Volume 14 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Meihong Zhang, Mengqin Guo, Yue Gao, Chuanbin Wu, Xin Pan, Zhengwei Huang. Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100960. doi: 10.1016/j.jpha.2024.03.001
Citation: Meihong Zhang, Mengqin Guo, Yue Gao, Chuanbin Wu, Xin Pan, Zhengwei Huang. Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100960. doi: 10.1016/j.jpha.2024.03.001

Mechanisms and therapeutic targets of ferroptosis: Implications for nanomedicine design

doi: 10.1016/j.jpha.2024.03.001
Funds:

This work received funding from the National Natural Science Foundation of China (Grant No.: 82104070), Guangdong Universities Keynote Regions Special Funded Project, China (Grant No.: 2022ZDZX2002, and China Postdoctoral Science Foundation Special Funded Project (Grant No.: 2022T150268).

  • Received Date: Oct. 20, 2023
  • Accepted Date: Mar. 04, 2024
  • Rev Recd Date: Feb. 27, 2024
  • Publish Date: Mar. 08, 2024
  • Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology, genetics, and biochemistry. The three primary pathways for cell ferroptosis are system Xc-/glutathione peroxidase 4 (GPX4), lipid metabolism, and ferric metabolism. Since the discovery of ferroptosis, mounting evidence has revealed its critical regulatory role in several diseases, especially as a novel potential target for cancer therapy, thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy. Accordingly, broad prospects exist for identifying ferroptosis as a potential therapeutic target. In this review, we aimed to systematically summarize the activation and defense mechanisms of ferroptosis, highlight the therapeutic targets, and discuss the design of nanomedicines for ferroptosis regulation. In addition, we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields. Overall, we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.

  • loading
  • [1]
    Y. Xue, X. Jiang, J. Wang, et al., Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma, Biomark. Res. 11 (2023), 2.
    [2]
    C. Zhang, N. Liu, Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer, Front. Immunol. 13 (2022), 920059.
    [3]
    S. Dolma, S.L. Lessnick, W.C. Hahn, et al., Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells, Cancer Cell 3 (2003) 285-296.
    [4]
    W.S. Yang, B.R. Stockwell, Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells, Chem. Biol. 15 (2008) 234-245.
    [5]
    T. Hirschhorn, B.R. Stockwell, The development of the concept of ferroptosis, Free Radic. Biol. Med. 133 (2019) 130-143.
    [6]
    J. Xiong, W. Qi, J. Liu, et al., Research progress of ferroptosis: A bibliometrics and visual analysis study, J. Healthc. Eng. 2021 (2021), 2178281.
    [7]
    N. Zhou, J. Bao, FerrDb: A manually curated resource for regulators and markers of ferroptosis and ferroptosis-disease associations, Database 2020 (2020), baaa021.
    [8]
    H.-F. Yan, T. Zou, Q.-Z. Tuo, et al., Ferroptosis: Mechanisms and links with diseases, Signal Transduct. Target. Ther. 6 (2021), 49.
    [9]
    X. Wang, Y. Wang, Z. Li, et al., Regulation of ferroptosis pathway by ubiquitination, Front. Cell Dev. Biol. 9 (2021), 699304.
    [10]
    Y. Fang, Q. Tan, H. Zhou, et al., Discovery of novel diphenylbutene derivative ferroptosis inhibitors as neuroprotective agents, Eur. J. Med. Chem. 231 (2022), 114151.
    [11]
    Q. Wang, S. Gao, Y. Shou, et al., AIM2 promotes renal cell carcinoma progression and sunitinib resistance through FOXO3a-ACSL4 axis-regulated ferroptosis, Int. J. Biol. Sci. 19 (2023) 1266-1283.
    [12]
    S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: An iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072.
    [13]
    C. Louandre, Z. Ezzoukhry, C. Godin, et al., Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib, Int. J. Cancer 133 (2013) 1732-1742.
    [14]
    J.P. Friedmann Angeli, M. Schneider, B. Proneth, et al., Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice, Nat. Cell Biol. 16 (2014) 1180-1191.
    [15]
    L. Jiang, N. Kon, T. Li, et al., Ferroptosis as a p53-mediated activity during tumour suppression, Nature 520 (2015) 57-62.
    [16]
    S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98.
    [17]
    Z. Shen, J. Song, B.C. Yung, et al., Emerging strategies of cancer therapy based on ferroptosis, Adv. Mater. 30 (2018), e1704007.
