Turn off MathJax
Article Contents
YingmingXiao, Lei Zhong, Jinpeng Liu, Li Chen, Yi Wu, Ge Li. Progress and application of intelligent nanomedicine in urinary system tumors[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.100964
Citation: YingmingXiao, Lei Zhong, Jinpeng Liu, Li Chen, Yi Wu, Ge Li. Progress and application of intelligent nanomedicine in urinary system tumors[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.100964

Progress and application of intelligent nanomedicine in urinary system tumors

doi: 10.1016/j.jpha.2024.100964
  • Received Date: Nov. 28, 2023
  • Accepted Date: Mar. 11, 2024
  • Rev Recd Date: Feb. 25, 2024
  • Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
  • loading
  • [1]
    G.J. Netto, M.B. Amin, D.M. Berney, et al., The 2022 World Health Organization classification of tumors of the urinary system and male genital organs-part B: Prostate and urinary tract tumors, Eur. Urol. 82(2022) 469–482.
    [2]
    R. Montironi, A. Cimadamore, Tumors of the urinary system and male genital organs: 2022 World Health Organization classification and multidisciplinarity, Eur. Urol. 82(2022) 483–486.
    [3]
    X. Ren, Y. Wang, L. Jia, et al., Intelligent nanomedicine approaches using medical gasmediated multi-therapeutic modalities against cancer, J. Biomed. Nanotechnol. 18(2022) 24– 49.
    [4]
    V.K. Lakshmanan, S. Jindal, G. Packirisamy, et al., Nanomedicine-based cancer immunotherapy: Recent trends and future perspectives, Cancer Gene Ther. 28(2021) 911– 923.
    [5]
    B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Nanomedicine, N. Engl. J. Med. 363(2010) 2434–2443.
    [6]
    J.L. Markman, A. Rekechenetskiy, E. Holler, et al., Nanomedicine therapeutic approaches to overcome cancer drug resistance, Adv. Drug Deliv. Rev. 65(2013) 1866–1879.
    [7]
    H. Hu, W. Feng, X. Qian, et al., Emerging nanomedicine-enabled/enhanced nanodynamic therapies beyond traditional photodynamics, Adv. Mater. Deerfield Beach Fla 33(2021), e2005062.
    [8]
    B.B. Mendes, D.P. Sousa, J. Conniot, et al., Nanomedicine-based strategies to target and modulate the tumor microenvironment, Trends Cancer 7(2021) 847–862.
    [9]
    J. Dobruch, M. Oszczudłowski, Bladder cancer: Current challenges and future directions, Medicina 57(2021), 749.
    [10]
    Z. Kirkali, T. Chan, M. Manoharan, et al., Bladder cancer: Epidemiology, staging and grading, and diagnosis, Urology 66(2005) 4–34.
    [11]
    F. Campodonico, S. Di Stasi, G.M. Lev, et al., Intravesical chemotherapy and chemohyperthermia in non-muscle-invasive bladder cancer; an overview on drug administration technologies and pharmacokinetics, Curr. Drug Metab. 18(2017) 657–665.
    [12]
    R.H. Martinez Rodriguez, O. Buisan Rueda, L. Ibarz, Bladder cancer: Present and future, Med. Clin. 149(2017) 449–455.
    [13]
    S.K. Bhanvadia, Bladder cancer survivorship, Curr. Urol. Rep. 19(2018), 111.
    [14]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71(2021) 209–249.
    [15]
    M. Grayson, Bladder cancer, Nature 551(2017), S33.
    [16]
    H. Ahmadi, V. Duddalwar, S. Daneshmand, Diagnosis and staging of bladder cancer, Hematol. Oncol. Clin. North Am. 35(2021) 531–541.
    [17]
    R.L. Steinberg, L.J. Thomas, M.A. O’Donnell, Combination Intravesical Chemotherapy for Non–muscle-invasive Bladder Cancer, Eur. Urol. Focus. 4(2018) 503–505.
