Volume 14 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Xuejiao Leng, Mengyuan Zhang, Yujing Xu, Jingjing Wang, Ning Ding, Yancheng Yu, Shanliang Sun, Weichen Dai, Xin Xue, Nianguang Li, Ye Yang, Zhihao Shi. Non-coding RNAs as therapeutic targets in cancer and its clinical application[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100947. doi: 10.1016/j.jpha.2024.02.001
Citation: Xuejiao Leng, Mengyuan Zhang, Yujing Xu, Jingjing Wang, Ning Ding, Yancheng Yu, Shanliang Sun, Weichen Dai, Xin Xue, Nianguang Li, Ye Yang, Zhihao Shi. Non-coding RNAs as therapeutic targets in cancer and its clinical application[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100947. doi: 10.1016/j.jpha.2024.02.001

Non-coding RNAs as therapeutic targets in cancer and its clinical application

doi: 10.1016/j.jpha.2024.02.001
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 81973171, 82103985, and 82373710), the National Key Research and Development Program of China (Grant No.: 2020YFA0509404), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (Grant No.: 21KJB350005), the Open Project of Chinese Materia Medica First-Class Discipline of Nanjing University of Chinese Medicine (Grant No.: 2020YLXK002), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  • Received Date: Oct. 27, 2023
  • Accepted Date: Feb. 01, 2024
  • Rev Recd Date: Jan. 12, 2024
  • Publish Date: Feb. 08, 2024
  • Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.

  • loading
  • [1]
    Y. Zhu, C. Wang, S.A. Becker, et al., miR-145 antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer, Mol. Ther. 26 (2018) 744-754.
    [2]
    P. Laissue, The forkhead-box family of transcription factors: Key molecular players in colorectal cancer pathogenesis, Mol. Cancer 18 (2019), 5.
    [3]
    X. Huang, Z. Chen, Y. Liu, RNAi-mediated control of CRISPR functions, Theranostics 10 (2020) 6661-6673.
    [4]
    B. Yue, C. Liu, H. Sun, et al., A positive feed-forward loop between LncRNA-CYTOR and Wnt/β-catenin signaling promotes metastasis of colon cancer, Mol. Ther. 26 (2018) 1287-1298.
    [5]
    T. Liu, Z. Han, H. Li, et al., LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3, Mol. Cancer 17 (2018), 118.
    [6]
    H. Wang, Q. Meng, J. Qian, et al., Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer, Pharmacol. Ther. 234 (2022), 108123.
    [7]
    J. Li, Z. Li, W. Zheng, et al., LncRNA-ATB: An indispensable cancer-related long noncoding RNA, Cell Prolif. 50 (2017), e12381.
    [8]
    P. Kapranov, J. Cheng, S. Dike, et al., RNA maps reveal new RNA classes and a possible function for pervasive transcription, Science 316 (2007) 1484-1488.
    [9]
    F. Calore, F. Lovat, M. Garofalo, Non-coding RNAs and cancer, Int. J. Mol. Sci. 14 (2013) 17085-17110.
    [10]
    M. Esmaeili, M. Keshani, M. Vakilian, et al., Role of non-coding RNAs as novel biomarkers for detection of colorectal cancer progression through interaction with the cell signaling pathways, Gene 753 (2020), 144796.
    [11]
    Z. Zhou, B. Sun, S. Huang, et al., The tRNA-associated dysregulation in diabetes mellitus, Metabolism 94 (2019) 9-17.
    [12]
    M. Ohtani, Transcriptional regulation of snRNAs and its significance for plant development, J. Plant Res. 130 (2017) 57-66.
    [13]
    R.A. Weinberg, S. Penman, Small molecular weight monodisperse nuclear RNA, J. Mol. Biol. 38 (1968) 289-304.
    [14]
    G. Romano, D. Veneziano, M. Acunzo, et al., Small non-coding RNA and cancer, Carcinogenesis 38 (2017) 485-491.
    [15]
    L. Wang, Y. Liang, R. Lin, et al., Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function, Genes Dis. 9 (2020) 268-274.
    [16]
    J. Salzman, Circular RNA expression: Its potential regulation and function, Trends Genet. 32 (2016) 309-316.
    [17]
    P. Zhang, M. Dai, CircRNA: A rising star in plant biology, J. Genet. Genomics 49 (2022) 1081-1092.
    [18]
    Z. Zhang, T. Yang, J. Xiao, Circular RNAs: Promising biomarkers for human diseases, EBioMedicine 34 (2018) 267-274.
    [19]
    G. J.S. Talhouarne, J. G. Gall, Lariat intronic RNAs in the cytoplasm of vertebrate cells, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E7970-E7977.
    [20]
    E. Lopez-Jimenez, E. Andres-Leon, The implications of ncRNAs in the development of human diseases, Noncoding RNA 7 (2021), 17.
    [21]
    M. Losko, J. Kotlinowski, J. Jura, Long noncoding RNAs in metabolic syndrome related disorders, Mediators Inflamm. 2016 (2016), 5365209.
    [22]
    L. Ma, V.B. Bajic, Z. Zhang, On the classification of long non-coding RNAs, RNA Biol. 10 (2013) 925-933.
    [23]
    T. Doerks, R.R. Copley, J. Schultz, et al., Systematic identification of novel protein domain families associated with nuclear functions, Genome Res. 12 (2002) 47-56.
    [24]
    R.C. Lee, R.L. Feinbaum, V. Ambros, The C. elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14, Cell 75 (1993) 843-854.
    [25]
    E. Eslava-Aviles, F. Arenas-Huertero, piRNAs: Nature, biogenesis, regulation, and their potential clinical utility, Bol. Med. Hosp. Infant. Mex. 78 (2021) 432-442.
    [26]
    T. Hirose, Y. Mishima, Y. Tomari, Elements and machinery of non-coding RNAs: Toward their taxonomy, EMBO Rep. 15 (2014) 489-507.
    [27]
    A. K. Hopper, E. M. Phizicky, tRNA transfers to the limelight, Genes Dev. 17 (2003) 162-180.
    [28]
    Y. Pekarsky, V. Balatti, A. Palamarchuk, et al., Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer, Proc. Natl. Acad. Sci. USA 113 (2016) 5071-5076.
    [29]
    Y.S. Lee, Y. Shibata, A. Malhotra, et al., A novel class of small RNAs: TRNA-derived RNA fragments (tRFs), Genes Dev. 23 (2009) 2639-2649.
    [30]
    D.M. Thompson, C. Lu, P.J. Green, et al., tRNA cleavage is a conserved response to oxidative stress in eukaryotes, RNA 14 (2008) 2095-2103.
    [31]
    V. Balatti, G. Nigita, D. Veneziano, et al., tsRNA signatures in cancer, Proc. Natl. Acad. Sci. USA 114 (2017) 8071-8076.
    [32]
    P. Kumar, C. Kuscu, A. Dutta, Biogenesis and function of transfer RNA-related fragments (tRFs), Trends Biochem. Sci. 41 (2016) 679-689.
    [33]
    A. Gadgil, K.D. Raczynska, U7 snRNA: A tool for gene therapy, J. Gene Med. 23 (2021), e3321.
    [34]
    M. Baer, T.W. Nilsen, C. Costigan, et al., Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P, Nucleic Acids Res. 18 (1990) 97-103.
    [35]
    V.V. Popova, A.V. Orlova, M.M. Kurshakova, et al., The role of SAGA coactivator complex in snRNA transcription, Cell Cycle 17 (2018) 1859-1870.
    [36]
    V. Boivin, G. Deschamps-Francoeur, M.S. Scott, Protein coding genes as hosts for noncoding RNA expression, Semin. Cell Dev. Biol. 75 (2018) 3-12.
    [37]
    P. Bouchard-Bourelle, C. Desjardins-Henri, D. Mathurin-St-Pierre, et al., snoDB: An interactive database of human snoRNA sequences, abundance and interactions, Nucleic Acids Res. 48 (2020) D220-D225.
    [38]
    A.S. Henderson, D. Warburton, K.C. Atwood, Letter: Ribosomal DNA connectives between human acrocentric chromosomes, Nature 245 (1973) 95-97.
    [39]
    B. McStay, Nucleolar organizer regions: Genomic ‘dark matter’ requiring illumination, Genes Dev. 30 (2016) 1598-1610.
    [40]
    M. Nomura, R. Gourse, G. Baughman, Regulation of the synthesis of ribosomes and ribosomal components, Annu. Rev. Biochem. 53 (1984) 75-117.
    [41]
    C. Yu, H. C. Kuo, The emerging roles and functions of circular RNAs and their generation, J. Biomed. Sci. 26 (2019), 29.
    [42]
    H.L. Sanger, G. Klotz, D. Riesner, et al., Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Natl. Acad. Sci. USA 73 (1976) 3852-3856.
    [43]
    M.T. Hsu, M. Coca-Prados, Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells, Nature 280 (1979) 339-340.
    [44]
    Z. Li, C. Huang, C. Bao, et al., Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol. 22 (2015) 256-264.
    [45]
    E.N.C.O.E.E. Project Consortium, E. Birney, J.A. Stamatoyannopoulos, et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature 447 (2007) 799-816.
    [46]
    M.K. Iyer, Y.S. Niknafs, R. Malik, et al., The landscape of long noncoding RNAs in the human transcriptome, Nat. Genet. 47 (2015) 199-208.
    [47]
    Y. Zhao, Y. Liu, L. Lin, et al., The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1, Mol. Cancer 17 (2018), 69.
    [48]
    B.J. Reinhart, F.J. Slack, M. Basson, et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature 403 (2000) 901-906.
    [49]
    H. Siomi, M.C. Siomi, On the road to reading the RNA-interference code, Nature 457 (2009) 396-404.
    [50]
    M. Ghildiyal, P.D. Zamore, Small silencing RNAs: An expanding universe, Nat. Rev. Genet. 10 (2009) 94-108.
    [51]
    G. Di Leva, M. Garofalo, C.M. Croce, microRNAs in cancer, Annu. Rev. Pathol. 9 (2014) 287-314.
    [52]
    V.N. Kim, J. Han, M.C. Siomi, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol. 10 (2009) 126-139.
    [53]
    D. Kim, J. Rossi, RNAi mechanisms and applications, BioTechniques 44 (2008) 613-616.
    [54]
    A. Fire, S. Xu, M.K. Montgomery, et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 391 (1998) 806-811.
    [55]
    J. Sheu-Gruttadauria, I.J. MacRae, Structural foundations of RNA silencing by argonaute, J. Mol. Biol. 429 (2017) 2619-2639.
    [56]
    S.M. Elbashir, W. Lendeckel, T. Tuschl, RNA interference is mediated by 21- and 22-nucleotide RNAs, Genes Dev. 15 (2001) 188-200.
    [57]
    S.M. Elbashir, J. Harborth, W. Lendeckel, et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature 411 (2001) 494-498.
    [58]
    T.R. Brummelkamp, R. Bernards, R. Agami, A system for stable expression of short interfering RNAs in mammalian cells, Science 296 (2002) 550-553.
    [59]
    C. Chakraborty, A.R. Sharma, G. Sharma, et al., Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine, Mol. Ther. Nucleic Acids 8 (2017) 132-143.
    [60]
    A. Aravin, D. Gaidatzis, S. Pfeffer, et al., A novel class of small RNAs bind to MILI protein in mouse testes, Nature 442 (2006) 203-207.
    [61]
    N.C. Lau, A.G. Seto, J. Kim, et al., Characterization of the PiRNA complex from rat testes, Science 313 (2006) 363-367.
