Turn off MathJax
Article Contents
Alina Cherniienko, Roman Lesyk, Lucjusz Zaprutko, Anna Pawełczyk. IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.02.005
Citation: Alina Cherniienko, Roman Lesyk, Lucjusz Zaprutko, Anna Pawełczyk. IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.02.005

IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis

doi: 10.1016/j.jpha.2024.02.005
Funds:

This work was supported by the Large Research Grant No.: 85/2023 from the Doctoral School, funded by statutory funds from Poznan University of Medical Sciences, Poland.

  • Received Date: Oct. 02, 2023
  • Accepted Date: Feb. 19, 2024
  • Rev Recd Date: Jan. 06, 2024
  • Available Online: Feb. 23, 2024
  • In various industries, particularly the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy’s accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of ex situ and in situ FTIR spectroscopy applications in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR’s potential and develop new applications that improve sustainability in these areas.
  • loading
  • [1]
    . M.C.D. Santos, C.L.M. Morais, K.M.G. Lima, ATR-FTIR spectroscopy for virus identification: A powerful alternative, Biomed. Spectrosc. Imag. 9(2021) 103–118.
    [2]
    . V. Ţucureanu, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study, Crit. Rev. Anal. Chem. 46(2016) 502–520.
    [3]
    . T.M. Pedroso, H.R.N. Salgado, Green alternative using infrared spectroscopy as an efficient and stable analytical method for quantifying ertapenem sodium, Adv. Anal. Pharm. Chem. 2018.
    [4]
    . S.M. Abd El-Halim, M.A. Mamdouh, S.M. Eid, et al., The potential synergistic activity of zolmitriptan combined in new self-nanoemulsifying drug delivery systems: ATR-FTIR real-time fast dissolution monitoring and pharmacodynamic assessment, Int. J. Nanomedicine 16(2021) 6395–6412.
    [5]
    . H. Tiernan, B. Byrne, S.G. Kazarian, ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals, Spectrochim. Acta A Mol. Biomol. Spectrosc. 241(2020), 118636.
    [6]
    . E.F.J Ring, The discovery of infrared radiation in 1800, The Imaging Science Journal, 48(2000), 1-8.
    [7]
    . E.D. Becker, T.C. Farrar, Fourier transform spectroscopy: New methods dramatically improve the sensitivity of infrared and nuclear magnetic resonance spectroscopy, Science 178(1972) 361–368.
    [8]
    . J.L. Arrondo, F.M. Goñi, J.M. Macarulla, Infrared spectroscopy of phosphatidylcholines in aqueous suspension. A study of the phosphate group vibrations, Biochim. Biophys. Acta 794(1984) 165–168.
    [9]
    . J.L. Koenig, M.K. Antoon, Recent applications of FT-IR spectroscopy to polymer systems, Appl. Opt. 17(1978) 1374–1385.
    [10]
    . K.S. Kalasinsky, B. Levine, M.L. Smith, et al., Detection of amphetamine and methamphetamine in urine by gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy, J. Anal. Toxicol. 17(1993) 359–364.
    [11]
    . K. Bagley, G. Dollinger, L. Eisenstein, et al., Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts, Proc. Natl. Acad. Sci. U S A 79(1982) 4972–4976.
    [12]
    . J. Breton, J.R. Burie, C. Berthomieu, et al., The binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: Assignment of the QA vibrations in Rhodobacter sphaeroides using 18O- or 13C-labeled ubiquinone and vitamin K1, Biochemistry 33(1994) 4953–4965.
    [13]
    . M. Jackson, H.H. Mantsch, The use and misuse of FTIR spectroscopy in the determination of protein structure, Crit. Rev. Biochem. Mol. Biol. 30(1995) 95–120.
    [14]
    . K.K. Chittur, FTIR/ATR for protein adsorption to biomaterial surfaces, Biomaterials 19(1998) 357–369.
