Citation: | Arnik Shah, Dipanwita Batabyal, Dayong Qiu, Weidong Cui, John Harrahy, Alexander R. Ivanov. Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100966. doi: 10.1016/j.jpha.2024.100966 |
Biotherapeutic's higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
[1] |
D.M. Ecker, S.D. Jones, H.L. Levine, The therapeutic monoclonal antibody market, mAbs 7(2015) 9-14.
|
[2] |
C. Milstein, Monoclonal antibodies, Sci. Am. 243(1980) 66-74.
|
[3] |
P.N. Nelson, G.M. Reynolds, E.E. Waldron, et al., Monoclonal antibodies, Mol. Pathol. 53(2000) 111-117.
|
[4] |
S. Singh, N.K. Kumar, P. Dwiwedi, et al., Monoclonal antibodies: A review, Curr. Clin. Pharmacol. 13(2018) 85-99.
|
[5] |
J. Reichert, A. Pavolu, Monoclonal antibodies market, Nat. Rev. Drug Discov. 3(2004) 383-384.
|
[6] |
E. Moorkens, A.G. Vulto, I. Huys, An overview of patents on therapeutic monoclonal antibodies in Europe: Are they a hurdle to biosimilar market entry? mAbs 12(2020), 1743517.
|
[7] |
M. Bhattacharyya, S. Ghosh, S. Vishveshwara, Protein structure and function: Looking through the network of side-chain interactions, Curr. Protein Pept. Sci. 17(2016) 4-25.
|
[8] |
D.M. Byers, H. Gong, Acyl carrier protein: Structure-function relationships in a conserved multifunctional protein family, Biochem. Cell Biol. 85(2007) 649-662.
|
[9] |
C.A. Orengo, A.E. Todd, J.M. Thornton, From protein structure to function, Curr. Opin. Struct. Biol. 9(1999) 374-382.
|
[10] |
D.A. Liberles, S.A. Teichmann, I. Bahar, et al., The interface of protein structure, protein biophysics, and molecular evolution, Protein Sci. 21(2012) 769-785.
|
[11] |
Y. Zhang, A.T. Wecksler, P. Molina, et al., Mapping the binding interface of VEGF and a monoclonal antibody fab-1 fragment with fast photochemical oxidation of proteins (FPOP) and mass spectrometry, J. Am. Soc. Mass Spectrom. 28(2017) 850-858.
|
[12] |
S. Jin, Y. Sun, X. Liang, et al., Emerging new therapeutic antibody derivatives for cancer treatment, Signal Transduct. Target. Ther. 7(2022), 39.
|
[13] |
M. Friedrich, T. Raum, R. Lutterbuese, et al., Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens, Mol. Cancer Ther. 11(2012) 2664-2673.
|
[14] |
B. Yu, M. Ni, W. Li, et al., Human scFv antibody fragments specific for hepatocellular carcinoma selected from a phage display library, World J. Gastroenterol. 11(2005) 3985-3989.
|
[15] |
A.L. Nelson, Antibody fragments, mAbs 2(2010) 77-83.
|
[16] |
R. Ahamadi-Fesharaki, A. Fateh, F. Vaziri, et al., Single-chain variable fragment-based bispecific antibodies: Hitting two targets with one sophisticated arrow, Mol. Ther. Oncolytics 14(2019) 38-56.
|
[17] |
W. Chen, Y. Yuan, X. Jiang, Antibody and antibody fragments for cancer immunotherapy, J. Control. Release 328(2020) 395-406.
|
[18] |
P. Munoz-Lopez, R.M. Ribas-Aparicio, E.I. Becerra-Baez, et al., Single-chain fragment variable: Recent progress in cancer diagnosis and therapy, Cancers 14(2022), 4206.
|
[19] |
S. Frokjaer, D.E. Otzen, Protein drug stability: A formulation challenge, Nat. Rev. Drug Discov. 4(2005) 298-306.
|
[20] |
S.A. Berkowitz, J.R. Engen, J.R. Mazzeo, et al., Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars, Nat. Rev. Drug Discov. 11(2012) 527-540.
|
[21] |
J.P. Gabrielson, W.F. Weiss 4th, Technical decision-making with higher order structure data: Starting a new dialogue, J. Pharm. Sci. 104(2015) 1240-1245.
|
[22] |
I.A. Kaltashov, C.E. Bobst, R.R. Abzalimov, et al., Advances and challenges in analytical characterization of biotechnology products: Mass spectrometry-based approaches to study properties and behavior of protein therapeutics, Biotechnol. Adv. 30(2012) 210-222.
