wang, C. Yuan, et al., Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects, Int. J. Mol. Med. 39 (2017) 113-125.
|
[155] |
S.K. Nordeen, B.J. Bona, D.N. Jones, et al., Endocrine disrupting activities of the flavonoid nutraceuticals luteolin and quercetin, Horm. Cancer 4 (2013) 293-300.
|
[156] |
M. Lopez-Lazaro, Distribution and biological activities of the flavonoid luteolin, Mini Rev. Med. Chem. 9 (2009) 31-59.
|
[157] |
S. Terzo, A. Amato, A. Magan-Fernandez, et al., A nutraceutical containing chlorogenic acid and luteolin improves cardiometabolic parameters in subjects with pre-obesity: A 6-month randomized, double-blind, placebo-controlled study, Nutrients 15 (2023), 462.
|
[158] |
S. Luo, H. Li, Z. Mo, et al., Connectivity map identifies luteolin as a treatment option of ischemic stroke by inhibiting MMP9 and activation of the PI3K/Akt signaling pathway, Exp. Mol. Med. 51 (2019) 1-11.
|
[159] |
J. Kou, J. Shi, Y. He, et al., Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation, Acta Pharmacol. Sin. 43 (2022) 840-849.
|
[160] |
R. Siracusa, I. Paterniti, D. Impellizzeri, et al., The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model, CNS Neurol. Disord. Drug Targets 14 (2015) 1350-1365.
|
[161] |
B. Li, Y. Guo, X. Jia, et al., Luteolin alleviates ulcerative colitis in rats via regulating immune response, oxidative stress, and metabolic profiling, Open Med. 18 (2023), 20230785.
|
[162] |
G. Castellino, D. Nikolic, A. Magan-Fernandez, et al., Altilix® supplement containing chlorogenic acid and luteolin improved hepatic and cardiometabolic parameters in subjects with metabolic syndrome: A 6 month randomized, double-blind, placebo-controlled study, Nutrients 11 (2019), 2580.
|