    [18]
    J. Li, F. Cao, H.-L. Yin, et al., Ferroptosis: Past, present and future, Cell Death Dis. 11 (2020), 88.
    [19]
    X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
    [20]
    B.R. Stockwell, Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications, Cell 185 (2022) 2401-2421.
    [21]
    X. Fang, H. Ardehali, J. Min, et al., The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease, Nat. Rev. Cardiol. 20 (2023) 7-23.
    [22]
    B. Hassannia, P. Vandenabeele, T. Vanden Berghe, Targeting ferroptosis to iron out cancer, Cancer Cell 35 (2019) 830-849.
    [23]
    S.E. Kim, L. Zhang, K. Ma, et al., Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth, Nat. Nanotechnol. 11 (2016) 977-985.
    [24]
    A.M. Battaglia, R. Chirillo, I. Aversa, et al., Ferroptosis and cancer: Mitochondria meet the “iron maiden” cell death, Cells 9 (2020), 1505.
    [25]
    M.M. Capelletti, H. Manceau, H. Puy, et al., Ferroptosis in liver diseases: An overview, Int. J. Mol. Sci. 21 (2020), 4908.
    [26]
    H.-T. Wang, J. Ju, S.-C. Wang, et al., Insights into ferroptosis, a novel target for the therapy of cancer, Front. Oncol. 12 (2022), 812534.
    [27]
    J. Ju, Y.-N. Song, K. Wang, Mechanism of ferroptosis: A potential target for cardiovascular diseases treatment, Aging Dis. 12 (2021) 261-276.
    [28]
    Y. Qiu, Y. Cao, W. Cao, et al., The application of ferroptosis in diseases, Pharmacol. Res. 159 (2020), 104919.
    [29]
    F. Yarmohammadi, A.W. Hayes, G. Karimi, The role of ferroptosis in organ toxicity, Hum. Exp. Toxicol. 40 (2021) S851-S860.
    [30]
    N.B. Tumer, N-acetyl cysteine attenuates ferroptosis mediated lung injury induced by lower limb ischaemia/reperfusion, Turk. J. Clin. Lab. 11 (2020) 288-293.
    [31]
    D. Tang, X. Chen, R. Kang, et al., Ferroptosis: Molecular mechanisms and health implications, Cell Res. 31 (2021) 107-125.
    [32]
    X. Chen, P.B. Comish, D. Tang, et al., Characteristics and biomarkers of ferroptosis, Front. Cell Dev. Biol. 9 (2021), 637162.
    [33]
    Y. Zhang, M. Wang, W. Chang, Iron dyshomeostasis and ferroptosis in Alzheimer's disease: Molecular mechanisms of cell death and novel therapeutic drugs and targets for AD, Front. Pharmacol. 13 (2022), 983623.
    [34]
    P. Koppula, L. Zhuang, B. Gan, Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy, Protein Cell 12 (2021) 599-620.
    [35]
    W. Shi, G. Sethi, Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment, J. Cell. Physiol. 238 (2023) 880-895.
    [36]
    Y. Mou, J. Wang, J. Wu, et al., Ferroptosis, a new form of cell death: Opportunities and challenges in cancer, J. Hematol. Oncol. 12 (2019), 34.
    [37]
    Y. Yu, Y. Yan, F. Niu, et al., Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases, Cell Death Discov. 7 (2021), 193.
    [38]
    X. Tong, R. Tang, M. Xiao, et al., Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research, J. Hematol. Oncol. 15 (2022), 174.
    [39]
    Y. Sun, T. Lian, Q. Huang, et al., Nanomedicine-mediated regulated cell death in cancer immunotherapy, J. Control. Release 364 (2023) 174-194.
    [40]
    Y. Yang, Y. Ma, Q. Li, et al., STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway, Cell Death Dis. 13 (2022), 530.
    [41]
    Y. Xie, W. Hou, X. Song, et al., Ferroptosis: Process and function, Cell Death Differ. 23 (2016) 369-379.
    [42]
    M.S. Ola, M. Nawaz, H. Ahsan, Role of Bcl-2 family proteins and caspases in the regulation of apoptosis, Mol. Cell. Biochem. 351 (2011) 41-58.
    [43]
    W. Gao, X. Wang, Y. Zhou, et al., Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy, Signal Transduct. Target. Ther. 7 (2022), 196.
    [44]
    S. Huang, B. Cao, J. Zhang, et al., Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential, Cell Death Dis. 12 (2021), 237.