|
[23] |
Y. Tokunaga, K. Takeuchi, Role of NMR in high ordered structure characterization of monoclonal antibodies, Int. J. Mol. Sci. 22(2020), 46.
|
[24] |
L.W. Arbogast, R.G. Brinson, J.P. Marino, Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance, Anal. Chem. 87(2015) 3556-3561.
|
[25] |
M.L. Brader, E.N. Baker, M.F. Dunn, et al., Using X-ray crystallography to simplify and accelerate biologics drug development, J. Pharm. Sci. 106(2017) 477-494.
|
[26] |
L.J. Harris, E. Skaletsky, A. McPherson, Crystallization of intact monoclonal antibodies, Proteins 23(1995) 285-289.
|
[27] |
W.M. Abbott, M.M. Damschroder, D.C. Lowe, Current approaches to fine mapping of antigen-antibody interactions, Immunology 142(2014) 526-535.
|
[28] |
S.K. Jung, K.H. Lee, J.W. Jeon, et al., Physicochemical characterization of Remsima®, mAbs 6(2014) 1163-1177.
|
[29] |
L.M. Holbrook, L.S. Kwong, C.L. Metcalfe, et al., OX133, a monoclonal antibody recognizing protein-bound N-ethylmaleimide for the identification of reduced disulfide bonds in proteins, mAbs 8(2016) 672-677.
|
[30] |
G. Thiagarajan, A. Semple, J.K. James, et al., A comparison of biophysical characterization techniques in predicting monoclonal antibody stability, mAbs 8(2016) 1088-1097.
|
[31] |
J. Qian, T. Liu, L. Yang, et al., Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion, Anal. Biochem. 364(2007) 8-18.
|
[32] |
L. Huang, J. Lu, V.J. Wroblewski, et al., In vivo deamidation characterization of monoclonal antibody by LC/MS/MS, Anal. Chem. 77(2005) 1432-1439.
|
[33] |
A. Beck, S. Sanglier-Cianferani, A. Van Dorsselaer, Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry, Anal. Chem. 84(2012) 4637-4646.
|
[34] |
J.E. Alexander, D.F. Hunt, M.K. Lee, et al., Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry, Proc. Natl. Acad. Sci. U S A 88(1991) 4685-4689.
|
[35] |
G. Terral, A. Beck, S. Cianferani, Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1032(2016) 79-90.
|
[36] |
X.R. Liu, M.M. Zhang, M.L. Gross, Mass spectrometry-based protein footprinting for higher-order structure analysis: Fundamentals and applications, Chem. Rev. 120(2020) 4355-4454.
|
[37] |
R.Y.C. Huang, G. Chen, Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry, Anal. Bioanal. Chem. 406(2014) 6541-6558.
|
[38] |
C.E. Bobst, R.R. Abzalimov, Houde, et al., Detection and characterization of altered conformations of protein pharmaceuticals using complementary mass spectrometry-based approaches, Anal. Chem. 80(2008) 7473-7481.
|
[39] |
P. Limpikirati, T. Liu, R.W. Vachet, Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions, Methods 144(2018) 79-93.
|
[40] |
C.Y. Tremblay, Z.J. Kirsch, R.W. Vachet, Complementary structural information for antibody-antigen complexes from hydrogen-deuterium exchange and covalent labeling mass spectrometry, J. Am. Soc. Mass Spectrom. 33(2022) 1303-1314.
|
[41] |
C.Y. Tremblay, Z.J. Kirsch, R.W. Vachet, Epitope mapping with diethylpyrocarbonate covalent labeling-mass spectrometry, Anal. Chem. 94(2022) 1052-1059.
|
[42] |
L.M. Jones, J.B. Sperry, J.A. Carroll, et al., Fast photochemical oxidation of proteins for epitope mapping, Anal. Chem. 83(2011) 7657-7661.
|
[43] |
C. Watson, J.S. Sharp, Conformational analysis of therapeutic proteins by hydroxyl radical protein footprinting, AAPS J. 14(2012) 206-217.
|
[44] |
J. Li, H. Wei, S.R. Krystek Jr, et al., Mapping the energetic epitope of an antibody/interleukin-23 interaction with hydrogen/deuterium exchange, fast photochemical oxidation of proteins mass spectrometry, and alanine shave mutagenesis, Anal. Chem. 89(2017) 2250-2258.