    [15]
    . J.F. Neault, M. Naoui, H.A. Tajmir-Riahi, DNA-drug interaction. The effects of vitamin C on the solution structure of Calf-thymus DNA studied by FTIR and laser Raman difference spectroscopy, J. Biomol. Struct. Dyn. 13(1995) 387– 397.
    [16]
    . T. Noguchi, Light-induced FTIR difference spectroscopy as a powerful tool toward understanding the molecular mechanism of photosynthetic oxygen evolution, Photosynth. Res. 91(2007) 59–69.
    [17]
    . H. Mutlu, L. Barner, Getting the terms right: Green, sustainable, or circular chemistry? Macromol. Chem. Phys. 223(2022), 2200111.
    [18]
    . P.T. Anastas, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem. 29(1999) 167–175.
    [19]
    . A. Surapaneni, A. Surapaneni, J. Wu, et al., Kinetic monitoring and fouriertransform infrared (FTIR) spectroscopy of the green oxidation of (-)-menthol to (-)-menthone, J. Emerg. Investig. 2020.
    [20]
    . P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press Inc., United Kingdom, 1998.
    [21]
    . S. Armenta, S. Garrigues, M. de la Guardia, Green analytical chemistry, Trac Trends Anal. Chem. 27(2008) 497–511.
    [22]
    . A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trac Trends Anal. Chem. 50(2013) 78–84.
    [23]
    . J. Namieśnik, Trends in environmental analytics and monitoring, Crit. Rev. Anal. Chem. 30(2000) 221–269.
    [24]
    . V.G. Zuin, I. Eilks, M. Elschami, et al., Education in green chemistry and in sustainable chemistry: Perspectives towards sustainability, Green Chem. 23(2021) 1594–1608.
    [25]
    . D.J.C. Constable, Green and sustainable chemistry - The case for a systemsbased, interdisciplinary approach, iScience 24(2021), 103489.
    [26]
    . C.S. Mangolim, C. Moriwaki, A.C. Nogueira, et al., Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application, Food Chem. 153(2014) 361–370.
    [27]
    . F. Farouk, B.A. Moussa, H.M.E.S. Azzazy, Fourier transform infrared spectroscopy for in-process inspection, counterfeit detection and quality control of anti-diabetic drugs, Spectroscopy 26(2011) 297–309.
    [28]
    . A. de Haro Moreno, H. Regina Nunes Salgado, Development and validation of the quantitative analysis of ceftazidime in powder for injection by infrared Spectroscopy#, Phys. Chem. 2(2012) 6–11.
    [29]
    . E.G. Tótoli, H.R.N. Salgado, Development and validation of the quantitative analysis of ampicillin sodium in powder for injection by fourier-transform infrared spectroscopy (FT-IR), Phys. Chem. 2(2013) 103–108.
    [30]
    . D.C. de Macedo Vieir, P.C. Ricarte, H.R.N. Salgado, Development and validation of the quantitative analysis of cefuroxime sodium in powder for injection by infrared spectroscopy, Adv. Anal. Chem. 2(2012) 80–87.
    [31]
    . A.C. Kogawa, N.P. de Mello, Quantification of doxycycline in raw material by an eco-friendly method of infrared spectroscopy, Pharm. Anal. Acta 7(2015), 1000463.
    [32]
    . A.C. Kogawa, H.R.N. Salgado, Development and validation of infrared spectroscopy method for the determination of darunavir in tablets, Phys. Chem. 3(2013) 1–6.
    [33]
    . K.M.S. Fahelelbom, A. Saleh, R. Mansour, et al., First derivative ATR-FTIR spectroscopic method as a green tool for the quantitative determination of diclofenac sodium tablets, F1000Research 9(2020), 176.
    [34]
    . K.M. Kelani, M.R. Rezk, H.H. Monir, et al., FTIR combined with chemometric tools (fingerprinting spectroscopy) in comparison to HPLC: Which strategy offers more opportunities as a green analytical chemistry technique for pharmaceutical analysis, Anal. Methods 12(2020) 5893–5907.