    [45]
    L. Liu, J. Fan, G. Ai, et al., Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells, Biol. Res. 52 (2019), 37.
    [46]
    J. Zhang, J. Fan, X. Zeng, et al., Targeting the autophagy promoted antitumor effect of T-DM1 on HER2-positive gastric cancer, Cell Death Dis. 12 (2021), 288.
    [47]
    A. Kishino, K. Hayashi, M. Maeda, et al., Caspase-8 regulates endoplasmic reticulum stress-induced necroptosis independent of the apoptosis pathway in auditory cells, Int. J. Mol. Sci. 20 (2019), 5896.
    [48]
    R. Yuan, W. Zhao, Q.-Q. Wang, et al., Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis, Pharmacol. Res. 170 (2021), 105748.
    [49]
    X. Chen, J. Li, R. Kang, et al., Ferroptosis: Machinery and regulation, Autophagy 17 (2021) 2054-2081.
    [50]
    B.R. Stockwell, X. Jiang, W. Gu, Emerging mechanisms and disease relevance of ferroptosis, Trends Cell Biol. 30 (2020) 478-490.
    [51]
    H. Sun, R. Guo, Y. Guo, et al., Boosting type-I and type-II ROS production of water-soluble porphyrin for efficient hypoxic tumor therapy, Mol. Pharm. 20 (2023) 606-615.
    [52]
    M. Sato, R. Kusumi, S. Hamashima, et al., The ferroptosis inducer erastin irreversibly inhibits system Xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells, Sci. Rep. 8 (2018), 968.
    [53]
    X. Chen, R. Kang, G. Kroemer, et al., Broadening horizons: The role of ferroptosis in cancer, Nat. Rev. Clin. Oncol. 18 (2021) 280-296.
    [54]
    D. Shin, E.H. Kim, J. Lee, et al., Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer, Free Radic. Biol. Med. 129 (2018) 454-462.
    [55]
    J.H. You, J. Lee, J.-L. Roh, Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition, Cancer Lett. 507 (2021) 40-54.
    [56]
    I. Kovalchuk, M. Pellino, P. Rigault, et al., The genomics of Cannabis and its close relatives, Annu. Rev. Plant Biol. 71 (2020) 713-739.
    [57]
    L. Yang, X. Chen, Q. Yang, et al., Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells, Front. Oncol. 10 (2020), 949.
    [58]
    F.-J. Li, H.-Z. Long, Z.-W. Zhou, et al., System Xc-/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy, Front. Pharmacol. 13 (2022), 910292.
    [59]
    W. Cui, D. Liu, W. Gu, et al., Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis, Cell Death Differ. 28 (2021) 2536-2551.
    [60]
    B. Krummel, A.-S. von Hanstein, T. Plotz, et al., Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat β-cells, J. Nutr. Biochem. 106 (2022), 109013.
    [61]
    S. Shui, Z. Zhao, H. Wang, et al., Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway, Redox Biol. 45 (2021), 102056.
    [62]
    J. Hou, C. Jiang, X. Wen, et al., ACSL4 as a potential target and biomarker for anticancer: From molecular mechanisms to clinical therapeutics, Front. Pharmacol. 13 (2022), 949863.
    [63]
    P. Koppula, L. Zhuang, B. Gan, Cytochrome P450 reductase (POR) as a ferroptosis fuel, Protein Cell 12 (2021) 675-679.
    [64]
    Z. Lin, J. Liu, R. Kang, et al., Lipid metabolism in ferroptosis, Adv. Biol. 5 (2021), 2100396.
    [65]
    A.M. Fratta Pasini, C. Stranieri, D. Girelli, et al., Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants 10 (2021), 1677.
    [66]
    J.-Y. Lee, W.K. Kim, K.-H. Bae, et al., Lipid metabolism and ferroptosis, Biology 10 (2021), 184.
    [67]
    Y. Zou, W.S. Henry, E.L. Ricq, et al., Plasticity of ether lipids promotes ferroptosis susceptibility and evasion, Nature 585 (2020) 603-608.
    [68]
    N. Yamada, T. Karasawa, H. Kimura, et al., Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure, Cell Death Dis. 11 (2020), 144.
    [69]
    Z. Zhou, H. Luo, H. Yu, et al., Ferrostatin-1 facilitated neurological functional rehabilitation of spinal cord injury mice by inhibiting ferroptosis, Eur. J. Med. Res. 28 (2023), 336.
    [70]
    B.-Y. Fan, Y.-L. Pang, W.-X. Li, et al., Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4, Neural Regen. Res. 16 (2021) 561-566.