|
[45] |
L. Konermann, J. Pan, Y. Liu, Hydrogen exchange mass spectrometry for studying protein structure and dynamics, Chem. Soc. Rev. 40(2011) 1224-1234.
|
[46] |
E. Trabjerg, Z.E. Nazari, K.D. Rand, Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions, Trends Analyt. Chem. 106(2018) 125-138.
|
[47] |
G.R. Masson, J.E. Burke, N.G. Ahn, et al., Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments, Nat. Meth. 16(2019) 595-602.
|
[48] |
G.R. Masson, M.L. Jenkins, J.E. Burke, An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery, Expert Opin. Drug Discov. 12(2017) 981-994.
|
[49] |
L. Piersimoni, P.L. Kastritis, C. Arlt, et al., Cross-linking mass spectrometry for investigating protein conformations and protein-protein Interactions - A method for all seasons, Chem. Rev. 122(2022) 7500-7531.
|
[50] |
A. Sinz, C. Arlt, D. Chorev, et al., Chemical cross-linking and native mass spectrometry: A fruitful combination for structural biology Protein Sci. 24(2015) 1193-1209.
|
[51] |
A. Leitner, M. Faini, F. Stengel, et al., Crosslinking and mass spectrometry: An integrated technology to understand the structure and function of molecular machines, Trends Biochem. Sci. 41(2016) 20-32.
|
[52] |
J.D. Chavez, J.E. Bruce, Chemical cross-linking with mass spectrometry: A tool for systems structural biology, Curr. Opin. Chem. Biol. 48(2019) 8-18.
|
[53] |
D.D. Vallejo, C.K. Jeon, K.F. Parson, et al., Ion mobility-mass spectrometry reveals the structures and stabilities of biotherapeutic antibody aggregates, Anal. Chem. 94(2022) 6745-6753.
|
[54] |
D.D. Vallejo, J. Kang, J. Coghlan, et al., Collision-induced unfolding reveals stability differences in infliximab therapeutics under native and heat stress conditions, Anal. Chem. 93(2021) 16166-16174.
|
[55] |
R.C. Villafuerte-Vega, H.W. Li, T.R. Slaney, et al., Ion mobility-mass spectrometry and collision-induced unfolding of designed bispecific antibody therapeutics, Anal. Chem. 95(2023) 6962-6970.
|
[56] |
W. Zhang, Y. Xiang, W. Xu, Probing protein higher-order structures by native capillary electrophoresis-mass spectrometry, Trends Analyt. Chem. 157(2022), 116739.
|
[57] |
S.S. Zhao, D.D. Chen, Applications of capillary electrophoresis in characterizing recombinant protein therapeutics, Electrophoresis 35(2014) 96-108.
|
[58] |
K. Faserl, B. Sarg, H.H. Lindner, Application of CE-MS for the analysis of histones and histone modifications, Methods 184(2020) 125-134.
|
[59] |
Y. Shen, X. Zhao, G. Wang, et al., Differential hydrogen/deuterium exchange during proteoform separation enables characterization of conformational differences between coexisting protein states, Anal. Chem. 91(2019) 3805-3809.
|
[60] |
Z. Zhang, S.Y. Chow, R. de Guzman, et al., A mass spectrometric characterization of light-induced modifications in therapeutic proteins, J. Pharm. Sci. 111(2022) 1556-1564.
|
[61] |
N.B. Borotto, Y. Zhou, S.R. Hollingsworth, et al., Investigating therapeutic protein structure with diethylpyrocarbonate labeling and mass spectrometry, Anal. Chem. 87(2015) 10627-10634.
|
[62] |
P. Limpikirati, J.E. Hale, M. Hazelbaker, et al., Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics, mAbs 11(2019) 463-476.
|
[63] |
Y. Yan, G. Chen, H. Wei, et al., Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin, J. Am. Soc. Mass Spectrom. 25(2014) 2084-2092.
|
[64] |
G. Deperalta, M. Alvarez, C. Bechtel, et al., Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting, mAbs 5(2013) 86-101.
|
[65] |
A.J. Schick 3rd, V. Lundin, J. Low, et al., Epitope mapping of anti-drug antibodies to a clinical candidate bispecific antibody, mAbs 14(2022), 2028337.
|
[66] |
V.L. Mendoza, R.W. Vachet, Probing protein structure by amino acid-specific covalent labeling and mass spectrometry, Mass Spectrom. Rev. 28(2009) 785-815.