    [35]
    . E.A.K. Palomäki, T. Lipiäinen, C.J. Strachan, et al., Effect of trehalose and melibiose on crystallization of amorphous paracetamol, Int. J. Pharm. 590(2020), 119878.
    [36]
    . S.E. Glassford, B. Byrne, S.G. Kazarian, Recent applications of ATR FTIR spectroscopy and imaging to proteins, Biochim. Biophys. Acta 1834(2013) 2849–2858.
    [37]
    . H.E. Embaby, T. Miyakawa, S. Hachimura, et al., Crystallization and melting properties studied by DSC and FTIR spectroscopy of goldenberry (Physalis peruviana) oil, Food Chem. 366(2022), 130645.
    [38]
    . A. Gabrič, Ž. Hodnik, S. Pajk, Oxidation of drugs during drug product development: Problems and solutions, Pharmaceutics 14(2022), 325.
    [39]
    . Y. Kato, S. Haniu, Y. Nakajima, et al., FTIR microspectroscopic analysis of the water oxidation reaction in a single photosystem II microcrystal, J. Phys. Chem. B 124(2020) 121–127.
    [40]
    . S. Daoud, E. Bou-maroun, L. Dujourdy, et al., Fast and direct analysis of oxidation levels of oil-in-water emulsions using ATR-FTIR, Food Chem. 293(2019) 307–314.
    [41]
    . C. Fink, D. Sun, K. Wagner, et al., Evaluating the role of solubility in oral absorption of poorly water-soluble drugs using physiologically-based pharmacokinetic modeling, Clin. Pharmacol. Ther. 107(2020) 650–661.
    [42]
    . A.K. Modini, M. Ranga, U. Puppala, et al., Identification, isolation, and structural characterization of novel forced degradation products of darunavir using advanced analytical techniques like UPLC-MS, prep-HPLC, HRMS, NMR, and FT-IR spectroscopy, Chromatographia 86(2023) 63–78.
    [43]
    . C.K. Raju, A.K. Pandey, G. S, et al., Isolation and characterization of novel degradation products of Doxofylline using HPLC, FTIR, LCMS and NMR, J. Pharm. Biomed. Anal. 140(2017) 1–10.
    [44]
    . C.K. Raju, A.K. Pandey, K. Ghosh, et al., Isolation and structural characterization of novel photolytic degradation impurities of Deflazacort using Q-TOF, 2D-NMR and FTIR, J. Pharm. Biomed. Anal. 133(2017) 82–89.
    [45]
    . K.L. Chan, S.G. Kazarian, FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol), Mol. Pharm. 1(2004) 331– 335.
    [46]
    . L. Žid, V. Zeleňák, M. Almáši, et al., Mesoporous silica as a drug delivery system for naproxen: Influence of surface functionalization, Molecules 25(2020), 4722.
    [47]
    . M.J. Mitchell, M.M. Billingsley, R.M. Haley, et al., Engineering precision nanoparticles for drug delivery, Nat. Rev. Drug Discov. 20(2021) 101–124.
    [48]
    . A.A. Yetisgin, S. Cetinel, M. Zuvin, et al., Therapeutic nanoparticles and their targeted delivery applications, Molecules 25(2020), 2193.
    [49]
    . Y. Huang, J. Ren, X. Qu, Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications, Chem. Rev. 119(2019) 4357–4412.
    [50]
    . Q. Li, L. Ji, B. Jiang, et al., Pillararene-functionalized rhodium nanoparticles for efficient catalytic reduction and photothermal sterilization, Chem. Commun. 58(2022) 13079–13082.
    [51]
    . M. Bashir, F. Majid, R. Sabir, et al., Facile green synthesis, analysis, in vitro antidiabetic and antimicrobial activity of ZnO macropores, Bioprocess Biosyst. Eng. 45(2022) 1993–2006.