    [71]
    X. Chen, C. Yu, R. Kang, et al., Iron metabolism in ferroptosis, Front. Cell Dev. Biol. 8 (2020), 590226.
    [72]
    Y. Cheng, W. Qu, J. Li, et al., Ferristatin II, an iron uptake inhibitor, exerts neuroprotection against traumatic brain injury via suppressing ferroptosis, ACS Chem. Neurosci. 13 (2022) 664-675.
    [73]
    Y. Leng, X. Luo, J. Yu, et al., Ferroptosis: A potential target in cardiovascular disease, Front. Cell Dev. Biol. 9 (2022), 813668.
    [74]
    A.V. Menon, J. Liu, H.P. Tsai, et al., Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease, Blood 139 (2022) 936-941.
    [75]
    S.W. Alvarez, V.O. Sviderskiy, E.M. Terzi, et al., NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis, Nature 551 (2017) 639-643.
    [76]
    J. Liu, R. Kang, D. Tang, Signaling pathways and defense mechanisms of ferroptosis, FEBS J. 289 (2022) 7038-7050.
    [77]
    Y. Ou, S.-J. Wang, D. Li, et al., Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses, Proc. Natl. Acad. Sci. U S A 113 (2016) E6806-E6812.
    [78]
    M. Jiang, M. Qiao, C. Zhao, et al., Targeting ferroptosis for cancer therapy: Exploring novel strategies from its mechanisms and role in cancers, Transl. Lung Cancer Res. 9 (2020) 1569-1584.
    [79]
    J.W.-S. Cheu, D. Lee, Q. Li, et al., Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer, Cell. Mol. Gastroenterol. Hepatol. 16 (2023) 133-159.
    [80]
    Y. Liu, W. Gu, p53 in ferroptosis regulation: The new weapon for the old guardian, Cell Death Differ. 29 (2022) 895-910.
    [81]
    T. Homma, S. Kobayashi, J. Fujii, Methionine deprivation reveals the pivotal roles of cell cycle progression in ferroptosis that is induced by cysteine starvation, Cells 11 (2022), 1603.
    [82]
    Y. Zhao, Y. Li, R. Zhang, et al., The role of erastin in ferroptosis and its prospects in cancer therapy, Onco. Targets Ther. (2020) 5429-5441.
    [83]
    M. Gao, P. Monian, N. Quadri, et al., Glutaminolysis and transferrin regulate ferroptosis, Mol. Cell 59 (2015) 298-308.
    [84]
    N. Santana-Codina, J.D. Mancias, The role of NCOA4-mediated ferritinophagy in health and disease, Pharmaceuticals 11 (2018), 114.
    [85]
    R. Kang, G. Kroemer, D. Tang, The tumor suppressor protein p53 and the ferroptosis network, Free Radic. Biol. Med. 133 (2019) 162-168.
    [86]
    K. Shimada, R. Skouta, A. Kaplan, et al., Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis, Nat. Chem. Biol. 12 (2016) 497-503.
    [87]
    T. Nakamura, C. Hipp, A. Santos Dias Mourao, et al., Phase separation of FSP1 promotes ferroptosis, Nature 619 (2023) 371-377.
    [88]
    F. Ursini, M. Maiorino, Lipid peroxidation and ferroptosis: The role of GSH and GPx4, Free Radic. Biol. Med. 152 (2020) 175-185.
    [89]
    C.O. Reichert, F.A. de Freitas, J. Sampaio-Silva, et al., Ferroptosis mechanisms involved in neurodegenerative diseases, Int. J. Mol. Sci. 21 (2020), 8765.
    [90]
    J. Wu, Y. Wang, R. Jiang, et al., Ferroptosis in liver disease: New insights into disease mechanisms, Cell Death Discov. 7 (2021), 276.
    [91]
    K. Hadian, Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis, Biochemistry 59 (2020) 637-638.
    [92]
    C. Mao, X. Liu, Y. Zhang, et al., DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer, Nature 593 (2021) 586-590.
    [93]
    L. Chen, J. Xie, Ferroptosis-suppressor-protein 1: A potential neuroprotective target for combating ferroptosis, Mov. Disord. 35 (2020), 400.
    [94]
    M.L. Lolli, S. Sainas, A.C. Pippione, et al., Use of human dihydroorotate dehydrogenase (hDHODH) inhibitors in autoimmune diseases and new perspectives in cancer therapy, Recent Pat. Anticancer Drug Discov. 13 (2018) 86-105.
    [95]
    Y. Wang, B. Tang, J. Zhu, et al., Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and neuro-oncology, Int. J. Biol. Sci. 18 (2022) 4260-4274.
