Volume 15 Issue 3
Apr.  2025
Turn off MathJax
Article Contents
Yong Wang, Kewen He, Yang Zhang, Yunhao Chen, Shijie Wang, Kunlong Zhao, Zhiguo Liu, Man Hu. Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101082. doi: 10.1016/j.jpha.2024.101082
Citation: Yong Wang, Kewen He, Yang Zhang, Yunhao Chen, Shijie Wang, Kunlong Zhao, Zhiguo Liu, Man Hu. Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy[J]. Journal of Pharmaceutical Analysis, 2025, 15(3): 101082. doi: 10.1016/j.jpha.2024.101082

Peptide-based immuno-PET/CT monitoring of dynamic PD-L1 expression during glioblastoma radiotherapy

doi: 10.1016/j.jpha.2024.101082
Funds:

This study received support from the National Natural Science Foundation of China (Grant Nos.: 82272751 and 82202958), the Natural Science Foundation of Shandong, China (Grant No.: ZR2021LSW002), and the Science and Technology Program of Jinan, China (Grant Nos.: 202225019 and 202225013) to Man Hu

the Shandong Postdoctoral Innovation Program, China (Grant No.: SDCX-ZG-202302011) and Beijing Science and Technology Innovation Medical Development Foundation, China (Grant No.: KC2023-JX-0288-BQ26) to Yong Wang

the Natural Science Foundation of China (Grant No.: NSFC82303676), the Natural Science Foundation of Shandong (Grant No.: ZR2023QH208), the China Postdoctoral Science Foundation (Grant No.: 2023M732125), and the Taishan Scholar Project Special Fund (Grant No.: tsqn202312368) to Kewen He.

  • Received Date: Apr. 08, 2024
  • Accepted Date: Aug. 21, 2024
  • Rev Recd Date: Aug. 17, 2024
  • Publish Date: Aug. 26, 2024
  • Real-time, noninvasive programmed death-ligand 1 (PD-L1) testing using molecular imaging has enhanced our understanding of the immune environments of neoplasms and has served as a guide for immunotherapy. However, the utilization of radiotracers in the imaging of human brain tumors using positron emission tomography/computed tomography (PET/CT) remains limited. This investigation involved the synthesis of [18F]AlF-NOTA-PCP2, which is a novel peptide-based radiolabeled tracer that targets PD-L1, and evaluated its imaging capabilities in orthotopic glioblastoma (GBM) models. Using this tracer, we could noninvasively monitor radiation-induced PD-L1 changes in GBM. [18F]AlF-NOTA-PCP2 exhibited high radiochemical purity (>95%) and stability up to 4 h after synthesis. It demonstrated specific, high-affinity binding to PD-L1 in vitro and in vivo, with a dissociation constant of 0.24 nM. PET/CT imaging, integrated with contrast-enhanced magnetic resonance imaging, revealed significant accumulation of [18F]AlF-NOTA-PCP2 in orthotopic tumors, correlating with blood-brain barrier disruption. After radiotherapy (15 Gy), [18F]AlF-NOTA-PCP2 uptake in tumors increased from 9.51% ± 0.73% to 12.04% ± 1.43%, indicating enhanced PD-L1 expression consistent with immunohistochemistry findings. Fractionated radiation (5 Gy × 3) further amplified PD-L1 upregulation (13.9% ± 1.54% ID/cc) compared with a single dose (11.48% ± 1.05% ID/cc). Taken together, [18F]AlF-NOTA-PCP2 may be a valuable tool for noninvasively monitoring PD-L1 expression in brain tumors after radiotherapy.