|
[67] |
X.R. Liu, D.L. Rempel, M.L. Gross, Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis, Nat. Protoc. 15(2020) 3942-3970.
|
[68] |
K.S. Li, L. Shi, M.L. Gross, Mass spectrometry-based fast photochemical oxidation of proteins (FPOP) for higher order structure characterization, Acc. Chem. Res. 51(2018) 736-744.
|
[69] |
C.H. Li, X. Nguyen, L. Narhi, et al., Applications of circular dichroism (CD) for structural analysis of proteins: Qualification of near- and far-UV CD for protein higher order structural analysis, J. Pharm. Sci. 100(2011) 4642-4654.
|
[70] |
Z. Zhang, B. Shah, X. Guan, Reliable LC-MS multiattribute method for biotherapeutics by Run-time response calibration, Anal. Chem. 91(2019) 5252-5260.
|
[71] |
D. Goswami, J. Zhang, P.V. Bondarenko, et al., MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals, Methods 144(2018) 134-151.
|
[72] |
B. Shah, X.G. Jiang, L. Chen, et al., LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in immunoglobulins, J. Am. Soc. Mass Spectrom. 25(2014) 999-1011.
|
[73] |
D.T. Johnson, L.H. Di Stefano, L.M. Jones, Fast photochemical oxidation of proteins (FPOP): A powerful mass spectrometry-based structural proteomics tool, J. Biol. Chem. 294(2019) 11969-11979.
|
[74] |
G. Xu, M.R. Chance, Hydroxyl radical-mediated modification of proteins as probes for structural proteomics, Chem. Rev. 107(2007) 3514-3543.
|
[75] |
A. Bachi, I. Dalle-Donne, A. Scaloni, Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises, Chem. Rev. 113(2013) 596-698.
|
[76] |
M.J. Davies, R.J. Truscott, Photo-oxidation of proteins and its role in cataractogenesis, J. Photochem. Photobiol. B 63(2001) 114-125.
|
[77] |
A.J. Grosvenor, J.D. Morton, J.M. Dyer, Profiling of residue-level photo-oxidative damage in peptides, Amino Acids 39(2010) 285-296.
|
[78] |
M. Tomita, M. Irie, T. Ukita, Sensitized photooxidation of histidine and its derivatives. Products and mechanism of the reaction, Biochemistry 8(1969) 5149-5160.
|
[79] |
H.H. Wasserman, K. Stiller, M.B. Floyd, The reactions of heterocyclic systems with singlet oxygen. Photosensitized oxygenation of imidazoles, Tetrahedron Lett. 9(1968) 3277-3280.
|
[80] |
D.M. Hambly, M.L. Gross, Chapter 7 microsecond time-scale hydroxyl radical profiling of solvent-accessible protein residues. Comprehensive Analytical Chemistry. Amsterdam, Elsevier, 2008, 151-177.
|
[81] |
S. Vahidi, L. Konermann, Probing the time scale of FPOP (fast photochemical oxidation of proteins): Radical reactions extend over tens of milliseconds, J. Am. Soc. Mass Spectrom. 27(2016) 1156-1164.
|
[82] |
P. Koenig, C.V. Lee, B.T. Walters, et al., Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding, Proc. Natl. Acad. Sci. U S A 114(2017) E486-E495.
|
[83] |
K. Van Holsbeeck, J.C. Martins, S. Ballet, Downsizing antibodies: Towards complementarity-determining region (CDR)-based peptide mimetics, Bioorg. Chem. 119(2022), 105563.
|
[84] |
Y. Barrios, P. Jirholt, M. Ohlin, Length of the antibody heavy chain complementarity determining region 3 as a specificity-determining factor, J. Mol. Recognit. 17(2004) 332-338.
|
[85] |
H. Liu, K. May, Disulfide bond structures of IgG molecules: Structural variations, chemical modifications and possible impacts to stability and biological function, mAbs 4(2012) 17-23.
|
[86] |
Y. Hagihara, D. Saerens, Engineering disulfide bonds within an antibody, Biochim. Biophys. Acta BBA Proteins Proteom. 1844(2014) 2016-2023.
|
[87] |
G. Wozniak-Knopp, J. Stadlmann, F. Ruker, Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds, PLoS One 7(2012), e30083.
|
[88] |
N.J. Agrawal, A. Dykstra, J. Yang, et al., Prediction of the hydrogen peroxide-induced methionine oxidation propensity in monoclonal antibodies, J. Pharm. Sci. 107(2018) 1282-1289.
|