    [96]
    Z. Huang, W. Wang, L. Shu, et al., Explicating the publication paradigm by bibliometric approaches: A case of interplay between nanoscience and ferroptosis, Health Care Sci. 1 (2022) 93-110.
    [97]
    J. Cheng, Y.-Q. Fan, B.-H. Liu, et al., ACSL4 suppresses glioma cells proliferation via activating ferroptosis, Oncol. Rep. 43 (2020) 147-158.
    [98]
    L. Wang, J. Wang, L. Chen, TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway, Immunopharmacol. Immunotoxicol. 45 (2023) 419-425.
    [99]
    R. Ma, L. Fang, L. Chen, et al., Ferroptotic stress promotes macrophages against intracellular bacteria, Theranostics 12 (2022) 2266-2289.
    [100]
    Y. Wang, M. Zhang, R. Bi, et al., ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury, Redox Biol. 51 (2022), 102262.
    [101]
    J. Yang, Y. Bai, S. Shen, et al., An oral nano-antioxidant for targeted treatment of inflammatory bowel disease by regulating macrophage polarization and inhibiting ferroptosis of intestinal cells, Chem. Eng. J. 465 (2023), 142940.
    [102]
    M. Li, K. Wang, Y. Zhang, et al., Ferroptosis-related genes in bronchoalveolar lavage fluid serves as prognostic biomarkers for idiopathic pulmonary fibrosis, Front. Med. 8 (2021), 693959.
    [103]
    H. Cheng, D. Feng, X. Li, et al., Iron deposition-induced ferroptosis in alveolar type II cells promotes the development of pulmonary fibrosis, Biochim. Biophys. Acta Mol. Basis Dis. 1867 (2021), 166204.
    [104]
    D. Zhong, L. Quan, C. Hao, et al., Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53, Cell Death Dis. 14 (2023), 710.
    [105]
    K. Hosohata, T. Harnsirikarn, S. Chokesuwattanaskul, Ferroptosis: A potential therapeutic target in acute kidney injury, Int. J. Mol. Sci. 23 (2022), 6583.
    [106]
    B. Borawski, J. Malyszko, Iron, ferroptosis, and new insights for prevention in acute kidney injury, Adv. Med. Sci. 65 (2020) 361-370.
    [107]
    J. Yang, X. Sun, N. Huang, et al., Entacapone alleviates acute kidney injury by inhibiting ferroptosis, FASEB J. 36 (2022), e22399.
    [108]
    W. Gao, T. Zhang, H. Wu, Emerging pathological engagement of ferroptosis in gut diseases, Oxid. Med. Cell. Longev. 2021 (2021), 4246255.
    [109]
    H. Ma, Y. Dong, Y. Chu, et al., The mechanisms of ferroptosis and its role in Alzheimer's disease, Front. Mol. Biosci. 9 (2022), 965064.
    [110]
    W.S. Hambright, R.S. Fonseca, L. Chen, et al., Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration, Redox Biol. 12 (2017) 8-17.
    [111]
    N.J. Dar, U. John, N. Bano, et al., Oxytosis/ferroptosis in neurodegeneration: The underlying role of master regulator glutathione peroxidase 4 (GPX4), Mol. Neurobiol. 61 (2024) 1507-1526.
    [112]
    C. Wang, S. Chen, H. Guo, et al., Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation, Int. J. Biol. Sci. 18 (2022) 2075-2090.
    [113]
    C.-B. Hu, H. Jiang, Y. Yang, et al., DL-3-n-Butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of Parkinson's disease, Neural Regen. Res. 18 (2023) 194-199.
    [114]
    X. Zhou, Y. Zheng, W. Sun, et al., D-Mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner, Cell Prolif. 54 (2021), e13134.
    [115]
    P. Yu, J. Zhang, Y. Ding, et al., Dexmedetomidine post-conditioning alleviates myocardial ischemia-reperfusion injury in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation, Hum. Cell 35 (2022) 836-848.
    [116]
    Y. Chen, Y. Xu, K. Zhang, et al., Ferroptosis in COVID-19-related liver injury: A potential mechanism and therapeutic target, Front. Cell. Infect. Microbiol. 12 (2022), 922511.
    [117]
    F. Bruno, V. Granata, F. Cobianchi Bellisari, et al., Advanced magnetic resonance imaging (MRI) techniques: Technical principles and applications in nanomedicine, Cancers (Basel) 14 (2022), 1626.