    [52]
    . N.I. Farkas, L. Marincaş, R. Barabás, et al., Preparation and characterization of doxycycline-loaded electrospun PLA/HAP nanofibers as a drug delivery system, Materials 15(2022), 2105.
    [53]
    . N. Joshi, N. Jain, A. Pathak, et al., Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities, J. Sol Gel Sci. Technol. 86(2018) 682–689.
    [54]
    . N.A. Begum, S. Mondal, S. Basu, et al., Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surf. B Biointerfaces 71(2009) 113–118.
    [55]
    . N.I. Abdullah, M.B. Ahmad, K. Shameli, Biosynthesis of silver nanoparticles using Artocarpus elasticus stem bark extract, Chem. Cent. J. 9(2015), 61.
    [56]
    . J. Karimi, S. Mohsenzadeh, Rapid, green, and eco-friendly biosynthesis of copper nanoparticles using flower extract of Aloe vera, Synth. React. Inorg. Met. Org. Nano Met. Chem. 45(2015) 895–898.
    [57]
    . V. Soni, P. Raizada, P. Singh, et al., Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review, Environ. Res. 202(2021), 111622.
    [58]
    . A.M. Croitoru, A. Moroşan, B. Tihăuan, et al., Novel graphene oxide/quercetin and graphene oxide/juglone nanostructured platforms as effective drug delivery systems with biomedical applications, Nanomaterials 12(2022) 1943.
    [59]
    . T.A. Saleh, Characterization and description of adsorbents and nanomaterials. Interface Science and Technology, Vol. 34, Elsevier, Amsterdam, 2022, pp. 199-232.
    [60]
    . H. Issa Hamoud, L. Wolski, I. Pankin, et al., In situ and operando spectroscopies in photocatalysis: Powerful techniques for a better understanding of the performance and the reaction mechanism, Top. Curr. Chem. (Cham) 380(2022), 37.
    [61]
    . Y. He, F. Guo, K.R. Yang, et al., In situ identification of reaction intermediates and mechanistic understandings of methane oxidation over hematite: A combined experimental and theoretical study, J. Am. Chem. Soc. 142(2020) 17119–17130.
    [62]
    . K.S. Reddy, B. Siva, S.D. Reddy, et al., In situ FTIR spectroscopic monitoring of the formation of the Arene diazonium salts and its applications to the HeckMatsuda reaction, Molecules 25(2020), 2199.
    [63]
    . V. Zholobenko, F. Rutten, A. Zholobenko, et al., In situ spectroscopic identification of the six types of asbestos, J. Hazard. Mater. 403(2021), 123951.
    [64]
    . T.T.M. Ho, K.E. Bremmell, M. Krasowska, et al., In situ ATR FTIR spectroscopic study of the formation and hydration of a fucoidan/chitosan polyelectrolyte multilayer, Langmuir 31(2015) 11249–11259.
    [65]
    . H. Cheng, S. Wu, J. Huang, et al., Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol, Anal. Bioanal. Chem. 409(2017) 2531–2537.
    [66]
    . K.L.A. Chan, S.G. Kazarian, D. Vassou, et al., In situ high-throughput study of drug polymorphism under controlled temperature and humidity using FT-IR spectroscopic imaging, Vib. Spectrosc. 43(2007) 221–226.
    [67]
    . M.C. Rehbein, S. Husmann, C. Lechner, et al., Fast and calibration free determination of first order reaction kinetics in API synthesis using in situ ATRFTIR, Eur. J. Pharm. Biopharm. 126(2018) 95–100.
    [68]
    . S. Soldoozy, A. Trinh, J.D. Kubicki, et al., In situ and real-time ATR-FTIR temperature-dependent adsorption kinetics coupled with DFT calculations of dimethylarsinate and arsenate on hematite nanoparticles, Langmuir 36(2020) 4299–4307.