    [18]
    S. Bahadoram, M. Davoodi, S. Hassanzadeh, et al., Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment, G. Ital. Nefrol. 39(2022) 2022–vol3.
    [19]
    N. Mendhiratta, P. Muraki, A.E. Sisk Jr, et al., Papillary renal cell carcinoma: Review, Urol. Oncol. 39(2021) 327–337.
    [20]
    R. Garje, D. Elhag, H.A. Yasin, et al., Comprehensive review of chromophobe renal cell carcinoma, Crit. Rev. Oncol. 160(2021), 103287.
    [21]
    M. Akhtar, I.A. Al-Bozom, T. Al Hussain, Papillary renal cell carcinoma (PRCC): An update, Adv. Anat. Pathol. 26(2019) 124–132.
    [22]
    G. Wang, D. Zhao, D.J. Spring, et al., Genetics and biology of prostate cancer, Genes Dev. 32(2018) 1105–1140.
    [23]
    M. Nguyen-Nielsen, M. Borre, Diagnostic and therapeutic strategies for prostate cancer, Semin. Nucl. Med. 46(2016) 484–490.
    [24]
    Prostate cancer. Nurs Stand. 2016;30(40):17.
    [25]
    A.J. Chang, K.A. Autio, M. Roach 3rd, et al., High-risk prostate cancer-classification and therapy, Nat. Rev. Clin. Oncol. 11(2014) 308–323.
    [26]
    S. Wasim, S.Y. Lee, J. Kim, Complexities of prostate cancer, Int. J. Mol. Sci. 23(2022), 14257.
    [27]
    M. Mego, V. Holec, L. Drgona, et al., Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy, Complement. Ther. Med. 21(2013) 712–723.
    [28]
    K.B. Pointer, S.P. Pitroda, R.R. Weichselbaum, Radiotherapy and immunotherapy: Open questions and future strategies, Trends Cancer 8(2022) 9–20.
    [29]
    S. Li, M. Ou, G. Wang, et al., Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy, Appl. Microbiol. Biotechnol. 100(2016) 8325–8335.
    [30]
    Prostate cancer, Nat. Rev. Dis. Primers 7(2021), 8.
    [31]
    C. Seidl, Targets for therapy of bladder cancer, Semin. Nucl. Med. 50(2020) 162–170.
    [32]
    N. Aghaalikhani, N. Rashtchizadeh, P. Shadpour, et al., Cancer stem cells as a therapeutic target in bladder cancer, J. Cell. Physiol. 234(2019) 3197–3206.
    [33]
    B.I. Rini, S.C. Campbell, B. Escudier, Renal cell carcinoma, Lancet 373(2009) 1119–1132.
    [34]
    H.T. Cohen, F.J. McGovern, Renal-cell carcinoma, N. Engl. J. Med. 353(2005) 2477–2490.
    [35]
    Y. Han, G. Yang, J. Du, et al., The MRI features of renal inflammatory pseudotumor: A case report and literature review, Medicine 102(2023), e33287.
    [36]
    S. Shah, V. Dhawan, R. Holm, et al., Liposomes: Advancements and innovation in the manufacturing process, Adv. Drug Deliv. Rev. 154-155(2020) 102–122.
    [37]
    D.J.A. Crommelin, P. van Hoogevest, G. Storm, The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 318(2020) 256–263.
    [38]
    C. Li, X. Gou, H. Gao, Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity, Nanomedicine 16(2021) 2587–2604.
    [39]
    S. Rai, N. Singh, S. Bhattacharya, Concepts on smart nano-based drug delivery system, Recent Pat. Nanotechnol. 16(2022) 67–89.
    [40]
    A. Parat, C. Bordeianu, H. Dib, et al., Dendrimer-nanoparticle conjugates in nanomedicine, Nanomedicine 10(2015) 977–992.