  • loading
  • [1]
    L.R. Schaff, I.K. Mellinghoff, Glioblastoma and other primary brain malignancies in adults: A review, JAMA 329 (2023) 574-587.
    [2]
    V. Venkataramani, Y. Yang, M.C. Schubert, et al., Glioblastoma hijacks neuronal mechanisms for brain invasion, Cell 185 (2022) 2899-2917.e31.
    [3]
    A. Chow, K. Perica, C.A. Klebanoff, et al., Clinical implications of T cell exhaustion for cancer immunotherapy, Nat. Rev. Clin. Oncol. 19 (2022) 775-790.
    [4]
    D.A. Reardon, A.A. Brandes, A. Omuro, et al., Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial, JAMA Oncol. 6 (2020) 1003-1010.
    [5]
    S.G.C. Kroeze, M. Pavic, K. Stellamans, et al., Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: Systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium, Lancet Oncol. 24 (2023) e121-e132.
    [6]
    L. Galluzzi, M.J. Aryankalayil, C. Norman Coleman, et al., Emerging evidence for adapting radiotherapy to immunotherapy, Nat. Rev. Clin. Oncol. 20 (2023) 543-557.
    [7]
    X. Tu, B. Qin, Y. Zhang, et al., PD-L1 (B7-H1) competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy, Mol. Cell 74 (2019) 1215-1226.e4.
    [8]
    Y. Wu, Y. Song, R. Wang, et al., Molecular mechanisms of tumor resistance to radiotherapy, Mol. Cancer 22 (2023), 96.
    [9]
    G. Lei, C. Mao, Y. Yan, et al., Ferroptosis, radiotherapy, and combination therapeutic strategies, Protein Cell 12 (2021) 836-857.
    [10]
    E.B. Ehlerding, H.J. Lee, T.E. Barnhart, et al., Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with 89Zr-df-atezolizumab, Bioconjug. Chem. 30 (2019) 1434-1441.
    [11]
    M. Kikuchi, D.A. Clump, R.M. Srivastava, et al., Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma, Oncoimmunology 6 (2017), e1329071.
    [12]
    M. Yi, X. Zheng, M. Niu, et al., Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions, Mol. Cancer 21 (2022), 28.
    [13]
    S.P. Rowe, M.G. Pomper, Molecular imaging in oncology: Current impact and future directions, CA Cancer J Clin. 72 (2022) 333-352.
    [14]
    D. Giesen, L.N. Broer, M.N. Lub-de Hooge, et al., Probody therapeutic design of 89Zr-CX-072 promotes accumulation in PD-L1-expressing tumors compared to normal murine lymphoid tissue, Clin. Cancer Res. 26 (2020) 3999-4009.
    [15]
    L. Kist de Ruijter, J.S. Hooiveld-Noeken, D. Giesen, et al., First-in-human study of the biodistribution and pharmacokinetics of 89Zr-CX-072, a novel immunopet tracer based on an anti-PD-L1 probody, Clin. Cancer Res. 27 (2021) 5325-5333.
    [16]
    F. Bensch, E.L. van der Veen, M.N. Lub-de Hooge, et al., 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer, Nat. Med. 24 (2018) 1852-1858.
    [17]
    H. Hosseinkhani, Nanomaterials in Advanced Medicine, Wiley, Weinheim, 2019.
    [18]
    H. Hosseinkhani, Biomedical Engineering: Materials, Technology, and Applications. John Wiley & Sons, Hoboken, 2022.
    [19]
    Y. Xing, G. Chand, C. Liu, et al., Early phase I study of a 99mTc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer, J. Nucl. Med. 60 (2019) 1213-1220.
    [20]
    G. Lv, X. Sun, L. Qiu, et al., PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody, J. Nucl. Med. 61 (2020) 117-122.
    [21]
    A. Mishra, K. Gupta, D. Kumar, et al., Non-invasive PD-L1 quantification using [18F] DK222-PET imaging in cancer immunotherapy, J. Immunother. Cancer 11 (2023), e007535.
    [22]
    X. Zhou, J. Jiang, X. Yang, et al., First-in-humans evaluation of a PD-L1-binding peptide PET radiotracer in non-small cell lung cancer patients, J. Nucl. Med. 63 (2022) 536-542.
    [23]
    C. Li, N. Zhang, J. Zhou, et al., Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy, Cancer Immunol. Res. 6 (2018) 178-188.
    [24]
    C.L. Charron, J.L. Hickey, T.K. Nsiama, et al., Molecular imaging probes derived from natural peptides, Nat. Prod. Rep. 33 (2016) 761-800.
    [25]
    M.M. Miller, C. Mapelli, M.P. Allen, et al., Inventors; Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions, B.-M. Squibb, patent WO2014151634A1, 25 September, 2014.
    [26]