    [69]
    . H. Ren, C. Cai, C. Leng, et al., Nucleation kinetics in mixed NaNO3/glycerol droplets investigated with the FTIR-ATR technique, J. Phys. Chem. B 120(2016) 2913–2920.
    [70]
    . J. Guan, P. Wang, Y. Song, Mechanistic insights of multiplexed effects of pressure, physical states, and laser on the polymerization kinetics of phenylacetylene probed by in situ FTIR spectroscopy, J. Phys. Chem. B 125(2021) 4169–4177.
    [71]
    . A. Ohligschläger, M.A. Liauw, Intricate kinetics: In situ FTIR-spectroscopy discloses a phase change during ionic liquid synthesis, Phys. Chem. Chem. Phys. 19(2017) 18018–18022.
    [72]
    . A.H.B. Dourado, R.A. Silva, R.M. Torresi, et al., Kinetics, assembling, and conformation control of L-cysteine adsorption on Pt investigated by in situ FTIR spectroscopy and QCM-D, Chemphyschem 19(2018) 2340–2348.
    [73]
    . A.M. Abdel-Mageed, S. Chen, C. Fauth, et al., Fundamental aspects of ceria supported Au catalysts probed by in situ/operando spectroscopy and TAP reactor studies, Chemphyschem 22(2021) 1302–1315.
    [74]
    . S. Mondal, D. Bagchi, M. Riyaz, et al., In situ mechanistic insights for the oxygen reduction reaction in chemically modulated ordered intermetallic catalyst promoting complete electron transfer, J. Am. Chem. Soc. 144(2022) 11859–11869.
    [75]
    . K. Park, G. Bae, T. Kim, An In-situ transmission Fourier transform infrared study on the interaction mechanism of plasma with nano-catalyst for CO2 methanation, J. Nanosci. Nanotechnol. 21(2021) 3858–3862.
    [76]
    . R.J. Clarke, J.C. Hicks, Interrogation of the plasma-catalyst interface via in situ/operando transmission infrared spectroscopy, ACS Eng. Au 2(2022) 535– 546.
    [77]
    . L. Wang, U.J. Etim, C. Zhang, et al., CO2 activation and hydrogenation on CuZnO/Al2O3 nanorod catalysts: An in situ FTIR study, Nanomaterials 12(2022), 2527.
    [78]
    . D.K. Chlebda, P.J. Jodłowski, R.J. Jędrzejczyk, et al., 2D-COS of in situ μ- Raman and in situ IR spectra for structure evolution characterisation of NEPdeposited cobalt oxide catalyst during n-nonane combustion, Spectrochim. Acta A Mol. Biomol. Spectrosc. 186(2017) 44–51.
    [79]
    . N.S. Marinkovic, M. Li, R.R. Adzic, Pt-based catalysts for electrochemical oxidation of ethanol, Top. Curr. Chem. (Cham) 377(2019), 11.
    [80]
    . S.G. Kazarian, A.V. Ewing, Applications of Fourier transform infrared spectroscopic imaging to tablet dissolution and drug release, Expert Opin. Drug Deliv. 10(2013) 1207–1221.
    [81]
    . A.V. Ewing, G.S. Clarke, S.G. Kazarian, Attenuated total reflection-Fourier transform infrared spectroscopic imaging of pharmaceuticals in microfluidic devices, Biomicrofluidics 10(2016), 024125.
    [82]
    . M. Pudlas, S.O. Kyeremateng, L.A.M. Williams, et al., Analyzing the impact of different excipients on drug release behavior in hot-melt extrusion formulations using FTIR spectroscopic imaging, Eur. J. Pharm. Sci. 67(2015) 21–31.
    [83]
    . A.V. Ewing, P.S. Wray, G.S. Clarke, et al., Evaluating drug delivery with salt formation: Drug disproportionation studied in situ by ATR-FTIR imaging and Raman mapping, J. Pharm. Biomed. Anal. 111(2015) 248–256.