    [41]
    Y. Lu, Y. Gao, H. Yang, et al., Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma, Mil. Med. Res. 9(2022), 69.
    [42]
    T. Lammers, S. Aime, W.E. Hennink, et al., Theranostic nanomedicine, Acc. Chem. Res. 44(2011) 1029–1038.
    [43]
    H. Su, J.M. Koo, H. Cui, One-component nanomedicine, J. Control. Release 219(2015) 383–395.
    [44]
    Y. Zhang, C. Xu, X. Yang, et al., Photoactivatable protherapeutic nanomedicine for cancer, Adv. Mater. 32(2020), e2002661.
    [45]
    P. Zhang, Y. Xiao, X. Sun, et al., Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects, Med 4(2023) 147–167.
    [46]
    C. Kong, S. Zhang, Q. Lei, et al., State-of-the-art advances of nanomedicine for diagnosis and treatment of bladder cancer, Biosensors 12(2022), 796.
    [47]
    R. Wu, K. Wang, Y. Gai, et al., Nanomedicine for renal cell carcinoma: Imaging, treatment and beyond, J. Nanobiotechnol. 21(2023), 3.
    [48]
    F. Song, X. Xu, H. Ding, et al., Recent progress in nanomaterial-based biosensors and theranostic nanomedicine for bladder cancer, Biosensors 13(2023), 106.
    [49]
    C. Zhang, J. Zhao, W. Wang, et al., Current advances in the application of nanomedicine in bladder cancer, Biomedecine Pharmacother. 157(2023), 114062.
    [50]
    D. Pan, S.D. Caruthers, J. Chen, et al., Nanomedicine strategies for molecular targets with MRI and optical imaging, Future Med. Chem. 2(2010) 471–490.
    [51]
    A. Bernal, C. Calcagno, W.J.M. Mulder, et al., Imaging-guided nanomedicine development, Curr. Opin. Chem. Biol. 63(2021) 78–85.
    [52]
    A.A. Lipengolts, Y.A. Finogenova, V.A. Skribitsky, et al., CT and MRI imaging of theranostic bimodal Fe3O4@Au NanoParticles in tumor bearing mice, Int. J. Mol. Sci. 24(2022), 70.
    [53]
    X. Yu, X. Liu, W. Wu, et al., CT/MRI-guided synergistic radiotherapy and X-ray inducible photodynamic therapy using Tb-doped Gd-W-nanoscintillators, Angew. Chem. Int. Ed Engl. 58(2019) 2017–2022.
    [54]
    F. Kong, Q. Ye, X. Miao, et al., Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma, Theranostics 11(2021) 5464–5490.
    [55]
    Y. Xiong, C. Xiao, Z. Li, et al., Engineering nanomedicine for glutathione depletionaugmented cancer therapy, Chem. Soc. Rev. 50(2021) 6013–6041.
    [56]
    S.K. Marshall, P. Angsantikul, Z. Pang, et al., Biomimetic targeted theranostic nanoparticles for breast cancer treatment, Molecules 27(2022), 6473.
    [57]
    X. Ma, S. Yang, T. Zhang, et al., Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy, Acta Pharm. Sin. B 12(2022) 451–466.
    [58]
    A.K. Iyer, A. Singh, S. Ganta, et al., Role of integrated cancer nanomedicine in overcoming drug resistance, Adv. Drug Deliv. Rev. 65(2013) 1784–1802.
    [59]
    N.V.S. Vallabani, S. Singh, A.S. Karakoti, Magnetic nanoparticles: Current trends and future aspects in diagnostics and nanomedicine, Curr. Drug Metab. 20(2019) 457–472.
    [60]
    A. Smeraldo, A.M. Ponsiglione, A. Soricelli, et al., Update on the use of PET/MRI contrast agents and tracers in brain oncology: A systematic review, Int. J. Nanomedicine 17(2022) 3343–3359.
    [61]
    S. Mastrogiacomo, N. Güvener, W. Dou, et al., A theranostic dental pulp capping agent with improved MRI and CT contrast and biological properties, Acta Biomater. 62(2017) 340– 351.
    [62]
    Z. Fan, C. Jiang, Y. Wang, et al., Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine, Nanoscale Horiz. 7(2022) 682–714.