    [62]
    M.J. Luteijn, R.F. Ketting, PIWI-interacting RNAs: From generation to transgenerational epigenetics, Nat. Rev. Genet. 14 (2013) 523-534.
    [63]
    C.B. Assumpcao, D.Q. Calcagno, T.M. Araujo, et al., The role of PiRNA and its potential clinical implications in cancer, Epigenomics 7 (2015) 975-984.
    [64]
    S. Wang, F. Liu, H. Ma, et al., circCDYL acts as a tumor suppressor in triple negative breast cancer by sponging miR-190a-3p and upregulating TP53INP1, Clin. Breast Cancer 20 (2020) 422-430.
    [65]
    G. Liang, Y. Ling, M. Mehrpour, et al., Autophagy-associated circRNA circCDYL augments autophagy and promotes breast cancer progression, Mol. Cancer 19 (2020), 65.
    [66]
    Z. Liu, S. Guo, H. Sun, et al., Circular RNA CircHIPK3 elevates CCND2 expression and promotes cell proliferation and invasion through miR-124 in glioma, Front. Genet. 11 (2020), 1013.
    [67]
    D. Chen, X. Lu, F. Yang, et al., Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression, Cancer Manag. Res. 11 (2019) 1415-1423.
    [68]
    Z. Chen, H. Zhao, L. Lin, et al., Circular RNA CirCHIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMGB1/PI3K/AKT axis, Thorac. Cancer 11 (2020) 2660-2671.
    [69]
    Y. Yan, M. Su, B. Qin, CircHIPK3 promotes colorectal cancer cells proliferation and metastasis via modulating of miR-1207-5p/FMNL2 signal, Biochem. Biophys. Res. Commun. 524 (2020) 839-846.
    [70]
    B. Han, E. Shaolong, L. Luan, et al., CircHIPK3 promotes clear cell renal cell carcinoma (ccRCC) cells proliferation and metastasis via altering of miR-508-3p/CXCL13 signal, Onco. Targets Ther. 13 (2020) 6051-6062.
    [71]
    S. Memczak, M. Jens, A. Elefsinioti, et al., Circular RNAs are a large class of animal RNAs with regulatory potency, Nature 495 (2013) 333-338.
    [72]
    G. Huang, H. Zhu, Y. Shi, et al., Cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway, PLoS One 10 (2015), e0131225.
    [73]
    F. Li, L. Zhang, W. Li, et al., Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway, Oncotarget 6 (2015) 6001-6013.
    [74]
    L. Wan, L. Zhang, K. Fan, et al., Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway, BioMed Res. Int. 2016 (2016), 1579490.
    [75]
    W. Guo, J. Zhang, D. Zhang, et al., Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma, Oncotarget 8 (2017) 48169-48177.
    [76]
    X. Zheng, L. Chen, Y. Zhou, et al., A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling, Mol. Cancer 18 (2019), 47.
    [77]
    T.B. Hansen, E.D. Wiklund, J.B. Bramsen, et al., miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA, EMBO J. 30 (2011) 4414-4422.
    [78]
    J. Chen, J. Yang, X. Fei, et al., CircRNA ciRS-7: A novel oncogene in multiple cancers, Int. J. Biol. Sci. 17 (2021) 379-389.
    [79]
    H. Liu, J. Bi, W. Dong, et al., Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis, Mol. Cancer 17 (2018), 161.
    [80]
    Y. Shi, Z. Wu, K. Xiong, et al., Circular RNA circKIF4A sponges miR-375/1231 to promote bladder cancer progression by upregulating NOTCH2 expression, Front. Pharmacol. 11 (2020), 605.
    [81]
    Y. Li, F. Zheng, X. Xiao, et al., CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells, EMBO Rep. 18 (2017) 1646-1659.
    [82]
    M. Sun, W. Zhao, Z. Chen, et al., Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p, J. Cell. Physiol. 234 (2019) 4812-4824.
    [83]
    D. Han, J. Li, H. Wang, et al., Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression, Hepatol. Baltim. Md 66 (2017) 1151-1164.
    [84]
    J. Zhang, J. Zhu, Comment on response to “Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer,” Cancer Lett. 2017 Mar 1; 388(2017): 208-219, Cancer Lett. 408 (2017), 22.
    [85]
    H. Liang, X. Zhang, B. Liu, et al., Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271, Am. J. Cancer Res. 7 (2017) 1566-1576.
    [86]
    Z. Cheng, C. Yu, S. Cui, et al., circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1, Nat. Commun. 10 (2019), 3200.
    [87]
    Q. He, L. Huang, D. Yan, et al., CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9, Aging 11 (2019) 11314-11328.
    [88]
    Z. Zeng, W. Zhou, L. Duan, et al., Circular RNA circ-VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR-605-3p/VANGL1 pathway, J. Cell. Physiol. 234 (2019) 3887-3896.
    [89]
    I. L. Patop, S. Wust, S. Kadener, Past, present, and future of circRNAs, EMBO J. 38 (2019), e100836.
    [90]
    R. Zhou, Y. Wu, W. Wang, et al., Circular RNAs (circRNAs) in cancer, Cancer Lett. 425 (2018) 134-142.
    [91]
    E. Arnaiz, C. Sole, L. Manterola, et al., CircRNAs and cancer: Biomarkers and master regulators, Semin. Cancer Biol. 58 (2019) 90-99.
    [92]
    J. Bi, H. Liu, W. Dong, et al., Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence, Mol. Cancer 18 (2019), 133.
    [93]
    P. Li, X. Yang, W. Yuan, et al., CircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microRNA-135a, Cell. Physiol. Biochem. 46 (2018) 1606-1616.
    [94]
    Y. Wang, Y. Mo, Z. Gong, et al., Circular RNAs in human cancer, Mol. Cancer 16 (2017), 25.
    [95]
    H. Xie, X. Ren, S. Xin, et al., Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer, Oncotarget 7 (2016) 26680-26691.
    [96]
    R. Yang, L. Xing, X. Zheng, et al., The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression, Mol. Cancer 18 (2019), 4.
    [97]
    Z. Zhong, M. Huang, M. Lv, et al., Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway, Cancer Lett. 403 (2017) 305-317.
    [98]
    J. Yu, Q. Xu, Z. Wang, et al., Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma, J. Hepatol. 68 (2018) 1214-1227.
    [99]
    S. Ren, J. Liu, Y. Feng, et al., Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia, J. Exp. Clin. Cancer Res. 38 (2019), 388.
    [100]
    B. Chen, W. Wei, X. Huang, et al., circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression, Theranostics 8 (2018) 4003-4015.
    [101]
    W. Tang, M. Ji, G. He, et al., Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7, Onco. Targets Ther. 10 (2017) 2045-2056.
    [102]
    D. Li, R. Yang, L. Yang, et al., circANKS1B regulates FOXM1 expression and promotes cell migration and invasion by functioning as a sponge of the miR-149 in colorectal cancer, Onco. Targets Ther. 12 (2019) 4065-4073.
    [103]
    W. Yang, T. Xie, Hsa_circ_CSPP1/MiR-361-5p/ITGB1 regulates proliferation and migration of cervical cancer (CC) by modulating the PI3K-akt signaling pathway, Reprod. Sci. 27 (2020) 132-144.
    [104]
    Z.J. Zhang, Y.H. Zhang, X.J. Qin, et al., Circular RNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 2387-2400.
    [105]
    X. Li, J. Wang, C. Zhang, et al., Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7, J. Pathol. 246 (2018) 166-179.
    [106]
    D. Wu, X. Wen, X. Han, et al., Role of circular RNA DLEU2 in human acute myeloid leukemia, Mol. Cell. Biol. 38 (2018) e00259-e00218.
    [107]
    W. Liu, F. Cheng, Circular RNA circCRKL inhibits the proliferation of acute myeloid leukemia cells via the miR-196a-5p/miR-196b-5p/p27 axis, Bioengineered 12 (2021) 7704-7713.
    [108]
    Y. Pei, H. Zhang, K. Lu, et al., Circular RNA circRNA_0067934 promotes glioma development by modulating the microRNA miR-7/Wnt/β-catenin axis, Bioengineered 13 (2022) 5792-5802.
    [109]
    H. Chen, Y. Liu, P. Li, et al., RE: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis, J. Natl. Cancer Inst. 111 (2019), 435.
    [110]
    D. Zhou, X. Lin, P. Wang, et al., Circular RNA circ_0001162 promotes cell proliferation and invasion of glioma via the miR-936/ERBB4 axis, Bioengineered 12 (2021) 2106-2118.
    [111]
    W. Chen, M. Wu, S. Cui, et al., CircRNA circ-ITCH inhibits the proliferation and invasion of glioma cells through targeting the miR-106a-5p/SASH1 axis, Cell Transplant. 30 (2021), 963689720983785.
    [112]
    J. Sang, X. Li, L. Lv, et al., Circ-TOP2A acts as a ceRNA for miR-346 and contributes to glioma progression viathemodulation of sushi domain-containing 2, Mol. Med. Rep. 23 (2021), 255.
    [113]
    L. Liu, P. Zhang, X. Dong, et al., Circ_0001367 inhibits glioma proliferation, migration and invasion by sponging miR-431 and thus regulating NRXN3, Cell Death Dis. 12 (2021), 536.
    [114]
    J. Wang, T. Li, B. Wang, Circ-UBAP2 functions as sponges of miR-1205 and miR-382 to promote glioma progression by modulating STC1 expression, Cancer Med. 10 (2021) 1815-1828.
    [115]
    C. Su, Y. Han, H. Zhang, et al., CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling, J. Cell. Mol. Med. 22 (2018) 3097-3107.
    [116]
    A. Nan, L. Chen, N. Zhang, et al., Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family, Adv. Sci. 6 (2018), 1800654.
    [117]
    G. Chen, Y. Shi, M. Liu, et al., circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma, Cell Death Dis. 9 (2018), 175.
    [118]
    S. Li, J. Weng, F. Song, et al., Circular RNA circZNF566 promotes hepatocellular carcinoma progression by sponging miR-4738-3p and regulating TDO2 expression, Cell Death Dis. 11 (2020), 452.
    [119]
    L. Yu, X. Gong, L. Sun, et al., The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression, PLoS One 11 (2016), e0158347.
    [120]
    Y. Su, X. Lv, W. Yin, et al., CircRNA Cdr1as functions as a competitive endogenous RNA to promote hepatocellular carcinoma progression, Aging 11 (2019) 8183-8203.
    [121]
    Y. Fu, L. Cai, X. Lei, et al., Circular RNA ABCB10 promotes hepatocellular carcinoma progression by increasing HMG20A expression by sponging miR-670-3p, Cancer Cell Int. 19 (2019), 338.
    [122]
    Z. Wang, Y. Zhao, Y. Wang, et al., Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis, Biomedecine Pharmacother. 116 (2019), 108932.
    [123]
    G. Yang, X. Wang, B. Liu, et al., Circ-BIRC6, a circular RNA, promotes hepatocellular carcinoma progression by targeting the miR-3918/Bcl2 axis, Cell Cycle 18 (2019) 976-989.
    [124]
    D. Xue, H. Wang, Y. Chen, et al., Circ-AKT3 inhibits clear cell renal cell carcinoma metastasis via altering miR-296-3p/E-cadherin signals, Mol. Cancer 18 (2019), 151.