    [84]
    . A.V. Ewing, G.D. Biggart, C.R. Hale, et al., Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions, Int. J. Pharm. 495(2015) 112–121.
    [85]
    . J. Lu, S. Rohani, Polymorphism and crystallization of active pharmaceutical ingredients (APIs), Curr. Med. Chem. 16(2009) 884–905.
    [86]
    . M. Cheng, S. Sun, P. Wu, Microdynamic changes of moisture-induced crystallization of amorphous calcium carbonate revealed via in situ FTIR spectroscopy, Phys. Chem. Chem. Phys. 21(2019) 21882–21889.
    [87]
    . Y. Zhao, Y. Bao, J. Wang, et al., In situ focused beam reflectance measurement (FBRM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Raman characterization of the polymorphic transformation of carbamazepine, Pharmaceutics 4(2012) 164–178.
    [88]
    . N. Guo, B. Hou, N. Wang, et al., In situ monitoring and modeling of the solution-mediated polymorphic transformation of rifampicin: From form II to form I, J. Pharm. Sci. 107(2018) 344–352.
    [89]
    . P. Gupta, A.K. Bansal, Devitrification of amorphous celecoxib, AAPS PharmSciTech 6(2005) E223–E230.
    [90]
    . W.H. Kan, J. Lussier, M. Bieringer, et al., Studies on polymorphic sequence during the formation of the 1: 1 ordered perovskite-type BaCa(0.335)M(0.165)Nb(0.5)O(3-δ) (M = Mn, Fe, Co) using in situ and ex situ powder X-ray diffraction, Inorg. Chem. 53(2014) 10085–10093.
    [91]
    . Munaji, M. Zainuri, Triwikantoro, Structures and electric properties of PANI/polymorphic-ZrO2 composites, RSC Adv. 13(2023) 10414–10423.
    [92]
    . F. Meng, S.K. Paul, S. Borde, et al., Investigating crystallization tendency, miscibility, and molecular interactions of drug-polymer systems for the development of amorphous solid dispersions, Drug Dev. Ind. Pharm. 47(2021) 579–608.
    [93]
    . C.V. Waiman, M.J. Avena, A.E. Regazzoni, et al., A real time in situ ATRFTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: Effect of surface coverage, J. Colloid Interface Sci. 394(2013) 485–489.
    [94]
    . J.M. Arroyave, C.C. Waiman, G.P. Zanini, et al., Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics, Chemosphere 145(2016) 34–41.
    [95]
    . H. Huang, D. Yi, Y. Lu, et al., Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperature-programmed desorption, Chem. Eng. J. 225(2013) 447–455.
    [96]
    . J. Tofan-Lazar, H.A. Al-Abadleh, ATR-FTIR studies on the adsorption/desorption kinetics of dimethylarsinic acid on iron-(oxyhydr)oxides, J. Phys. Chem. A 116(2012) 1596–1604.
    [97]
    . J. Hsu, A.M. Eid, C. Randall, et al., Mechanistic in situ ATR-FTIR studies on the adsorption and desorption of major intermediates in CO2 electrochemical reduction on CuO nanoparticles, Langmuir 38(2022) 14789–14798.
    [98]
    . B. Baumgartner, J. Hayden, J. Loizillon, et al., Pore size-dependent structure of confined water in mesoporous silica films from water adsorption/desorption using ATR-FTIR spectroscopy, Langmuir 35(2019) 11986–11994.
    [99]
    . B. Henry, A. Samokhvalov, Hygroscopic metal-organic framework MIL- 160(Al): In-situ time-dependent ATR-FTIR and gravimetric study of mechanism and kinetics of water vapor sorption, Spectrochim. Acta A Mol. Biomol. Spectrosc. 267(2022), 120550.
    [100]
    . L. Liu, C. Zhao, J.T. Miller, et al., Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies, J. Phys. Chem. C 121(2017) 490–499.
    [101]
    . Z. Zhang, G. Xu, Q. Wang, et al., Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry-Fouriertransform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry, Waste Manag. 93(2019) 130–137.