    [63]
    Y. Opoku-Damoah, R. Wang, J. Zhou, et al., Versatile nanosystem-based cancer theranostics: Design inspiration and predetermined routing, Theranostics 6(2016) 986–1003.
    [64]
    D. Ho, P. Wang, T. Kee, Artificial intelligence in nanomedicine, Nanoscale Horiz. 4(2019) 365–377.
    [65]
    Y. Han, P. Wen, J. Li, et al., Targeted nanomedicine in cisplatin-based cancer therapeutics, J. Control. Release 345(2022) 709–720.
    [66]
    T. Shang, X. Yu, S. Han, et al., Nanomedicine-based tumor photothermal therapy synergized immunotherapy, Biomater. Sci. 8(2020) 5241–5259.
    [67]
    M. Peleg, Temperature-viscosity models reassessed, Crit. Rev. Food Sci. Nutr. 58(2018) 2663–2672.
    [68]
    F. Oroojalian, F. Charbgoo, M. Hashemi, et al., Recent advances in nanotechnology-based drug delivery systems for the kidney, J. Control. Release 321(2020) 442–462.
    [69]
    G. Sabiu, V. Kasinath, S. Jung, et al., Targeted nanotherapy for kidney diseases: A comprehensive review, Nephrol. Dial. Transplant 38(2023) 1385–1396.
    [70]
    S. Parvizpour, N. Hussin, M.S. Shamsir, et al., Psychrophilic enzymes: Structural adaptation, pharmaceutical and industrial applications, Appl. Microbiol. Biotechnol. 105(2021) 899–907.
    [71]
    H. Azhu, D. Shizhou, Y. Jiarui, et al. Asthma triggered by extreme temperatures: from epidemiological evidence to biological plausibility. Environ. Res. 216(2023), 114489.
    [72]
    Y. Xu, C. Luo, J. Wang, et al., Application of nanotechnology in the diagnosis and treatment of bladder cancer, J. Nanobiotechnol. 19(2021), 393.
    [73]
    N. Kong, R. Zhang, G. Wu, et al., Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer, Proc. Natl. Acad. Sci. USA 119(2022), e2112696119.
    [74]
    Z. Yuan, J. Mo, G. Zhao, et al., Targeting strategies for renal cell carcinoma: From renal cancer cells to renal cancer stem cells, Front. Pharmacol. 7(2016), 423.
    [75]
    P. Fang, L. Zhou, L.Y. Lim, et al., Targeting strategies for renal cancer stem cell therapy, Curr. Pharm. Des. 26(2020) 1964–1978.
    [76]
    J. Thouvenin, C. Masson, P. Boudier, et al., Complete response in metastatic clear cell renal cell carcinoma patients treated with immune-checkpoint inhibitors: Remission or healing? how to improve patients' outcomes? Cancers 15(2023), 793.
    [77]
    U. Swami, T.R. McFarland, R. Nussenzveig, et al., Advanced prostate cancer: Treatment advances and future directions, Trends Cancer 6(2020) 702–715.
    [78]
    J. Zhao, C. Zhang, W. Wang, et al., Current progress of nanomedicine for prostate cancer diagnosis and treatment, Biomedecine Pharmacother. 155(2022), 113714.
    [79]
    L. Cohen, Y.D. Livney, Y.G. Assaraf, Targeted nanomedicine modalities for prostate cancer treatment, Drug Resist. Updat. 56(2021), 100762.
    [80]
    N. Vordos, S. Giannakopoulos, D.A. Gkika, et al., Kidney stone nano-structure—Is there an opportunity for nanomedicine development? Biochim. Biophys. Acta BBA Gen. Subj. 1861(2017) 1521–1529.
    [81]
    N. Trac, A. Ashraf, J. Giblin, et al., Spotlight on genetic kidney diseases: A call for drug delivery and nanomedicine solutions, ACS Nano 17(2023) 6165–6177.