    [125]
    B. Zhou, P. Zheng, Z. Li, et al., CircPCNXL2 sponges miR-153 to promote the proliferation and invasion of renal cancer cells through upregulating ZEB2, Cell Cycle 17 (2018) 2644-2654.
    [126]
    T. Chen, Q. Yu, L. Xin, et al., Circular RNA circC3P1 restrains kidney cancer cell activity by regulating miR-21/PTEN axis and inactivating PI3K/AKT and NF- kB pathways, J. Cell. Physiol. 235 (2020) 4001-4010.
    [127]
    W. Li, F. Yang, C. Sun, et al., circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma, Theranostics 10 (2020) 4395-4409.
    [128]
    Q. Chen, T. Liu, Y. Bao, et al., CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway, Cancer Lett. 469 (2020) 68-77.
    [129]
    J. Li, C. Huang, Y. Zou, et al., Circular RNA MYLK promotes tumour growth and metastasis via modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma, J. Cell. Mol. Med. 24 (2020) 6609-6621.
    [130]
    J. Sun, Yin A., W. Zhang, et al., CircUBAP2 inhibits proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2 pathway, Cell Transplant. 29 (2020), 963689720925751.
    [131]
    J. Li, C. Huang, Y. Zou, et al., CircTLK1 promotes the proliferation and metastasis of renal cell carcinoma by sponging miR-136-5p, Mol. Cancer 19 (2020), 103.
    [132]
    Z. Chen, K. Xiao, S. Chen, et al., Circular RNA hsa_circ_001895 serves as a sponge of microRNA-296-5p to promote clear cell renal cell carcinoma progression by regulating SOX12, Cancer Sci. 111 (2020) 713-726.
    [133]
    L. Lin, J. Cai, Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation, J. Cell. Biochem. 121 (2020) 4377-4385.
    [134]
    C. Jin, L. Shi, Z. Li, et al., Circ_0039569 promotes renal cell carcinoma growth and metastasis by regulating miR-34a-5p/CCL22, Am. J. Transl. Res. 11 (2019) 4935-4945.
    [135]
    G. Liu, J. Zhou, Y. Piao, et al., Hsa_circ_0085576 promotes clear cell renal cell carcinoma tumorigenesis and metastasis through the miR-498/YAP1 axis, Aging 12 (2020) 11530-11549.
    [136]
    L. Liu, F. Liu, M. Huang, et al., Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway, Hepatobiliary Pancreat. Dis. Int. 18 (2019) 580-586.
    [137]
    Z. Pan, J. Cai, J. Lin, et al., A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer, Mol. Cancer 19 (2020), 71.
    [138]
    Z. Wang, M. Su, B. Xiang, et al., Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC, Biochem. Biophys. Res. Commun. 512 (2019) 716-722.
    [139]
    K. Zeng, B. He, B. B. Yang, et al., The pro-metastasis effect of circANKS1B in breast cancer, Mol. Cancer 17 (2018), 160.
    [140]
    B. Chen, W. Wei, X. Huang, et al., circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression, Theranostics 8 (2018) 4003-4015.
    [141]
    M. Sang, L. Meng, S. Liu, et al., Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs, Mol. Cancer Res. 16 (2018) 1665-1675.
    [142]
    S. Wang, Q. Li, Y. Wang, et al., Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway, Biochem. Biophys. Res. Commun. 505 (2018) 996-1002.
    [143]
    Y. Hong, H. Qin, Y. Li, et al., FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression, J. Cell. Physiol. 234 (2019) 19895-19910.
    [144]
    F. Yang, Hu A., D. Li, et al., Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation, Mol. Cancer 18 (2019), 158.
    [145]
    H. Pan, T. Li, Y. Jiang, et al., Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway, J. Cell. Biochem. 119 (2018) 440-446.
    [146]
    L. Ding, Y. Zhao, S. Dang, et al., Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4, Mol. Cancer 18 (2019), 45.
    [147]
    F. Yang, E. Fang, H. Mei, et al., Cis-acting circ-CTNNB1 promotes β-catenin signaling and cancer progression via DDX3-mediated transactivation of YY1, Cancer Res. 79 (2019) 557-571.
    [148]
    X.H. Wang, J. Li, CircAGFG1 aggravates the progression of cervical cancer by downregulating p53, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 1704-1711.
    [149]
    C. Yang, W. Yuan, X. Yang, et al., Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression, Mol. Cancer 17 (2018), 19.
    [150]
    G. Wu, Y. Sun, Z. Xiang, et al., Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression, Cell Death Dis. 10 (2019), 37.
    [151]
    Y. Feng, Y. Yang, X. Zhao, et al., Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP, Cell Death Dis. 10 (2019), 792.
    [152]
    A. Atala, Re: Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-pcdha pathway, J. Urol. 203 (2020) 256-257.
    [153]
    S. Jie, Y. Cai, T. Feng, et al., Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer, Int. J. Biol. Macromol. 122 (2019) 1235-1243.
    [154]
    Z. Song, Z. Zhuo, Z. Ma, et al., Hsa_Circ_0001206 is downregulated and inhibits cell proliferation, migration and invasion in prostate cancer, Artif. Cells Nanomed. Biotechnol. 47 (2019) 2449-2464.
    [155]
    C. Huang, H. Deng, Y. Wang, et al., Circular RNA circABCC4 as the ceRNA of miR-1182 facilitates prostate cancer progression by promoting FOXP4 expression, J. Cell. Mol. Med. 23 (2019) 6112-6119.
    [156]
    X. Wang, R. Wang, Z. Wu, et al., Circular RNA ITCH suppressed prostate cancer progression by increasing HOXB13 expression via spongy miR-17-5p, Cancer Cell Int. 19 (2019), 328.
    [157]
    Z. Kong, X. Wan, Y. Lu, et al., Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p, J. Cell. Mol. Med. 24 (2020) 799-813.
    [158]
    Z. Shen, L. Zhou, C. Zhang, et al., Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel, Cancer Lett. 468 (2020) 88-101.
    [159]
    G. Shan, B. Shao, Q. Liu, et al., circFMN2 sponges miR-1238 to promote the expression of LIM-homeobox gene 2 in prostate cancer cells, Mol. Ther. Nucleic Acids 21 (2020) 133-146.
    [160]
    C. Jin, W. Zhao, Z. Zhang, et al., Silencing circular RNA circZNF609 restrains growth, migration and invasion by up-regulating microRNA-186-5p in prostate cancer, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3350-3358.
    [161]
    T. Li, X. Sun, L. Chen, Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker, J. Cell. Biochem. 121 (2020) 2118-2126.
    [162]
    H. Luo, G. Zhu, J. Xu, et al., HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice, Cancer Cell 36 (2019) 645-659.e8.
    [163]
    Y. Wang, L. He, Y. Du, et al., The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling, Cell Stem Cell 16 (2015) 413-425.
    [164]
    Z. Wang, B. Yang, M. Zhang, et al., lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer, Cancer Cell 33 (2018) 706-720.e9.
    [165]
    J. Wang, S. Yang, Q. Ji, et al., Long non-coding RNA EPIC1 promotes cell proliferation and motility and drug resistance in glioma, Mol. Ther. Oncolytics 17 (2020) 130-137.
    [166]
    Y. Li, Q. Cai, W. Li, et al., Long non-coding RNA EPIC1 promotes cholangiocarcinoma cell growth, Biochem. Biophys. Res. Commun. 504 (2018) 654-659.
    [167]
    P. Xia, P. Liu, Q. Fu, et al., Long noncoding RNA EPIC1 interacts with YAP1 to regulate the cell cycle and promote the growth of pancreatic cancer cells, Biochem. Biophys. Res. Commun. 522 (2020) 978-985.
    [168]
    B. Zhang, H. Lu, Y. Xia, et al., Long non-coding RNA EPIC1 promotes human lung cancer cell growth, Biochem. Biophys. Res. Commun. 503 (2018) 1342-1348.
    [169]
    Z. Li, X. Lu, Y. Liu, et al., Gain of LINC00624 enhances liver cancer progression by disrupting the histone deacetylase 6/tripartite motif containing 28/zinc finger protein 354C corepressor complex, Hepatology 73 (2021) 1764-1782.
    [170]
    E. Raveh, I. J. Matouk, M. Gilon, et al., The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory, Mol. Cancer 14 (2015), 184.
    [171]
    L. Li, T. Han, K. Liu, et al., LncRNA H19 promotes the development of hepatitis B related hepatocellular carcinoma through regulating microRNA-22 via EMT pathway, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 5392-5401.
    [172]
    Y. Zhang, Y.X. Huang, D.L. Wang, et al., LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network, Theranostics 10 (2020) 10823-10837.
    [173]
    M. Zhong, Y. Chen, G. Zhang, et al., LncRNA H19 regulates PI3K-Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: Integrative analysis of dysregulated ncRNA-associated ceRNA network, Cancer Cell Int. 19 (2019), 148.
    [174]
    A. Keniry, D. Oxley, P. Monnier, et al., The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r, Nat. Cell Biol. 14 (2012) 659-665.
    [175]
    S. Ghafouri-Fard, M. Taheri, Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA, Biomedecine Pharmacother. 118 (2019), 109129.
    [176]
    X. Fan, H. Huang, Z. Ji, et al., Long non-coding RNA MEG3 functions as a competing endogenous RNA of miR-93 to regulate bladder cancer progression via PI3K/AKT/mTOR pathway, Transl. Cancer Res. 9 (2020) 1678-1688.
    [177]
    X. Wang, M. Kang, C. Liu, et al., Current state and progress of research on the role of lncRNA in HBV-related liver cancer, Front. Cell. Infect. Microbiol. 11 (2021), 714895.
    [178]
    G.H. Wei, X. Wang, lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway, Eur. Rev. Med. Pharmacol. Sci. 21 (2017) 3850-3856.
    [179]
    X. Che, X. Deng, K. Xie, et al., Long noncoding RNA MEG3 suppresses podocyte injury in diabetic nephropathy by inactivating Wnt/β-catenin signaling, PeerJ 7 (2019), e8016.
    [180]
    A. Gabory, M.A. Ripoche, T. Yoshimizu, et al., The H19 gene: Regulation and function of a non-coding RNA, Cytogenet. Genome Res. 113 (2006) 188-193.
    [181]
    B. C. Ellis, P. L. Molloy, L. D. Graham, CRNDE: A long non-coding RNA involved in CanceR, neurobiology, and DEvelopment, Front. Genet. 3 (2012), 270.
    [182]
    G. Palmieri, P. Paliogiannis, M.C. Sini, et al., Long non-coding RNA CASC2 in human cancer, Crit. Rev. Oncol. Hematol. 111 (2017) 31-38.
    [183]
    P. Ji, S. Diederichs, W. Wang, et al., MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer, Oncogene 22 (2003) 8031-8041.
    [184]
    J.K. Millar, R. James, N.J. Brandon, et al., DISC1 and DISC2: Discovering and dissecting molecular mechanisms underlying psychiatric illness, Ann. Med. 36 (2004) 367-378.
    [185]
    S. Xie, X. Yu, Y. Li, et al., Upregulation of lncRNA ADAMTS9-AS2 promotes salivary adenoid cystic carcinoma metastasis via PI3K/akt and MEK/erk signaling, Mol. Ther. 26 (2018) 2766-2778.
    [186]
    Y. Liu, Y. Zhuang, X. Fu, et al., LncRNA POU3F3 promotes melanoma cell proliferation by downregulating lncRNA MEG3, Discov. Oncol. 12 (2021), 21.