    Z Liu, L Yu, K Cheng, et al., Optimization, automation and validation of the large-scale radiosynthesis of Al18F tracers in a custom-made automatic platform for high yield, React. Chem. Eng. 5 (2020) 1441-1449.
    [27]
    J. Zhang, X. Sun, H. Li, et al., In vivo characterization and analysis of glioblastoma at different stages using multiscale photoacoustic molecular imaging, Photoacoustics 30 (2023), 100462.
    [28]
    X. Hu, M. Zhao, M. Bai, et al., PARP inhibitor plus radiotherapy reshape the immune suppressive microenvironment and potentiate the efficacy of immune checkpoint inhibitors in tumors with IDH1 mutation, Cancer Lett. 586 (2024), 216676.
    [29]
    C.M. Jackson, J. Choi, M. Lim, Mechanisms of immunotherapy resistance: Lessons from glioblastoma, Nat. Immunol. 20 (2019) 1100-1109.
    [30]
    P. Zhu, S. Li, J. Ding, et al., Combination immunotherapy of glioblastoma with dendritic cell cancer vaccines, anti-PD-1 and poly I: C, J. Pharm. Anal. 13 (2023) 616-624.
    [31]
    M. Lim, M. Weller, A. Idbaih, et al., Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter, Neuro Oncol. 24 (2022) 1935-1949.
    [32]
    H. Yamaguchi, J.M. Hsu, W. Yang, et al., Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics, Nat. Rev. Clin. Oncol. 19 (2022) 287-305.
    [33]
    H. Gao, Y. Wu, J. Shi, et al., Nuclear imaging-guided PD-L1 blockade therapy increases effectiveness of cancer immunotherapy, J. Immunother. Cancer 8 (2020), e001156.
    [34]
    C. Luchini, F. Bibeau, M.L. Ligtenberg, et al., ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach, Ann. Oncol. 30 (2019) 1232-1243.
    [35]
    J. Llop, T. Lammers, Nanoparticles for cancer diagnosis, radionuclide therapy and theranostics, ACS Nano 15 (2021) 16974-16981.
    [36]
    X. Sun, Y. Li, T. Liu, et al., Peptide-based imaging agents for cancer detection, Adv. Drug Deliv. Rev. 110-111 (2017) 38-51.
    [37]
    M.P. Kelly, S. Makonnen, C. Hickey, et al., Preclinical PET imaging with the novel human antibody 89Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues, J. Immunother. Cancer 9 (2021), e002025.
    [38]
    K. He, S. Zeng, L. Qian, Recent progress in the molecular imaging of therapeutic monoclonal antibodies, J. Pharm. Anal. 10 (2020) 397-413.
    [39]
    D.J. Donnelly, J. Kim, T. Tran, et al., The discovery and evaluation of [18F] BMS-986229, a novel macrocyclic peptide PET radioligand for the measurement of PD-L1 expression and in-vivo PD-L1 target engagement, Eur. J. Nucl. Med. Mol. Imaging 51 (2024) 978-990.
    [40]
    S.L. Cytryn, N. Pandit-Taskar, M.A. Lumish, et al., 18F-BMS-986229 PET to assess programmed-death ligand 1 status in gastroesophageal cancer, J. Nucl. Med. 65 (2024) 722-727.
    [41]
    Y. Chen, S. Zhu, J. Fu, et al., Development of a radiolabeled site-specific single-domain antibody positron emission tomography probe for monitoring PD-L1 expression in cancer, J. Pharm. Anal. 12 (2022) 869-878.
    [42]
    S. Robu, A. Richter, D. Gosmann, et al., Synthesis and preclinical evaluation of a 68Ga-labeled adnectin, 68Ga-BMS-986192, as a PET agent for imaging PD-L1 expression, J. Nucl. Med. 62 (2021) 1228-1234.
    [43]
    G. Sharma, M.C. Braga, C. Da Pieve, et al., Immuno-PET imaging of tumour PD-L1 expression in glioblastoma, Cancers (Basel) 15 (2023), 3131.
    [44]
    W.G. Lesniak, C. Chu, A. Jablonska, et al., A distinct advantage to intraarterial delivery of 89Zr-bevacizumab in PET imaging of mice with and without osmotic opening of the blood-brain barrier, J. Nucl. Med. 60 (2019) 617-622.
    [45]
    C.D. Arvanitis, G.B. Ferraro, R.K. Jain, The blood-brain barrier and blood-tumour barrier in brain tumours and metastases, Nat. Rev. Cancer 20 (2020) 26-41.
    [46]
    H. Li, T. Ye, X. Liu, et al., The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer’s disease, J. Pharm. Anal. 13 (2023) 788-805.
    [47]
    C. Chu, A. Jablonska, Y. Gao, et al., Hyperosmolar blood-brain barrier opening using intra-arterial injection of hyperosmotic mannitol in mice under real-time MRI guidance, Nat. Protoc. 17 (2022) 76-94.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (188) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return