    [82]
    C.P. Liu, Y. Hu, J.C. Lin, et al., Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules, Med. Res. Rev. 39(2019) 561–578.
    [83]
    D. Crosby, S. Bhatia, K.M. Brindle, et al., Early detection of cancer, Science 375(2022), eaay9040.
    [84]
    V.K. Chaturvedi, A. Singh, V.K. Singh, et al., Cancer nanotechnology: A new revolution for cancer diagnosis and therapy, Curr. Drug Metab. 20(2019) 416–429.
    [85]
    Y. Cai, B. Wang, W. Xu, et al., Endometrial cancer: Genetic, metabolic characteristics, therapeutic strategies and nanomedicine, Curr. Med. Chem. 28(2021) 8755–8781.
    [86]
    K. Jin, J. Yao, X. Ying, et al., Nanomedicine and Early Cancer Diagnosis: Molecular Imaging using Fluorescence Nanoparticles, Curr. Top. Med. Chem. 20(2020) 2737–2761.
    [87]
    R. Seifert, I.L. Alberts, A. Afshar-Oromieh, et al., Prostate cancer theranostics: PSMA targeted therapy, PET Clin. 16(2021) 391–396.
    [88]
    K.A. Plichta, S.A. Graves, J.M. Buatti, Prostate-specific membrane antigen (PSMA) theranostics for treatment of oligometastatic prostate cancer, Int. J. Mol. Sci. 22(2021), 12095.
    [89]
    M.S. Hofman, L. Emmett, J. Violet, et al., TheraP: A randomized phase 2 trial of 177 LuPSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603), BJU Int. 124(2019) 5–13.
    [90]
    J. Violet, S. Sandhu, A. Iravani, et al., Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer, J. Nucl. Med. 61(2020) 857– 865.
    [91]
    K. Wu, D. Su, J. Liu, et al., Magnetic nanoparticles in nanomedicine: A review of recent advances, Nanotechnology 30(2019), 502003.
    [92]
    Y. Mantri, B. Davidi, J.E. Lemaster, et al., Iodide-doped precious metal nanoparticles: Measuring oxidative stress in vivo via photoacoustic imaging, Nanoscale 12(2020) 10511– 10520.
    [93]
    Y. Pang, L. Zhao, T. Meng, et al., PET imaging of fibroblast activation protein in various types of cancer using 68Ga-FAP-2286: Comparison with 18F-FDG and 68Ga-FAPI-46 in a single-center, prospective study, J. Nucl. Med. 64(2023) 386–394.
    [94]
    M.L. Senders, Z.A. Fayad, T. Reiner, et al., Imaging-guided revival of nanomedicine? Nanomedicine 12(2017) 89–90.
    [95]
    Z. Deng, S. Wu, Y. Wang, et al., Circulating tumor cell isolation for cancer diagnosis and prognosis, EBioMedicine 83(2022), 104237.
    [96]
    M. Ramirez-Garrastacho, C. Bajo-Santos, A. Line, et al., Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: A decade of research, Br. J. Cancer 126(2022) 331–350.
    [97]
    G. Wang, J. Zang, Y. Jiang, et al., A single-arm, low-dose, prospective study of 177LuEB-PSMA radioligand therapy in patients with metastatic castration-resistant prostate cancer, J. Nucl. Med. 64(2023) 611–617.
    [98]
    K. Rahbar, A. Afshar-Oromieh, H. Jadvar, et al., PSMA theranostics: Current status and future directions, Mol. Imag. 17(2018), 1536012118776068.
    [99]
    T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics, Expert Opin. Drug Deliv. 16(2019) 69–78.
    [100]
    P.O. Champagne, N.T. Sanon, L. Carmant, et al., Superparamagnetic iron oxide nanoparticles-based detection of neuronal activity, Nanomed. Nanotechnol. Biol. Med. 40(2022), 102478.
    [101]
    Y. Hu, S. Mignani, J.P. Majoral, et al., Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy, Chem. Soc. Rev. 47(2018) 1874–1900.