    [187]
    E. Raveh, I. J. Matouk, M. Gilon, et al., The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory, Mol. Cancer 14 (2015), 184.
    [188]
    L. Zhang, Y. Wang, S. Xia, et al., Long noncoding RNA PANDAR inhibits the development of lung cancer by regulating autophagy and apoptosis pathways, J. Cancer 11 (2020) 4783-4790.
    [189]
    R. Zhang, Y. Xia, Z. Wang, et al., Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer, Biochem. Biophys. Res. Commun. 490 (2017) 406-414.
    [190]
    Z. Hu, J. Chen, P. Meng, et al., Association between NEAT1 polymorphism and the risk of lung cancer: A protocol for systematic review and meta-analysis, Medicine 100 (2021), e25478.
    [191]
    Q. Tan, J. Zuo, S. Qiu, et al., Identification of circulating long non-coding RNA GAS5 as a potential biomarker for non-small cell lung cancer diagnosisnon-small cell lung cancer, long non-coding RNA, plasma, GAS5, biomarker, Int. J. Oncol. 50 (2017) 1729-1738.
    [192]
    W. Nie, H. Ge, X. Yang, et al., LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p, Cancer Lett. 371 (2016) 99-106.
    [193]
    G. Loewen, J. Jayawickramarajah, Y. Zhuo, et al., Functions of lncRNA HOTAIR in lung cancer, J. Hematol. Oncol. 7 (2014), 90.
    [194]
    L. Lu, H. Xu, F. Luo, et al., Epigenetic silencing of miR-218 by the lncRNA CCAT1, acting via BMI1, promotes an altered cell cycle transition in the malignant transformation of HBE cells induced by cigarette smoke extract, Toxicol. Appl. Pharmacol. 304 (2016) 30-41.
    [195]
    L. Yang, G. Liu, lncRNA BANCR suppresses cell viability and invasion and promotes apoptosis in non-small-cell lung cancer cells in vitro and in vivo, Cancer Manag. Res. 11 (2019) 3565-3574.
    [196]
    Y. Zhang, S. Lin, X. Yang, et al., Prognostic and clinicopathological significance of lncRNA MVIH in cancer patients, J. Cancer 10 (2019) 1503-1510.
    [197]
    C. Ding, C. Yin, S. Chen, et al., The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1, Mol. Cancer 17 (2018), 63.
    [198]
    L. Porter, F. McCaughan, SOX2 and squamous cancers, Semin. Cancer Biol. 67 (2020) 154-167.
    [199]
    D. Khaitan, M.E. Dinger, J. Mazar, et al., The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion, Cancer Res. 71 (2011) 3852-3862.
    [200]
    R.A. Gupta, N. Shah, K.C. Wang, et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis, Nature 464 (2010) 1071-1076.
    [201]
    C. Braconi, T. Kogure, N. Valeri, et al., microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer, Oncogene 30 (2011) 4750-4756.
    [202]
    L. Li, H. Chen, Y. Gao, et al., Long noncoding RNA MALAT1 promotes aggressive pancreatic cancer proliferation and metastasis via the stimulation of autophagy, Mol. Cancer Ther. 15 (2016) 2232-2243.
    [203]
    L. Han, E. B. Zhang, D. D. Yin, et al., Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2, Cell Death Dis. 6 (2015), e1665.
    [204]
    Y.Y. Tseng, B.S. Moriarity, W. Gong, et al., PVT1 dependence in cancer with MYC copy-number increase, Nature 512 (2014) 82-86.
    [205]
    G. Wang, L. Tang, X. Zhang, et al., LncRNA DILC participates in rheumatoid arthritis by inducing apoptosis of fibroblast-like synoviocytes and down-regulating IL-6, Biosci. Rep. 39 (2019), BSR20182374.
    [206]
    N. Liu, Q. Liu, X. Yang, et al., Hepatitis B virus-upregulated LNC-HUR1 promotes cell proliferation and tumorigenesis by blocking p53 activity, Hepatology 68 (2018) 2130-2144.
    [207]
    R. Lin, S. Maeda, C. Liu, et al., A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas, Oncogene 26 (2007) 851-858.
    [208]
    J. Sun, M. Ni, Long non-coding RNA HEIH: A novel tumor activator in multiple cancers, Cancer Cell Int. 21 (2021), 558.
    [209]
    F. Yang, X. Huo, S. Yuan, et al., Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis, Mol. Cell 49 (2013) 1083-1096.
    [210]
    D. Fu, Y. Shi, J. Liu, et al., Targeting long non-coding RNA to therapeutically regulate gene expression in cancer, Mol. Ther. Nucleic Acids 21 (2020) 712-724.
    [211]
    Y. Xu, Y. Tong, J. Zhu, et al., An increase in long non-coding RNA PANDAR is associated with poor prognosis in clear cell renal cell carcinoma, BMC Cancer 17 (2017), 373.
    [212]
    X. Lu, Y. Fang, Z. Wang, et al., Downregulation of gas5 increases pancreatic cancer cell proliferation by regulating CDK6, Cell Tissue Res. 354 (2013) 891-896.
    [213]
    X. Wang, W. Wang, W. HuangFu, et al., LncRNA HOTAIR facilitates high glucose-induced mesangial cell proliferation, fibrosis and oxidative stress in diabetic nephropathy via regulating miR-147a/WNT2B axis, Diabetol. Metab. Syndr. 14 (2022), 33.
    [214]
    P. Song, Y. Chen, Z. Liu, et al., LncRNA MALAT1 aggravates renal tubular injury via activating LIN28A and the Nox4/AMPK/mTOR signaling axis in diabetic nephropathy, Front. Endocrinol. 13 (2022), 895360.
    [215]
    X. Zhao, Z. Zhao, W. Xu, et al., Increased expression of SPRY4-IT1 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer, Int. J. Clin. Exp. Pathol. 8 (2015) 1954-1960.
    [216]
    P. Cagle, Q. Qi, S. Niture, et al., KCNQ1OT1: An oncogenic long noncoding RNA, Biomolecules 11 (2021), 1602.
    [217]
    N. Li, T. Jia, Y.R. Li, LncRNA NEAT1 accelerates the occurrence and development of diabetic nephropathy by sponging miR-23c, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 1325-1337.
    [218]
    K. Kim, I. Jutooru, G. Chadalapaka, et al., HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer, Oncogene 32 (2013) 1616-1625.
    [219]
    Z. Li, X. Zhao, Y. Zhou, et al., The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer, J. Transl. Med. 13 (2015), 84.
    [220]
    J. Sun, P. Zhang, T. Yin, et al., Upregulation of LncRNA PVT1 facilitates pancreatic ductal adenocarcinoma cell progression and glycolysis by regulating miR-519d-3p and HIF-1A, J. Cancer 11 (2020) 2572-2579.
    [221]
    Z. Fu, G. Li, Z. Li, et al., Endogenous miRNA Sponge LincRNA-ROR promotes proliferation, invasion and stem cell-like phenotype of pancreatic cancer cells, Cell Death Discov. 3 (2017), 17004.
    [222]
    B. Alaiyan, N. Ilyayev, A. Stojadinovic, et al., Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence, BMC Cancer 13 (2013), 196.
    [223]
    H. Ling, R. Spizzo, Y. Atlasi, et al., CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer, Genome Res. 23 (2013) 1446-1461.
    [224]
    H. Fang, H. Liu, W. Wu, et al., Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma, Onco. Targets Ther. 11 (2018) 5647-5655.
    [225]
    B.C. Ellis, L.D. Graham, P.L. Molloy, CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism, Biochim. Biophys. Acta 1843 (2014) 372-386.
    [226]
    S. Nakano, K. Murakami, M. Meguro, et al., Expression profile of LIT1/KCNQ1OT1 and epigenetic status at the KvDMR1 in colorectal cancers, Cancer Sci. 97 (2006) 1147-1154.
    [227]
    A. Cox, Y. Tolkach, G. Kristiansen, et al., The lncRNA Fer1L4 is an adverse prognostic parameter in clear-cell renal-cell carcinoma, Clin. Transl. Oncol. 22 (2020) 1524-1531.
    [228]
    D. Tang, Z. Yang, F. Long, et al., Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis, J. Cell. Physiol. 234 (2019) 20816-20828.
    [229]
    J. Hsu, J. Sage, Novel functions for the transcription factor E2F4 in development and disease, Cell Cycle 15 (2016) 3183-3190.
    [230]
    R. Kogo, T. Shimamura, K. Mimori, et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers, Cancer Res. 71 (2011) 6320-6326.
    [231]
    R. He, J. Jiang, X. Hu, et al., Stabilization of UCA1 by N6-methyladenosine RNA methylation modification promotes colorectal cancer progression, Cancer Cell Int. 21 (2021), 616.
    [232]
    Y. Wang, Q. Zhou, J.J. Ma, High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 763-770.
    [233]
    G. Guo, Q. Kang, X. Zhu, et al., A long noncoding RNA critically regulates Bcr-Abl-mediated cellular transformation by acting as a competitive endogenous RNA, Oncogene 34 (2015) 1768-1779.
    [234]
    W. Wang, L. Min, X. Qiu, et al., Biological function of long non-coding RNA (LncRNA) xist, Front. Cell Dev. Biol. 9 (2021), 645647.
    [235]
    C. Song, J. Zhang, Z. Zhao, et al., DLEU1: A functional long noncoding RNA in tumorigenesis, Curr. Pharm. Des. 26 (2020) 1742-1748.
    [236]
    Y. Zhao, W. Wang, C. Guan, et al., Long noncoding RNA HOTAIRM1 in human cancers, Clin. Chim. Acta 511 (2020) 255-259.
    [237]
    W. Xu, B. Wang, Y. Cai, et al., DLEU2: A meaningful long noncoding RNA in oncogenesis, Curr. Pharm. Des. 27 (2021) 2337-2343.
    [238]
    H. Liu, H. Deng, Y. Zhao, et al., LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling, J. Exp. Clin. Cancer Res. 37 (2018), 279.
    [239]
    Z. Zhang, G. Li, H. Qiu, et al., The novel notch-induced long noncoding RNA LUNAR1 determines the proliferation and prognosis of colorectal cancer, Sci. Rep. 9 (2019), 19915.
    [240]
    W. Peng, A. Jiang, Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer, Biomed. Pharmacother. 83 (2016) 712-717.
    [241]
    X. Yu, Z. Li, H. Zheng, et al., NEAT1: A novel cancer-related long non-coding RNA, Cell Prolif. 50 (2017), e12329.
    [242]
    J.M. Hughes, I. Legnini, B. Salvatori, et al., C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia, Oncotarget 6 (2015) 18534-18544.
    [243]
    M.C. Tsai, O. Manor, Y. Wan, et al., Long noncoding RNA as modular scaffold of histone modification complexes, Science 329 (2010) 689-693.
    [244]
    C. Turnbull, S. Ahmed, J. Morrison, et al., Genome-wide association study identifies five new breast cancer susceptibility loci, Nat. Genet. 42 (2010) 504-507.
    [245]
    K.Z. Thin, X. Liu, X. Feng, et al., LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers, Pathol. Res. Pract. 214 (2018) 801-805.
    [246]
    P.K. Lo, Y. Zhang, B. Wolfson, et al., Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis, Oncotarget 7 (2016) 65067-65089.
    [247]
    F. Xing, Y. Liu, S.Y. Wu, et al., Loss of XIST in breast cancer activates MSN-c-met and reprograms microglia via exosomal miRNA to promote brain metastasis, Cancer Res. 78 (2018) 4316-4330.