    [118]
    G.C. Forcina, S.J. Dixon, GPX4 at the crossroads of lipid homeostasis and ferroptosis, Proteomics 19 (2019), e1800311.
    [119]
    C. Xue, H. Zhang, X. Wang, et al., Bio-inspired engineered ferritin-albumin nano complexes for targeted ferroptosis therapy, J. Control. Release 351 (2022) 581-596.
    [120]
    W. Li, X. Liu, X. Cheng, et al., Effect of Malt-PEG-Abz@RSL3 micelles on HepG2 cells based on NADPH depletion and GPX4 inhibition in ferroptosis, J. Drug Target. 30 (2022) 208-218.
    [121]
    M. Yu, C. Gai, Z. Li, et al., Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells, Cancer Sci. 110 (2019) 3173-3182.
    [122]
    C. Gai, C. Liu, X. Wu, et al., MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells, Cell Death Dis. 11 (2020), 751.
    [123]
    S. Xu, Y. He, L. Lin, et al., The emerging role of ferroptosis in intestinal disease, Cell Death Dis. 12 (2021), 289.
    [124]
    D.K.W. Ocansey, J. Yuan, Z. Wei, et al., Role of ferroptosis in the pathogenesis and as a therapeutic target of inflammatory bowel disease (Review), Int. J. Mol. Med. 51 (2023), 53.
    [125]
    Y. Wang, S. Xia, Relationship between ACSL4-mediated ferroptosis and chronic obstructive pulmonary disease, Int. J. Chron. Obstruct. Pulmon. Dis. 18 (2023) 99-111.
    [126]
    X. Jiang, M. Shi, M. Sui, et al., Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway, Biochem. Biophys. Res. Commun. 545 (2021) 81-88.
    [127]
    Y. Zhu, P. Gong, J. Wang, et al., Amplification of lipid peroxidation by regulating cell membrane unsaturation to enhance chemodynamic therapy, Angew. Chem. Int. Ed. Engl. 62 (2023), e202218407.
    [128]
    X. Wang, Y. Chen, X. Yang, et al., Activation of ALOX12 by a multi-organelle-orienting photosensitizer drives ACSL4-independent cell ferroptosis, Cell Death Dis. 13 (2022), 1040.
    [129]
    X. Sun, X. Yang, J. Wang, et al., Self-engineered lipid peroxidation nano-amplifier for ferroptosis-driven antitumor therapy, Chem. Eng. J. 451 (2023), 138991.
    [130]
    Y. Zhou, H. Khan, J. Xiao, et al., Effects of arachidonic acid metabolites on cardiovascular health and disease, Int. J. Mol. Sci. 22 (2021), 12029.
    [131]
    W. Sha, F. Hu, Y. Xi, et al., Mechanism of ferroptosis and its role in type 2 diabetes mellitus, J. Diabetes Res. 2021 (2021), 9999612.
    [132]
    L. Deng, M. Xiao, A. Wu, et al., Se/albumin nanoparticles for inhibition of ferroptosis in tubular epithelial cells during acute kidney injury, ACS Appl. Nano Mater. 5 (2022) 227-236.
    [133]
    Y. Chen, Z. Fan, Y. Yang, et al., Iron metabolism and its contribution to cancer (Review), Int. J. Oncol. 54 (2019) 1143-1154.
    [134]
    Y. Yao, P. Ji, H. Chen, et al., Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors, Front. Oncol. 13 (2023), 1084289.
    [135]
    Y. Li, Y. Qin, Y. Shang, et al., Mechano-responsive leapfrog micelles enable interactive apoptotic and ferroptotic cancer therapy, Adv. Funct. Mater. 32 (2022), 2112000.
    [136]
    Y. Zheng, X. Li, C. Dong, et al., Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy, Adv. Funct. Mater. 32 (2022), 2107529.
    [137]
    L. Zhu, Y. You, M. Zhu, et al., Ferritin-hijacking nanoparticles spatiotemporally directing endogenous ferroptosis for synergistic anticancer therapy, Adv. Mater. 34 (2022), e2207174.
    [138]
    Y. Xue, L. Zhang, F. Liu, et al., Alkaline “nanoswords” coordinate ferroptosis-like bacterial death for antibiosis and osseointegration, ACS Nano 17 (2023) 2711-2724.
    [139]
    L. Kou, X. Jiang, H. Huang, et al., The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines, Asian J. Pharm. Sci. 15 (2020) 145-157.