    [102]
    . V. Sugumaran, S. Prakash, E. Ramu, et al., Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC-MS) techniques, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1058(2017) 47–56.
    [103]
    . A. Lanzarotta, L. Lorenz, S. Voelker, et al., Forensic drug identification, confirmation, and quantification using fully integrated gas chromatography with Fourier transform infrared and mass spectrometric detection (GC-FT-IR-MS), Appl. Spectrosc. 72(2018) 750–756.
    [104]
    . J. Ke, C. Gao, A.A. Folgueiras-Amador, et al., Self-optimization of continuous flow electrochemical synthesis using Fourier transform infrared spectroscopy and gas chromatography, Appl. Spectrosc. 76(2022) 38–50.
    [105]
    . M.A. Iramain, L. Davies, S.A. Brandán, FTIR, HATR and FT-Raman studies on the anhydrous and monohydrate species of maltose in aqueous solution, Carbohydr. Res. 428(2016) 41–56.
    [106]
    . L. Wang, A.R. Lee, Y. Yuan, et al., Preparation and FTIR, Raman and SEM characterizations of konjac glucomannan-KCl electrogels, Food Chem. 331(2020), 127289.
    [107]
    . S. Singh, H. Singh, T. Karthick, et al., Conformational study and vibrational spectroscopic (FT-IR and FT-raman) analysis of an alkaloid-borreverine derivative, Anal. Sci. 33(2017) 99–104.
    [108]
    . S. Batool, U. Liaqat, Z. Hussain, et al., Synthesis, characterization and process optimization of bone whitlockite, Nanomaterials 10(2020), 1856.
    [109]
    . T. Maher, N.A. Kabbashi, M.E.S. Mirghani, et al., Optimization of ultrasoundassisted extraction of bioactive compounds from Acacia seyal gum using response surface methodology and their chemical content identification by Raman, FTIR, and GC-TOFMS, Antioxidants 10(2021), 1612.
    [110]
    . J.C. Steinbach, M. Schneider, O. Hauler, et al., A process analytical concept for in-line FTIR monitoring of polysiloxane formation, Polymers 12(2020), 2473.
    [111]
    . N. Irfanita, W. Lestari, M.E.S. Mirghani, et al., Attenuated total reflectanceFourier transform infrared (ATR-FTIR) spectroscopy coupled with principal component analysis and polymerase chain reaction (PCR) assay for the detection of porcine and bovine gelatins in dental materials, Trop. Life Sci. Res. 33(2022) 133–153.
    [112]
    . N. Bensemmane, N. Bouzidi, Y. Daghbouche, et al., Quantification of phenolic acids by partial least squares Fourier-transform infrared (PLS-FTIR) in extracts of medicinal plants, Phytochem. Anal. 32(2021) 206–221.
    [113]
    . R. González-Albarrán, J. de Gyves, E. Rodríguez de San Miguel, Determination of cadmium (II) in aqueous solutions by in situ MID-FTIR-PLS analysis using a polymer inclusion membrane-based sensor: First considerations, Molecules 25(2020), 3436.
    [114]
    . F.R.P. Mansoldo, V. da Silva Cardoso, A. Neves Junior, et al., Quantification of schizophyllan directly from the fermented broth by ATR-FTIR and PLS regression, Anal. Methods 12(2020) 5468–5475.
    [115]
    . P. Sagmeister, F.F. Ort, C.E. Jusner, et al., Autonomous multi-step and multiobjective optimization facilitated by real-time process analytics, Adv. Sci. 9(2022), e2105547.
    [116]
    . Y. Chae, S. Min, E. Park, et al., Real-time reaction monitoring with in operando flow NMR and FTIR spectroscopy: Reaction mechanism of benzoxazole synthesis, Anal. Chem. 93(2021) 2106–2113.