    [248]
    L. Dong, P. Qi, M. Xu, et al., Circulating CUDR, LSINCT-5 and PTENP1 long noncoding RNAs in sera distinguish patients with gastric cancer from healthy controls, Int. J. Cancer 137 (2015) 1128-1135.
    [249]
    F. Nie, X. Yu, M. Huang, et al., Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression, Oncotarget 8 (2017) 38227-38238.
    [250]
    X. Li, N. Chen, L. Zhou, et al., Genome-wide target interactome profiling reveals a novel EEF1A1 epigenetic pathway for oncogenic lncRNA MALAT1 in breast cancer, Am. J. Cancer Res. 9 (2019) 714-729.
    [251]
    A. Yang, Liu X., Liu P., et al., LncRNA UCA1 promotes development of gastric cancer via the miR-145/MYO6 axis, Cell. Mol. Biol. Lett. 26 (2021), 33.
    [252]
    Z. Xu, Q. Yu, Y. Du, et al., Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer, Int. J. Biol. Sci. 9 (2013) 587-597.
    [253]
    Y. Shao, M. Ye, X. Jiang, et al., Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer, Cancer 120 (2014) 3320-3328.
    [254]
    F. Yang, X. Xue, L. Zheng, et al., Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability, FEBS J. 281 (2014) 802-813.
    [255]
    D. Wu, X. Chen, K. Sun, et al., Role of the lncRNA ABHD11-AS1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC, Mol. Cancer 16 (2017), 138.
    [256]
    Y. Hu, J. Wang, J. Qian, et al., Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer, Cancer Res. 74 (2014) 6890-6902.
    [257]
    Y. Mao, Y. Tie, J. Du, et al., LINC00152 promotes the proliferation of gastric cancer cells by regulating B-cell lymphoma-2, J. Cell. Biochem. 120 (2019) 3747-3756.
    [258]
    E. Virgilio, E. Giarnieri, M.R. Giovagnoli, et al., Long non-coding RNAs in the gastric juice of gastric cancer patients, Pathol. Res. Pract. 214 (2018) 1239-1246.
    [259]
    S. Liu, J. Yang, D. Cao, et al., Identification of differentially expressed long non-coding RNAs in human ovarian cancer cells with different metastatic potentials, Cancer Biol. Med. 10 (2013) 138-141.
    [260]
    J.M. Silva, N.J. Boczek, M.W. Berres, et al., LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation, RNA Biol. 8 (2011) 496-505.
    [261]
    Y. Gao, H. Meng, S. Liu, et al., LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b, Hum. Mol. Genet. 24 (2015) 841-852.
    [262]
    J. Li, S. Yang, N. Su, et al., Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/β-catenin pathway in human ovarian cancer, Tumour Biol. 37 (2016) 2057-2065.
    [263]
    Y. Wang, W. Chen, C. Yang, et al., Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer, Int. J. Oncol. 41 (2012) 276-284.
    [264]
    H.M. Wang, S.L. Shen, N.M. Li, et al., LncRNA CDKN2BAS aggravates the progression of ovarian cancer by positively interacting with GAS6, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 5946-5952.
    [265]
    R. Wang, X. Zhang, C. Wang, Research advance on long non-coding RNA in cancer, Pract. J. Clin. Med. 13 (2016) 9-13.
    [266]
    J. Li, C. Zhuang, Y. Liu, et al., Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer, J. Exp. Clin. Cancer Res. 35 (2016), 99.
    [267]
    J. Tan, K. Qiu, M. Li, et al., Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells, FEBS Lett. 589 (2015) 3175-3181.
    [268]
    X. Zhao, Z. Zhao, W. Xu, et al., Increased expression of SPRY4-IT1 predicts poor prognosis and promotes tumor growth and metastasis in bladder cancer, Int. J. Clin. Exp. Pathol. 8 (2015) 1954-1960.
    [269]
    Q. Yuan, H. Chu, Y. Ge, et al., LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk, J. Cancer 9 (2018) 1414-1420.
    [270]
    Z. Du, T. Fei, R.G. Verhaak, et al., Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer, Nat. Struct. Mol. Biol. 20 (2013) 908-913.
    [271]
    T. Kino, D.E. Hurt, T. Ichijo, et al., Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor, Sci. Signal. 3 (2010), ra8.
    [272]
    K.I. Takayama, K. Horie-Inoue, S. Katayama, et al., Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer, EMBO J. 32 (2013) 1665-1680.
    [273]
    Y. Guan, W. Kuo, J.L. Stilwell, et al., Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer, Clin. Cancer Res. 13 (2007) 5745-5755.
    [274]
    X. Zeng, S.C. Sikka, L. Huang, et al., Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation, Prostate Cancer Prostatic Dis. 13 (2010) 195-201.
    [275]
    J.R. Prensner, M.K. Iyer, A. Sahu, et al., The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex, Nat. Genet. 45 (2013) 1392-1398.
    [276]
    S. Chung, H. Nakagawa, M. Uemura, et al., Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility, Cancer Sci. 102 (2011) 245-252.
    [277]
    T. T. Ho, J. Huang, N. Zhou, et al., Regulation of PCGEM1 by p54/nrb in prostate cancer, Sci. Rep. 6 (2016), 34529.
    [278]
    F. Li, Expression and correlation of miR-124 and miR-126 in breast cancer, Oncol. Lett. 17 (2019) 5115-5119.
    [279]
    F. Ebrahimi, V. Gopalan, R. Wahab, et al., Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance, Exp. Cell Res. 339 (2015) 333-341.
    [280]
    E. R. Lechman, B. Gentner, S. W.K. Ng, et al., miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells, Cancer Cell 29 (2016) 602-606.
    [281]
    S.R. Chen, W.P. Cai, X.J. Dai, et al., Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 3461-3470.
    [282]
    A.A. Al-Haidari, I. Syk, H. Thorlacius, miR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA, Oncotarget 8 (2017) 14887-14896.
    [283]
    T. Luan, X. Zhang, S. Wang, et al., Long non-coding RNA MIAT promotes breast cancer progression and functions as ceRNA to regulate DUSP7 expression by sponging miR-155-5p, Oncotarget 8 (2017) 76153-76164.
    [284]
    C. Shao, F. Yang, Z. Qin, et al., The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis, BMC Cancer 19 (2019), 1103.
    [285]
    C. Prinz, D. Weber, microRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: Critical importance of miR-155, Oncotarget 11 (2020) 894-904.
    [286]
    Q. Yu, X. Xu, X. Yin, et al., miR-155-5p increases the sensitivity of liver cancer cells to adriamycin by regulating ATG5-mediated autophagy, Neoplasma 68 (2021) 87-95.
    [287]
    Y. Na, A. Hall, K. Choi, et al., microRNA-155 contributes to plexiform neurofibroma growth downstream of MEK, Oncogene 40 (2021) 951-963.
    [288]
    J. Hu, T. Sun, H. Wang, et al., miR-215 is induced post-transcriptionally via HIF-drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B, Cancer Cell 29 (2016) 49-60.
    [289]
    W. Zhou, M.Y. Fong, Y. Min, et al., Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis, Cancer Cell 25 (2014) 501-515.
    [290]
    B. Jin, W. Wang, X. Meng, et al., Let-7 inhibits self-renewal of hepatocellular cancer stem-like cells through regulating the epithelial-mesenchymal transition and the Wnt signaling pathway, BMC Cancer 16 (2016), 863.
    [291]
    X.X. Li, X. Di, S. Cong, et al., The role of let-7 and HMGA2 in the occurrence and development of lung cancer: A systematic review and meta-analysis, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 8353-8366.
    [292]
    S. Wagner, A. Ngezahayo, H. Murua Escobar, et al., Role of miRNA let-7 and its major targets in prostate cancer, BioMed Res. Int. 2014 (2014), 376326.
    [293]
    C.K. Thammaiah, S. Jayaram, Role of let-7 family microRNA in breast cancer, Non Coding RNA Res. 1 (2016) 77-82.
    [294]
    R. Mizuno, K. Kawada, Y. Sakai, The molecular basis and therapeutic potential of Let-7 microRNAs against colorectal cancer, Can. J. Gastroenterol. Hepatol. 2018 (2018), 5769591.
    [295]
    E.E. Nweke, M. Brand, Downregulation of the let-7 family of microRNAs may promote insulin receptor/insulin-like growth factor signalling pathways in pancreatic ductal adenocarcinoma, Oncol. Lett. 20 (2020) 2613-2620.
    [296]
    E. Chirshev, K.C. Oberg, Y.J. Ioffe, et al., Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer, Clin. Transl. Med. 8 (2019), 24.
    [297]
    E. Perdas, R. Stawski, K. Kaczka, et al., Analysis of let-7 family miRNA in plasma as potential predictive biomarkers of diagnosis for papillary thyroid cancer, Diagnostics 10 (2020), 130.
    [298]
    P. Tristan-Ramos, A. Rubio-Roldan, G. Peris, et al., The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition, Nat. Commun. 11 (2020), 5712.
    [299]
    P. Bu, L. Wang, K. Chen, et al., A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer, Cell Stem Cell 18 (2016) 189-202.
    [300]
    J.R. Kennerdell, N. Liu, N.M. Bonini, miR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging, Nat. Commun. 9 (2018), 4188.
    [301]
    S. Sharma, G.M. Pavlasova, V. Seda, et al., miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: An axis affected by BCR inhibitors, Blood 137 (2021) 2481-2494.
    [302]
    J.A. Chan, A.M. Krichevsky, K.S. Kosik, microRNA-21 is an antiapoptotic factor in human glioblastoma cells, Cancer Res. 65 (2005) 6029-6033.
    [303]
    Y. Yang, J. Wu, H. Guan, et al., miR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2, FEBS Lett. 586 (2012) 3608-3612.
    [304]
    J.K. Gillies, I.A.J. Lorimer, Regulation of p27Kip1 by miRNA 221/222 in glioblastoma, Cell Cycle 6 (2007) 2005-2009.
    [305]
    L. Huo, B. Wang, M. Zheng, et al., miR-128-3p inhibits glioma cell proliferation and differentiation by targeting NPTX1 through IRS-1/PI3K/AKT signaling pathway, Exp. Ther. Med. 17 (2019) 2921-2930.
    [306]
    P.A. Northcott, A. Fernandez-L, J.P. Hagan, et al., The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors, Cancer Res. 69 (2009) 3249-3255.
    [307]
    B. Kefas, J. Godlewski, L. Comeau, et al., microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma, Cancer Res. 68 (2008) 3566-3572.
    [308]
    J. Xu, X. Liao, C. Wong, Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG, Int. J. Cancer 126 (2010) 1029-1035.
    [309]
    H. Gal, G. Pandi, A.A. Kanner, et al., MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells, Biochem. Biophys. Res. Commun. 376 (2008) 86-90.
    [310]
    Y. Li, F. Guessous, Y. Zhang, et al., microRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes, Cancer Res. 69 (2009) 7569-7576.
    [311]
    J. Silber, D. A. Lim, C. Petritsch, et al., miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells, BMC Med. 6 (2008), 14.
    [312]
    E. Ferretti, E. De Smaele, A. Po, et al., microRNA profiling in human medulloblastoma, Int. J. Cancer 124 (2009) 568-577.
    [313]
    L. Garzia, I. Andolfo, E. Cusanelli, et al., microRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma, PLoS One 4 (2009), e4998.