    [140]
    T. Ma, J. Du, Y. Zhang, et al., GPX4-independent ferroptosis-a new strategy in disease's therapy, Cell Death Discov. 8 (2022), 434.
    [141]
    J. Yang, Z. Jia, J. Zhang, et al., Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance, Adv. Healthc. Mater. 11 (2022), e2102799.
    [142]
    J.-W. Cui, H.-C. Feng, C. Xu, et al., Platelet membrane-encapsulated ginkgolide B biomimetic nanoparticles for the treatment of ischemic stroke, ACS Appl. Nano Mater. 6 (2023) 17560-17571.
    [143]
    F. Wang, J. Min, DHODH tangoing with GPX4 on the ferroptotic stage, Signal Transduct. Target. Ther. 6 (2021), 244.
    [144]
    B. Li, X. Chen, W. Qiu, et al., Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy, Adv. Sci. (Weinh) 9 (2022), e2105451.
    [145]
    S. Chen, J. Yang, Z. Liang, et al., Synergistic functional nanomedicine enhances ferroptosis therapy for breast tumors by a blocking defensive redox system, ACS Appl. Mater. Interfaces 15 (2023) 2705-2713.
    [146]
    D. Liang, Y. Feng, F. Zandkarimi, et al., Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones, Cell 186 (2023) 2748-2764.e22.
    [147]
    Q. Hu, W. Wei, D. Wu, et al., Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis, Front. Cell Dev. Biol. 10 (2022), 810327.
    [148]
    H. Long, H. Zhang, L. Ran, et al., Bioinformatics analysis and experimental validation reveal the anti-ferroptosis effect of FZD7 in acute kidney injury, Biochem. Biophys. Res. Commun. 692 (2024), 149359.
    [149]
    H. Tang, P. Li, X. Guo, Ferroptosis-mediated immune microenvironment and therapeutic response in inflammatory bowel disease, DNA Cell Biol. 42 (2023) 720-734.
    [150]
    X. Zhai, J. Zhu, J. Li, et al., Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis, Inflamm. Res. 72 (2023) 1999-2012.
    [151]
    J. Chu, J. Li, L. Sun, et al., The role of cellular defense systems of ferroptosis in Parkinson's disease and Alzheimer's disease, Int. J. Mol. Sci. 24 (2023), 14108.
    [152]
    X. Jiang, K. Wu, X.-Y. Ye, et al., Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis, Med. Res. Rev. 43 (2023) 872-896.
    [153]
    K. Bersuker, J.M. Hendricks, Z. Li, et al., The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis, Nature 575 (2019) 688-692.
    [154]
    A. Parodi, P. Buzaeva, D. Nigovora, et al., Nanomedicine for increasing the oral bioavailability of cancer treatments, J. Nanobiotechnology 19 (2021), 354.
    [155]
    A. Rinaldi, R. Caraffi, M.V. Grazioli, et al., Applications of the ROS-responsive thioketal linker for the production of smart nanomedicines, Polymers 14 (2022), 687.
    [156]
    R. Zheng, Y. Liu, B. Yu, et al., Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis, J. Colloid Interface Sci. 622 (2022) 298-308.
    [157]
    X. Shan, X. Gong, J. Li, et al., Current approaches of nanomedicines in the market and various stage of clinical translation, Acta Pharm. Sin. B 12 (2022) 3028-3048.
    [158]
    R.K. Thapa, J.O. Kim, Nanomedicine-based commercial formulations: Current developments and future prospects, J. Pharm. Investig. 53 (2023) 19-33.
    [159]
    N. Heshmati Aghda, M. Dabbaghianamiri, J.W. Tunnell, et al., Design of smart nanomedicines for effective cancer treatment, Int. J. Pharm. 621 (2022), 121791.
    [160]
    S. Ravindran, A.J. Tambe, J.K. Suthar, et al., Nanomedicine: Bioavailability, biotransformation and biokinetics, Curr. Drug Metab. 20 (2019) 542-555.
    [161]
    B. Hu, Y. Yin, S. Li, et al., Insights on ferroptosis and colorectal cancer: Progress and updates, Molecules 28 (2022), 243.
    [162]
    S. Lee, N. Hwang, B.G. Seok, et al., Autophagy mediates an amplification loop during ferroptosis, Cell Death Dis. 14 (2023), 464.
    [163]
    K. Hanggi, B. Ruffell, Cell death, therapeutics, and the immune response in cancer, Trends Cancer 9 (2023) 381-396.
    [164]
    D. Martin-Sanchez, M. Fontecha-Barriuso, J.M. Martinez-Moreno, et al., Ferroptosis and kidney disease, Nefrologia 40 (2020) 384-394.