    [117]
    . H. Landari, Y. Messaddeq, A. Miled, Microscope-FTIR spectrometry based sensor for neurotransmitters detection, IEEE Trans. Biomed. Circuits Syst. 15(2021) 938–948.
    [118]
    . S. Li, J. Ihli, W.J. Marchant, et al., Synchrotron FTIR mapping of mineralization in a microfluidic device, Lab Chip 17(2017) 1616–1624.
    [119]
    . M. Joly, T. Deng, T.A. Morhart, et al., Scanning aperture approach for spatially selective ATR-FTIR spectroscopy: Application to microfluidics, Anal. Chem. 93(2021) 14076–14087.
    [120]
    . B.E. Obinaju, F.L. Martin, Novel biospectroscopy sensor technologies towards environmental health monitoring in urban environments, Environ. Pollut. 183(2013) 46–53.
    [121]
    . I.C.C. Ferreira, E.M.G. Aguiar, A.T.F. Silva, et al., Attenuated total reflectionfourier transform infrared (ATR-FTIR) spectroscopy analysis of saliva for breast cancer diagnosis, J. Oncol. 2020(2020), 4343590.
    [122]
    . K.M. Elkins, Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy, J. Forensic Sci. 56(2011) 1580–1587.
    [123]
    . A. Martinez-Cuazitl, G.J. Vazquez-Zapien, M. Sanchez-Brito, et al., ATR-FTIR spectrum analysis of saliva samples from COVID-19 positive patients, Sci. Rep. 11(2021), 19980.
    [124]
    . A. Banerjee, A. Gokhale, R. Bankar, et al., Rapid classification of COVID-19 severity by ATR-FTIR spectroscopy of plasma samples, Anal. Chem. 93(2021) 10391–10396.
    [125]
    . B.R. Wood, K. Kochan, D.E. Bedolla, et al., Infrared based saliva screening test for COVID-19, Angew. Chem. Int. Ed Engl. 60(2021) 17102–17107.
    [126]
    . F.T. Lee-Montiel, K.A. Reynolds, M.R. Riley, Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture, J. Biol. Eng. 5(2011), 16.
    [127]
    . V. Erukhimovitch, I. Mukmanov, M. Talyshinsky, et al., The use of FTIR microscopy for evaluation of herpes viruses infection development kinetics, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60(2004) 2355–2361.
    [128]
    . S. Roy, D. Perez-Guaita, S. Bowden, et al., Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy, Clin. Spectrosc. 1(2019), 100001.
    [129]
    . K. Naseer, S. Ali, S. Mubarik, et al., FTIR spectroscopy of freeze-dried human sera as a novel approach for dengue diagnosis, Infrared Phys. Technol. 102(2019), 102998.
    [130]
    . U. Zelig, J. Kapelushnik, R. Moreh, et al., Diagnosis of cell death by means of infrared spectroscopy, Biophys. J. 97(2009) 2107–2114.
    [131]
    . S. Argov, J. Ramesh, A. Salman, et al., Diagnostic potential of Fouriertransform infrared microspectroscopy and advanced computational methods in colon cancer patients, J. Biomed. Opt. 7(2002) 248–254.
    [132]
    . H.P. Wang, H.C. Wang, Y.J. Huang, Microscopic FTIR studies of lung cancer cells in pleural fluid, Sci. Total Environ. 204(1997) 283–287.
    [133]
    . C.A. Lima, V.P. Goulart, L. Côrrea, et al., ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma, Int. J. Mol. Sci. 16(2015) 6621–6630.
    [134]
    . R.A. Shaw, S. Kotowich, H.H. Mantsch, et al., Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy, Clin. Biochem. 29(1996) 11–19.
    [135]
    . M.M. Mata-Miranda, M. Guerrero-Ruiz, J.R. Gonzalez-Fuentes, et al., Characterization of the biological fingerprint and identification of associated parameters in stress fractures by FTIR spectroscopy, Biomed Res. Int. 2019(2019), 1241452.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (112) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return