    [102]
    E. Pérez-Herrero, A. Fernández-Medarde, Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy, Eur. J. Pharm. Biopharm. 93(2015) 52–79.
    [103]
    C. Pérez-Medina, S. Hak, T. Reiner, et al., Integrating nanomedicine and imaging, Philos. Trans. Ser. A Math. Phys. Eng. Sci. 375(2017), 20170110.
    [104]
    C. Pérez-Medina, A.J.P. Teunissen, E. Kluza, et al., Nuclear imaging approaches facilitating nanomedicine translation, Adv. Drug Deliv. Rev. 154-155(2020) 123–141.
    [105]
    H. Yavarpour-Bali, M. Ghasemi-Kasman, M. Pirzadeh, Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders, Int. J. Nanomedicine 14(2019) 4449–4460.
    [106]
    G.H. Zhu, A.B.C. Gray, H.K. Patra, Nanomedicine: Controlling nanoparticle clearance for translational success, Trends Pharmacol. Sci. 43(2022) 709–711.
    [107]
    Y. Luo, H. Zhang, G. Li, et al., Synthesis, renal clearance, and photothermal therapy based on the self-assembly of a nanomedicine consisting of quaterrylene bisimide and glycocluster conjugates, ACS Macro Lett. 11(2022) 615–621.
    [108]
    E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33(2015) 941–951.
    [109]
    Y. Lee, N. Kamada, J.J. Moon, Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome, Adv. Drug Deliv. Rev. 179(2021), 114021.
    [110]
    X. Zhang, J. Yang, S. Song, et al., Passing through the renal clearance barrier: Toward ultrasmall sizes with stable ligands for potential clinical applications, Int. J. Nanomedicine 9(2014) 2069–2072.
    [111]
    N. Boehnke, S. Correa, L. Hao, et al., Theranostic layer-by-layer nanoparticles for simultaneous tumor detection and gene silencing, Angew. Chem. Int. Ed Engl. 59(2020) 2776– 2783.
    [112]
    X. Hu, J. Sun, F. Li, et al., Renal-clearable hollow bismuth subcarbonate nanotubes for tumor targeted computed tomography imaging and chemoradiotherapy, Nano Lett. 18(2018) 1196–1204.
    [113]
    S. Peng, F. Xiao, M. Chen, et al., Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy, Adv. Sci. 9(2022), e2103836.
    [114]
    F. Huang, X. Lu, Y. Yang, et al., Microenvironment-based diabetic foot ulcer nanomedicine, Adv. Sci. 10(2023), e2203308.
    [115]
    M. Amin, T. Lammers, T.L.M. Ten Hagen, Temperature-sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR, Adv. Drug Deliv. Rev. 189(2022), 114503.
    [116]
    W.T. Al-Jamal, K. Kostarelos, Mild hyperthermia accelerates doxorubicin clearance from tumour-extravasated temperature-sensitive liposomes, Nanotheranostics 6(2022) 230–242.
    [117]
    S. Fu, L. Chang, S. Liu, et al., Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling, Nat. Commun. 14(2023), 2248.
    [118]
    P. Tan, H. Cai, Q. Wei, et al., Enhanced chemo-photodynamic therapy of an enzymeresponsive prodrug in bladder cancer patient-derived xenograft models, Biomaterials 277(2021), 121061.
    [119]
    S. Zeng, X. Feng, S. Xing, et al., Advanced peptide nanomedicines for bladder cancer theranostics, Front. Chem. 10(2022), 946865.
    [120]
    R.S. Eapen, T.C. Nzenza, D.G. Murphy, et al., PSMA PET applications in the prostate cancer journey: From diagnosis to theranostics, World J. Urol. 37(2019) 1255–1261.
    [121]
    E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev. 38(2009) 1759–1782.
    [122]
    S. Ravindran, J.K. Suthar, R. Rokade, et al., Pharmacokinetics, metabolism, distribution and permeability of nanomedicine, Curr. Drug Metab. 19(2018) 327–334. roof
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (180) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return