    [165]
    D. Nie, T. Guo, X. Zong, et al., Induction of ferroptosis by artesunate nanoparticles is an effective therapeutic strategy for hepatocellular carcinoma, Cancer Nanotechnol. 14 (2023), 81.
    [166]
    K. Hadian, B.R. Stockwell, SnapShot: Ferroptosis, Cell 181 (2020) 1188-1188.e1.
    [167]
    W. Fan, J. Rong, W. Shi, et al., GATA6 Inhibits neuronal autophagy and ferroptosis in cerebral ischemia-reperfusion injury through a miR-193b/ATG7 axis-dependent mechanism, Neurochem. Res. 48 (2023) 2552-2567.
    [168]
    S. Sun, J. Shen, J. Jiang, et al., Targeting ferroptosis opens new avenues for the development of novel therapeutics, Signal Transduct. Target. Ther. 8 (2023), 372.
    [169]
    L. Ye, F. Jin, S.K. Kumar, et al., The mechanisms and therapeutic targets of ferroptosis in cancer, Expert Opin. Ther. Targets 25 (2021) 965-986.
    [170]
    X. Zheng, X. Jin, F. Ye, et al., Ferroptosis: A novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy, Exp. Hematol. Oncol. 12 (2023), 65.
    [171]
    R. Tang, J. Xu, B. Zhang, et al., Ferroptosis, necroptosis, and pyroptosis in anticancer immunity, J. Hematol. Oncol. 13 (2020), 110.
    [172]
    Y. Wang, X. Wu, Z. Ren, et al., Overcoming cancer chemotherapy resistance by the induction of ferroptosis, Drug Resist. Updat. 66 (2023), 100916.
    [173]
    G. Zhang, N. Li, Y. Qi, et al., Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer, Acta Biomater. 142 (2022) 284-297.
    [174]
    R. Sha, Y. Xu, C. Yuan, et al., Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy, EBioMedicine 71 (2021), 103560.
    [175]
    M. Chang, Z. Hou, M. Wang, et al., Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy, Angew. Chem. Int. Ed. Engl. 60 (2021) 12971-12979.
    [176]
    Z. Wang, Y. Wang, H. Gao, et al., Phototheranostic nanoparticles with aggregation-induced emission as a four-modal imaging platform for image-guided photothermal therapy and ferroptosis of tumor cells, Biomaterials 289 (2022), 121779.
    [177]
    Y.-C. Chin, L.-X. Yang, F.-T. Hsu, et al., Iron oxide@chlorophyll clustered nanoparticles eliminate bladder cancer by photodynamic immunotherapy-initiated ferroptosis and immunostimulation, J. Nanobiotechnology 20 (2022), 373.
    [178]
    X. Liang, M. Chen, P. Bhattarai, et al., Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles, ACS Nano 15 (2021) 20164-20180.
    [179]
    X. Zhang, H. Ge, Y. Ma, et al., Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy, Chem. Eng. J. 455 (2023), 140688.
    [180]
    Q. Yang, T. Liu, H. Zheng, et al., A nanoformulation for immunosuppression reversal and broad-spectrum self-amplifying antitumor ferroptosis-immunotherapy, Biomaterials 292 (2023), 121936.
    [181]
    H. Xiong, C. Wang, Z. Wang, et al., Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop, J. Control. Release 332 (2021) 539-552.
    [182]
    S. Shen, X. Liu, P. Jiang, et al., Nanoscale micelles loaded with Fe3O4 nanoparticles for deep-tissue penetration and ferroptosis/sonodynamic tumor therapy, ACS Appl. Nano Mater. 5 (2022) 17664-17672.
    [183]
    A. Zhou, T. Fang, K. Chen, et al., Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer, Small 18 (2022), e2106568.
    [184]
    Y.-H. Wu, R.-J. Chen, H.-W. Chiu, et al., Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: Pivotal role of autophagy, Theranostics 13 (2023) 40-58.
    [185]
    Y. Lin, X. Chen, C. Yu, et al., Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy, Acta Biomater. 159 (2023) 300-311.
    [186]
    S. Liu, H.-L. Zhang, J. Li, et al., Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis, Redox Biol. 62 (2023), 102677.
    [187]
    T. Truong-Dinh Tran, P. Ha-Lien Tran, K. Tu Nguyen, et al., Nano-precipitation: Preparation and application in the field of pharmacy, Curr. Pharm. Des. 22 (2016) 2997-3006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (163) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return