    [314]
    E. Ferretti, E. De Smaele, E. Miele, et al., Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells, EMBO J. 27 (2008) 2616-2627.
    [315]
    X. Zhang, Y. Hu, C. Gong, et al., Overexpression of miR-518b in non-small cell lung cancer serves as a biomarker and facilitates tumor cell proliferation, migration and invasion, Oncol. Lett. 20 (2020) 1213-1220.
    [316]
    Y.S. Lee, A. Dutta, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes Dev. 21 (2007) 1025-1030.
    [317]
    Y. Li, H. Zhang, L. Fan, et al., miR-629-5p promotes the invasion of lung adenocarcinoma via increasing both tumor cell invasion and endothelial cell permeability, Oncogene 39 (2020) 3473-3488.
    [318]
    A. Lujambio, S. Ropero, E. Ballestar, et al., Genetic unmasking of an epigenetically silenced microRNA in human cancer cells, Cancer Res. 67 (2007) 1424-1429.
    [319]
    Y. Hayashita, H. Osada, Y. Tatematsu, et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res. 65 (2005) 9628-9632.
    [320]
    C. Liu, W. Hu, L. Li, et al., Roles of miR-200 family members in lung cancer: More than tumor suppressors, Future Oncol. 14 (2018) 2875-2886.
    [321]
    L. Du, J.J. Schageman, M.C. Subauste, et al., miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1, Mol. Cancer Res. 7 (2009) 1234-1243.
    [322]
    H. Hong, S. Yao, Y. Zhang, et al., In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor, PLoS Genet. 16 (2020), e1009168.
    [323]
    L. Wei, F. Ran, microRNA-20a promotes proliferation and invasion by directly targeting early growth response 2 in non-small cell lung carcinoma, Oncol. Lett. 15 (2018) 271-277.
    [324]
    G.J. Weiss, L.T. Bemis, E. Nakajima, et al., EGFR regulation by microRNA in lung cancer: Correlation with clinical response and survival to gefitinib and EGFR expression in cell lines, Ann. Oncol. 19 (2008) 1053-1059.
    [325]
    G. Wang, W. Mao, S. Zheng, et al., Epidermal growth factor receptor-regulated miR-125a-5p: A metastatic inhibitor of lung cancer, FEBS J. 276 (2009) 5571-5578.
    [326]
    M.K. Muniyappa, P. Dowling, M. Henry, et al., MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines, Eur. J. Cancer 45 (2009) 3104-3118.
    [327]
    M.W. Nasser, J. Datta, G. Nuovo, et al., Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1, J. Biol. Chem. 283 (2008) 33394-33405.
    [328]
    G. Wang, W. Mao, S. Zheng, microRNA-183 regulates Ezrin expression in lung cancer cells, FEBS Lett. 582 (2008) 3663-3668.
    [329]
    R.J. Webster, K.M. Giles, K.J. Price, et al., Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7, J. Biol. Chem. 284 (2009) 5731-5741.
    [330]
    W.C.S. Cho, A.S.C. Chow, J.S.K. Au, Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation, Eur. J. Cancer 45 (2009) 2197-2206.
    [331]
    H. Li, H. Zhou, J. Luo, et al., microRNA-17-5p inhibits proliferation and triggers apoptosis in non-small cell lung cancer by targeting transforming growth factor β receptor 2, Exp. Ther. Med. 13 (2017) 2715-2722.
    [332]
    H. Liu, L. Cheng, D. Cao, et al., Suppression of miR-21 expression inhibits cell proliferation and migration of liver cancer cells by targeting phosphatase and tensin homolog (PTEN), Med. Sci. Monit. 24 (2018) 3571-3577.
    [333]
    C. Wang, X. Wang, Z. Su, et al., miR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1, Oncotarget 6 (2015) 36231-36244.
    [334]
    C.S. Wu, C.J. Yen, R.H. Chou, et al., Downregulation of microRNA-15b by hepatitis B virus X enhances hepatocellular carcinoma proliferation via fucosyltransferase 2-induced Globo H expression, Int. J. Cancer 134 (2014) 1638-1647.
    [335]
    S. Li, J. Li, B. Fei, et al., miR-27a promotes hepatocellular carcinoma cell proliferation through suppression of its target gene peroxisome proliferator-activated receptor Γ, Chin. Med. J. 128 (2015) 941-947.
    [336]
    H. Liang, Z. Fu, X. Jiang, et al., miR-16 promotes the apoptosis of human cancer cells by targeting FEAT, BMC Cancer 15 (2015), 448.
    [337]
    K. Ohta, H. Hoshino, J. Wang, et al., microRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A, Oncotarget 6 (2015) 3211-3224.
    [338]
    L. Gramantieri, M. Ferracin, F. Fornari, et al., Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma, Cancer Res. 67 (2007) 6092-6099.
    [339]
    C. Xu, L. Shi, W. Chen, et al., miR-106b inhibitors sensitize TRAIL-induced apoptosis in hepatocellular carcinoma through increase of death receptor 4, Oncotarget 8 (2017) 41921-41931.
    [340]
    Y. Liu, Y. Ding, J. Huang, et al., miR-141 suppresses the migration and invasion of HCC cells by targeting Tiam1, PLoS One 9 (2014), e88393.
    [341]
    X. Zhang, S. Liu, T. Hu, et al., Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression, Hepatology 50 (2009) 490-499.
    [342]
    S. Wang, T. Wang, P. Gu, microRNA-145-5p inhibits migration, invasion, and metastasis in hepatocellular carcinoma by inhibiting ARF6, Cancer Manag. Res. 13 (2021) 3473-3484.
    [343]
    Z. Liu, J. Sun, B. Liu, et al., miRNA-222 promotes liver cancer cell proliferation, migration and invasion and inhibits apoptosis by targeting BBC3, Int. J. Mol. Med. 42 (2018) 141-148.
    [344]
    J. Huang, K. Zhang, D. Chen, et al., microRNA-451: Epithelial-mesenchymal transition inhibitor and prognostic biomarker of hepatocelluar carcinoma, Oncotarget 6 (2015) 18613-18630.
    [345]
    Q. Yu, X. Xu, X. Yin, et al., miR-155-5p increases the sensitivity of liver cancer cells to adriamycin by regulating ATG5-mediated autophagy, Neoplasma 68 (2021) 87-95.
    [346]
    C. Lin, Z. Li, P. Chen, et al., Oncogene miR-154-5p regulates cellular function and acts as a molecular marker with poor prognosis in renal cell carcinoma, Life Sci. 209 (2018) 481-489.
    [347]
    Y.F. Lin, J. Chou, J.S. Chang, et al., Dysregulation of the miR-25-IMPA2 axis promotes metastatic progression in clear cell renal cell carcinoma, EBioMedicine 45 (2019) 220-230.
    [348]
    H. Song, Y. Rao, G. Zhang, et al., microRNA-384 inhibits the growth and invasion of renal cell carcinoma cells by targeting astrocyte elevated gene 1, Oncol. Res. 26 (2018) 457-466.
    [349]
    Z. Jing, J. Bi, Z. Li, et al., miR-19 promotes the proliferation of clear cell renal cell carcinoma by targeting the FRK-PTEN axis, Onco. Targets Ther. 12 (2019) 2713-2727.
    [350]
    Y. Pan, L. Wei, X. Wu, et al., miR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5, Cell Death Dis. 8 (2017), e3155.
    [351]
    L. Liu, S. Liu, Q. Duan, et al., microRNA-142-5p promotes cell growth and migration in renal cell carcinoma by targeting BTG3, Am. J. Transl. Res. 9 (2017) 2394-2402.
    [352]
    Z. Qin, X. Wei, N. Jin, et al., miR-199a targeting ROCK1 to affect kidney cell proliferation, invasion and apoptosis, Artif. Cells Nanomed. Biotechnol. 46 (2018) 1920-1925.
    [353]
    T. Li, X. Sun, K. Xu, The suppressing role of miR-622 in renal cell carcinoma progression by down-regulation of CCL18/MAPK signal pathway, Cell Biosci. 8 (2018), 17.
    [354]
    Z. Chen, Y. Du, L. Wang, et al., miR-543 promotes cell proliferation and metastasis of renal cell carcinoma by targeting Dickkopf 1 through the Wnt/β-catenin signaling pathway, J. Cancer 9 (2018) 3660-3668.
    [355]
    Y. Xie, L. Chen, Y. Gao, et al., miR-363 suppresses the proliferation, migration and invasion of clear cell renal cell carcinoma by downregulating S1PR1, Cancer Cell Int. 20 (2020), 227.
    [356]
    B. Fan, Y. Jin, H. Zhang, et al., microRNA-21 contributes to renal cell carcinoma cell invasiveness and angiogenesis via the PDCD4/c-Jun (AP-1) signalling pathway, Int. J. Oncol. 56 (2020) 178-192.
    [357]
    H. Yoshino, T. Yonezawa, M. Yonemori, et al., Downregulation of microRNA-1274a induces cell apoptosis through regulation of BMPR1B in clear cell renal cell carcinoma, Oncol. Rep. 39 (2018) 173-181.
    [358]
    C. C. Nwaeburu, A. Abukiwan, Z. Zhao, et al., Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer, Mol. Cancer 16 (2017), 23.
    [359]
    R. Yao, L. Xu, B. Wei, et al., miR-142-5p regulates pancreatic cancer cell proliferation and apoptosis by regulation of RAP1A, Pathol. Res. Pract. 215 (2019), 152416.
    [360]
    B. Ren, B. Yang, P. Li, et al., Upregulation of miR-1274a is correlated with survival outcomes and promotes cell proliferation, migration, and invasion of colon cancer, Onco. Targets Ther. 13 (2020) 6957-6966.
    [361]
    X. Ding, J. Zhang, Z. Feng, et al., miR-137-3p inhibits colorectal cancer cell migration by regulating a KDM1A-dependent epithelial-mesenchymal transition, Dig. Dis. Sci. 66 (2021) 2272-2282.
    [362]
    Q. Fu, Y. Du, C. Yang, et al., An oncogenic role of miR-592 in tumorigenesis of human colorectal cancer by targeting Forkhead Box O3A (FoxO3A), Expert Opin. Ther. Targets 20 (2016) 771-782.
    [363]
    J. Cong, J. Gong, C. Yang, et al., miR-22 suppresses tumor invasion and metastasis in colorectal cancer by targeting NLRP3, Cancer Manag. Res. 12 (2020) 5419-5429.
    [364]
    S. Chang, G. Sun, D. Zhang, et al., miR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4, Cell Death Dis. 11 (2020), 592.
    [365]
    X. Zhang, F. Ai, X. Li, et al., microRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling, Oncol. Lett. 14 (2017) 2325-2333.
    [366]
    F. Lovat, G. Nigita, R. Distefano, et al., Combined loss of function of two different loci of miR-15/16 drives the pathogenesis of acute myeloid leukemia, Proc. Natl. Acad. Sci. USA 117 (2020) 12332-12340.
    [367]
    M. Khalaj, C.M. Woolthuis, W. Hu, et al., miR-99 regulates normal and malignant hematopoietic stem cell self-renewal, J. Exp. Med. 214 (2017) 2453-2470.
    [368]
    S. Costinean, N. Zanesi, Y. Pekarsky, et al., Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice, Proc. Natl. Acad. Sci. USA 103 (2006) 7024-7029.
    [369]
    H. Lin, K. Rothe, M. Chen, et al., The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML, Blood 136 (2020) 596-609.
    [370]
    Z. Li, P. Chen, R. Su, et al., Overexpression and knockout of miR-126 both promote leukemogenesis, Blood 126 (2015) 2005-2015.
    [371]
    Y. Su, X. Wang, M. Mann, et al., Myeloid cell-targeted miR-146a mimic inhibits NF-κB-driven inflammation and leukemia progression in vivo, Blood 135 (2020) 167-180.
    [372]
    M.J. Bueno, I. Perez de Castro, M. Gomez de Cedron, et al., Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression, Cancer Cell 13 (2008) 496-506.
    [373]
    X. Agirre, A. Vilas-Zornoza, A. Jimenez-Velasco, et al., Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia, Cancer Res. 69 (2009) 4443-4453.
    [374]
    X. Li, T. Liang, S. Chen, et al., Matrine suppression of self-renewal was dependent on regulation of LIN28A/Let-7 pathway in breast cancer stem cells, J. Cell. Biochem. 121 (2020) 2139-2149.
    [375]
    M. Ouzounova, T. Vuong, P.B. Ancey, et al., microRNA miR-30 family regulates non-attachment growth of breast cancer cells, BMC Genomics 14 (2013), 139.
    [376]
    S.K. Choi, H.S. Kim, T. Jin, et al., Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A, BMC Cancer 16 (2016), 570.
    [377]
    B. Yu, W. You, G. Chen, et al., miR-140-5p inhibits cell proliferation and metastasis by regulating MUC1 via BCL2A1/MAPK pathway in triple negative breast cancer, Cell Cycle 18 (2019) 2641-2650.
    [378]
    Q. Wang, L.A. Selth, D.F. Callen, miR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4, Oncotarget 8 (2017) 29914-29924.
    [379]
    C. Xia, Y. Yang, F. Kong, et al., miR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7, Biochimie 147 (2018) 98-104.
    [380]
    L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer, Nature 449 (2007) 682-688.
    [381]
    R. El Helou, G. Pinna, O. Cabaud, et al., miR-600 acts as a bimodal switch that regulates breast cancer stem cell fate through WNT signaling, Cell Rep. 18 (2017) 2256-2268.
    [382]
    M.L. Si, S. Zhu, H. Wu, et al., miR-21-mediated tumor growth, Oncogene 26 (2007) 2799-2803.
    [383]
    M. Li, M. Pan, C. You, et al., miR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth, Breast Cancer Res. 22 (2020), 26.
    [384]
    S.U. Mertens-Talcott, S. Chintharlapalli, X. Li, et al., The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells, Cancer Res. 67 (2007) 11001-11011.
    [385]
    G.K. Scott, A. Goga, D. Bhaumik, et al., Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b, J. Biol. Chem. 282 (2007) 1479-1486.
    [386]
    Q. Huang, K. Gumireddy, M. Schrier, et al., The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis, Nat. Cell Biol. 10 (2008) 202-210.
    [387]
    C. Zhang, J. Zhao, H. Deng, miR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1, J. Biomed. Sci. 20 (2013), 79.
    [388]
    Y. Saito, G. Liang, G. Egger, et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells, Cancer Cell 9 (2006) 435-443.
    [389]
    W. Zhou, M.Y. Fong, Y. Min, et al., Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis, Cancer Cell 25 (2014) 501-515.
    [390]
    S.F. Tavazoie, C. Alarcon, T. Oskarsson, et al., Endogenous human microRNAs that suppress breast cancer metastasis, Nature 451 (2008) 147-152.
    [391]
    K.D. Taganov, M.P. Boldin, K.J. Chang, et al., NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proc. Natl. Acad. Sci. USA 103 (2006) 12481-12486.
    [392]
    A. Hossain, M.T. Kuo, G.F. Saunders, miR-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA, Mol. Cell. Biol. 26 (2006) 8191-8201.
    [393]
    P.A. Gregory, A.G. Bert, E.L. Paterson, et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell Biol. 10 (2008) 593-601.
    [394]
    R. Samaeekia, V. Adorno-Cruz, J. Bockhorn, et al., miR-206 inhibits stemness and metastasis of breast cancer by targeting MKL1/IL11 pathway, Clin. Cancer Res. 23 (2017) 1091-1103.
    [395]
    F. Petrocca, R. Visone, M.R. Onelli, et al., E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer, Cancer Cell 13 (2008) 272-286.
    [396]
    K. Motoyama, H. Inoue, Y. Nakamura, et al., Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family, Clin. Cancer Res. 14 (2008) 2334-2340.
    [397]
    Y.K. Kim, J. Yu, T.S. Han, et al., Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer, Nucleic Acids Res. 37 (2009) 1672-1681.
    [398]
    L. Xia, D. Zhang, R. Du, et al., miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells, Int. J. Cancer 123 (2008) 372-379.
    [399]
    T. Liu, H. Tang, Y. Lang, et al., microRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin, Cancer Lett. 273 (2009) 233-242.
    [400]
    X. Wang, E.K.Y. Lam, J. Zhang, et al., microRNA-122a functions as a novel tumor suppressor downstream of adenomatous polyposis coli in gastrointestinal cancers, Biochem. Biophys. Res. Commun. 387 (2009) 376-380.
    [401]
    Z. Zhang, Z. Li, C. Gao, et al., miR-21 plays a pivotal role in gastric cancer pathogenesis and progression, Lab. Invest. 88 (2008) 1358-1366.
    [402]
    E. Bandres, N. Bitarte, F. Arias, et al., microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells, Clin. Cancer Res. 15 (2009) 2281-2290.
    [403]
    C. Prinz, D. Weber, microRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: Critical importance of miR-155, Oncotarget 11 (2020) 894-904.
    [404]
    Y. Du, Y. Xu, L. Ding, et al., Down-regulation of miR-141 in gastric cancer and its involvement in cell growth, J. Gastroenterol. 44 (2009) 556-561.
    [405]
    T. Takagi, A. Iio, Y. Nakagawa, et al., Decreased expression of microRNA-143 and-145 in human gastric cancers, Oncology 77 (2009) 12-21.
    [406]
    F. Cao, Y. Zheng, C. Yang, et al., miR-635 targets KIFC1 to inhibit the progression of gastric cancer, J. Investig. Med. 68 (2020) 1357-1363.
    [407]
    H. Zhao, Y. Zheng, J. You, et al., Tumor suppressor role of miR-876-5p in gastric cancer, Oncol. Lett. 20 (2020) 1281-1287.
    [408]
    M. Kobayashi, C. Salomon, J. Tapia, et al., Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200, J. Transl. Med. 12 (2014), 4.
    [409]
    E.F. Wilgis, Medical communication: Its uses and abuses, J. Hand Surg. Am. 14 (1989) 425-428.
    [410]
    A. Laios, S. O’Toole, R. Flavin, et al., Potential role of miR-9 and miR-223 in recurrent ovarian cancer, Mol. Cancer 7 (2008), 35.
    [411]
    G. Xiang, Y. Cheng, miR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2, Reprod. Biol. 18 (2018) 218-224.
    [412]
    R. Chen, A.B. Alvero, D.A. Silasi, et al., Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells, Oncogene 27 (2008) 4712-4723.
    [413]
    L. Zhang, S. Volinia, T. Bonome, et al., Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer, Proc. Natl. Acad. Sci. USA 105 (2008) 7004-7009.
    [414]
    R. Yu, L. Cai, Y. Chi, et al., miR-377 targets CUL4A and regulates metastatic capability in ovarian cancer, Int. J. Mol. Med. 41 (2018) 3147-3156.
    [415]
    S. Majid, A. A. Dar, S. Saini, et al., microRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer, PLoS One 8 (2013), e67686.
    [416]
    W. Wang, Y. Ying, H. Xie, et al., miR-665 inhibits epithelial-to-mesenchymal transition in bladder cancer via the SMAD3/SNAIL axis, Cell Cycle 20 (2021) 1242-1252.
    [417]
    Y. Li, Q. Duan, L. Gan, et al., microRNA-27b inhibits cell proliferation and invasion in bladder cancer by targeting engrailed-2, Biosci. Rep. 41 (2021), BSR20201000.
    [418]
    H. Wang, Q. Li, X. Niu, et al., miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling, Oncol. Lett. 13 (2017) 435-440.
    [419]
    Z. Wei, X. Hu, J. Liu, et al., microRNA-497 upregulation inhibits cell invasion and metastasis in T24 and BIU-87 bladder cancer cells, Mol. Med. Rep. 16 (2017) 2055-2060.
    [420]
    Y. Cheng, X. Yang, X. Deng, et al., microRNA-218 inhibits bladder cancer cell proliferation, migration, and invasion by targeting BMI-1, Tumour Biol. 36 (2015) 8015-8023.
    [421]
    J. Li, J. Li, H. Wang, et al., miR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression, Biochem. Biophys. Res. Commun. 482 (2017) 1381-1386.
    [422]
    M. Ozen, O.F. Karatas, S. Gulluoglu, et al., Overexpression of miR-145-5p inhibits proliferation of prostate cancer cells and reduces SOX2 expression, Cancer Invest. 33 (2015) 251-258.
    [423]
    C.Y. Cheng, C.I. Hwang, D.C. Corney, et al., miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment, Cell Rep. 6 (2014) 1000-1007.
    [424]
    M. Ozen, C.J. Creighton, M. Ozdemir, et al., Widespread deregulation of microRNA expression in human prostate cancer, Oncogene 27 (2008) 1788-1793.
    [425]
    Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications, Cell. Mol. Immunol. 17 (2020) 807-821.
    [426]
    Q. Hu, S. D. Egranov, C. Lin, et al., Long noncoding RNA loss in immune suppression in cancer, Pharmacol. Ther. 213 (2020), 107591.
    [427]
    V. Huber, V. Vallacchi, V. Fleming, et al., Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma, J. Clin. Invest. 128 (2018) 5505-5516.
    [428]
    P. Wang, J. Hou, L. Lin, et al., Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1, J. Immunol. 185 (2010) 6226-6233.
    [429]
    M.L. Squadrito, F. Pucci, L. Magri, et al., miR-511-3p modulates genetic programs of tumor-associated macrophages, Cell Rep. 1 (2012) 141-154.
    [430]
    M. Ouimet, H.N. Ediriweera, U.M. Gundra, et al., microRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis, J. Clin. Invest. 125 (2015) 4334-4348.
    [431]
    C.I. Caescu, X. Guo, L. Tesfa, et al., Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21, Blood 125 (2015) e1-e13.
    [432]
    C. Zhang, Z. Tian, NK cell subsets in autoimmune diseases, J. Autoimmun. 83 (2017) 22-30.
    [433]
    S. He, J. Chu, L. Wu, et al., microRNAs activate natural killer cells through Toll-like receptor signaling, Blood 121 (2013) 4663-4671.
    [434]
    P. Fang, L. Xiang, W. Chen, et al., LncRNA GAS5 enhanced the killing effect of NK cell on liver cancer through regulating miR-544/RUNX3, Innate Immun. 25 (2019) 99-109.
    [435]
    J. Shen, J. Pan, C. Du, et al., Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer, Cell Death Dis. 8 (2017), e2740.
    [436]
    J. Xie, M. Liu, Y. Li, et al., Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression, Cell. Mol. Immunol. 11 (2014) 495-502.
    [437]
    J.H. Paik, J.Y. Jang, Y.K. Jeon, et al., microRNA-146a downregulates NFκB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma, Clin. Cancer Res. 17 (2011) 4761-4771.
    [438]
    A. Watanabe, H. Tagawa, J. Yamashita, et al., The role of microRNA-150 as a tumor suppressor in malignant lymphoma, Leukemia 25 (2011) 1324-1334.
    [439]
    S.B. Ng, J. Yan, G. Huang, et al., Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma, Blood 118 (2011) 4919-4929.
    [440]
    Y. Hu, C. Wang, Y. Li, et al., miR-21 controls in situ expansion of CCR6⁺ regulatory T cells through PTEN/AKT pathway in breast cancer, Immunol. Cell Biol. 93 (2015) 753-764.
    [441]
    R. Lin, L. Chen, G. Chen, et al., Targeting miR-23a in CD8+ cytotoxic T lymphocytes prevents tumor-dependent immunosuppression, J. Clin. Invest. 124 (2014) 5352-5367.
    [442]
    M. Krawczyk, B. M. Emerson, p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes, eLife 3 (2014), e01776.
    [443]
    J. Chan, M. Atianand, Z. Jiang, et al., Cutting edge: A natural antisense transcript, AS-IL1α, controls inducible transcription of the proinflammatory cytokine IL-1α, J. Immunol. 195 (2015) 1359-1363.
    [444]
    N.E. IIott, J.A. Heward, B. Roux, et al., Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes, Nat. Commun. 5 (2014), 3979.
    [445]
    A. Castellanos-Rubio, N. Fernandez-Jimenez, R. Kratchmarov, et al., A long noncoding RNA associated with susceptibility to celiac disease, Science 352 (2016) 91-95.
    [446]
    B. Liu, L. Sun, Q. Liu, et al., A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis, Cancer Cell 27 (2015) 370-381.
    [447]
    J. Cao, R. Dong, L. Jiang, et al., LncRNA-MM2P identified as a modulator of macrophage M2 polarization, Cancer Immunol. Res. 7 (2019) 292-305.
    [448]
    X. Zeng, H. Xie, J. Yuan, et al., M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression, Cancer Biol. Ther. 20 (2019) 956-966.
    [449]
    A. Waisman, D. Lukas, B.E. Clausen, et al., Dendritic cells as gatekeepers of tolerance, Semin. Immunopathol. 39 (2017) 153-163.
    [450]
    P. Wang, Y. Xue, Y. Han, et al., The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation, Science 344 (2014) 310-313.
    [451]
    W. Zhang, M. Yang, L. Yu, et al., Long non-coding RNA lnc-DC in dendritic cells regulates trophoblast invasion via p-STAT3-mediated TIMP/MMP expression, Am. J. Reprod. Immunol. 83 (2020), e13239.
    [452]
    L. Zhuang, J. Tian, X. Zhang, et al., Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells, Cell. Mol. Biol. Lett. 23 (2018), 43.
    [453]
    P. Wang, Y. Xue, Y. Han, et al., The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation, Science 344 (2014) 310-313.
    [454]
    C. A. Hartana, Y. Rassadkina, C. Gao, et al., Long noncoding RNA MIR4435-2HG enhances metabolic function of myeloid dendritic cells from HIV-1 elite controllers, J. Clin. Investig. 131 (2021), e146136.
    [455]
    J. Xin, J. Li, Y. Feng, et al., Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960, Onco. Targets Ther. 10 (2017) 1307-1315.
    [456]
    J. Liu, X. Zhang, K. Chen, et al., CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis, Immunity 50 (2019) 600-615.e15.
    [457]
    Z. Li, Q. Zhang, Y. Wu, et al., lncRNA Malat1 modulates the maturation process, cytokine secretion and apoptosis in airway epithelial cell-conditioned dendritic cells, Exp. Ther. Med. 16 (2018) 3951-3958.
    [458]
    G. Xiong, L. Yang, Y. Chen, et al., Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution, Am. J. Transl. Res. 7 (2015) 2262-2269.
    [459]
    Y. Wang, X. Yang, X. Sun, et al., Bone marrow infiltrated Lnc-INSR induced suppressive immune microenvironment in pediatric acute lymphoblastic leukemia, Cell Death Dis. 9 (2018), 1043.
    [460]
    K. Yan, Y. Fu, N. Zhu, et al., Repression of lncRNA NEAT1 enhances the antitumor activity of CD8+T cells against hepatocellular carcinoma via regulating miR-155/Tim-3, Int. J. Biochem. Cell Biol. 110 (2019) 1-8.
    [461]
    D.G. DeNardo, B. Ruffell, Macrophages as regulators of tumour immunity and immunotherapy, Nat. Rev. Immunol. 19 (2019) 369-382.
    [462]
    Y. Chen, H. Li, T. Ding, et al., Lnc-M2 controls M2 macrophage differentiation via the PKA/CREB pathway, Mol. Immunol. 124 (2020) 142-152.
    [463]
    Z. Li, C. Feng, J. Guo, et al., GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization, Funct. Integr. Genom. 20 (2020) 17-28.
    [464]
    S. Liu, Z. Zhou, X. Dong, et al., LncRNA GNAS-AS1 facilitates ER+ breast cancer cells progression by promoting M2 macrophage polarization via regulating miR-433-3p/GATA3 axis, Biosci. Rep. 40 (2020), BSR20200626.
    [465]
    Y. Sun, J. Xu, TCF-4 regulated lncRNA-XIST promotes M2 polarization of macrophages and is associated with lung cancer, Onco. Targets Ther. 12 (2019) 8055-8062.
    [466]
    Y. Zhou, W. Zhao, L. Mao, et al., Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a, Int. J. Biochem. Cell Biol. 104 (2018) 25-33.
    [467]
    Y. Gao, W. Sun, W. Shang, et al., Lnc-C/EBPβ negatively regulates the suppressive function of myeloid-derived suppressor cells, Cancer Immunol. Res. 6 (2018) 1352-1363.
    [468]
    Y. Gao, W. Shang, D. Zhang, et al., Lnc-C/EBPβ modulates differentiation of MDSCs through downregulating IL4i1 with C/EBPβ LIP and WDR5, Front. Immunol. 10 (2019), 1661.
    [469]
    M.G. Roncarolo, S. Gregori, M. Battaglia, et al., Interleukin-10-secreting type 1 regulatory T cells in rodents and humans, Immunol. Rev. 212 (2006) 28-50.
    [470]
    Y. Wang, M.A. Su, Y.Y. Wan, An essential role of the transcription factor GATA-3 for the function of regulatory T cells, Immunity 35 (2011) 337-348.
    [471]
    Z. Yu, H. Zhao, X. Feng, et al., Long non-coding RNA FENDRR acts as a miR-423-5p sponge to suppress the treg-mediated immune escape of hepatocellular carcinoma cells, Mol. Ther. Nucleic Acids 17 (2019) 516-529.
    [472]
    X. Pei, X. Wang, H. Li, LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO, Int. J. Biol. Macromol. 118 (2018) 24-30.
    [473]
    X. Zhang, L. Xu, F. Wang, Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1, Cell Biol. Int. 41 (2017) 1056-1064.
    [474]
    L. Chen, G. Shan, CircRNA in cancer: Fundamental mechanism and clinical potential, Cancer Lett. 505 (2021) 49-57.
    [475]
    L. Li, Q. Zhang, K. Lian, Circular RNA circ_0000284 plays an oncogenic role in the progression of non-small cell lung cancer through the miR-377-3p-mediated PD-L1 promotion, Cancer Cell Int. 20 (2020), 247.
    [476]
    J. Wang, X. Zhao, Y. Wang, et al., circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma, Cell Death Dis. 11 (2020), 32.
    [477]
    Z. Yang, W. Chen, Y. Wang, et al., CircKRT1 drives tumor progression and immune evasion in oral squamous cell carcinoma by sponging miR-495-3p to regulate PDL1 expression, Cell Biol. Int. 45 (2021) 1423-1435.
    [478]
    Zhang P., Gao C., Huang X., et al., Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma, Mol. Cancer 19 (2020), 110.
    [479]
    L. Deng, G. Liu, C. Zheng, et al., Circ-LAMP1 promotes T-cell lymphoblastic lymphoma progression via acting as a ceRNA for miR-615-5p to regulate DDR2 expression, Gene 701 (2019) 146-151.
    [480]
    M. M. Tu, F. Y.F. Lee, R. T. Jones, et al., Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy, Sci. Adv. 5 (2019), eaav2437.
    [481]
    X. Gu, Y. Shi, M. Dong, et al., Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer, Cell Death Dis. 12 (2021), 818.
    [482]
    W.S. Bowen, A.K. Svrivastava, L. Batra, et al., Current challenges for cancer vaccine adjuvant development, Expert Rev. Vaccines 17 (2018) 207-215.
    [483]
    Z. Xu, P. Li, L. Fan, et al., The potential role of circRNA in tumor immunity regulation and immunotherapy, Front. Immunol. 9 (2018), 9.
    [484]
    Y. Ye, J. Guo, P. Xiao, et al., Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma, Cancer Lett. 469 (2020) 310-322.
    [485]
    M.M. Kamel, M. Matboli, M. Sallam, et al., Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma, Transl. Res. 168 (2016) 134-145.
    [486]
    N. Pouladi, S. Abdolahi, D. Farajzadeh, et al., Haplotype and linkage disequilibrium of TP53-WRAP53 locus in Iranian-Azeri women with breast cancer, PLoS One 14 (2019), e0220727.
    [487]
    W. Zhu, M. Liu, Y. Fan, et al., Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer, Cancer Med. 7 (2018) 4420-4433.
    [488]
    K.A. Cronin, A.J. Lake, S. Scott, et al., Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics, Cancer 124 (2018) 2785-2800.
    [489]
    T. Fuertes, A.R. Ramiro, V.G. de Yebenes, miRNA-based therapies in B cell non-hodgkin lymphoma, Trends Immunol. 41 (2020) 932-947.
    [490]
    B. Savir-Baruch, L. Zanoni, D.M. Schuster, Imaging of prostate cancer using fluciclovine, PET Clin. 12 (2017) 145-157.
    [491]
    B. Zhao, M. Lu, D. Wang, et al., Genome-wide identification of long noncoding RNAs in human intervertebral disc degeneration by RNA sequencing, BioMed Res. Int. 2016 (2016), 3684875.
    [492]
    X. Ge, L. Tang, Y. Wang, et al., The diagnostic value of exosomal miRNAs in human bile of malignant biliary obstructions, Dig. Liver Dis. 53 (2021) 760-765.
    [493]
    E. Rampazzo, P. Del Bianco, R. Bertorelle, et al., The predictive and prognostic potential of plasma telomerase reverse transcriptase (TERT) RNA in rectal cancer patients, Br. J. Cancer 118 (2018) 878-886.
    [494]
    S. Kabacik, G. Manning, C. Raffy, et al., Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding RNA expression after ionizing radiation exposure, Radiat. Res. 183 (2015) 325-337.
    [495]
    N. Saeedi, S. Ghorbian, Analysis of clinical important of LncRNA-HOTAIR gene variations and ovarian cancer susceptibility, Mol. Biol. Rep. 47 (2020) 7421-7427.
    [496]
    C. Xu, M. Liu, D. Jia, et al., lncRNA TINCR SNPs and expression levels are associated with bladder cancer susceptibility, Genet. Test. Mol. Biomarkers 25 (2021) 31-41.
    [497]
    P. Tassone, M.T. Di Martino, M. Arbitrio, et al., Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: A first-in-human, phase 1, open-label, dose-escalation study, J. Hematol. Oncol. 16 (2023), 68.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (126) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return