Turn off MathJax
Article Contents
Jiabin Wu, Ke Li, Muge Zhou, Haoyang Gao, Wenhong Wang, Weihua Xiao. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.01.014
Citation: Jiabin Wu, Ke Li, Muge Zhou, Haoyang Gao, Wenhong Wang, Weihua Xiao. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.01.014

Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway

doi: 10.1016/j.jpha.2024.01.014
Funds:

This study was sponsored by the National Natural Science Foundation of China (Grant No.: 32371185), the Shanghai Science and Technology Plan Project, China (Project No.: 23010504200), the “Shuguang Program” (Program No.: 20SG50) funded by Shanghai Education Development Foundation and Shanghai Municipale Education Commission, China, the Shanghai Talent Development Fund, China (Grant No.: 2020125), the Key Lab of Exercise and Health Sciences of Ministry of Education (Shanghai University of Sport, China) (Grant No.: 2022KF001), and the Shanghai Key Lab of Human Performance (Shanghai University of Sport, China) (Grant No.: 11DZ2261100).

  • Received Date: Sep. 09, 2023
  • Accepted Date: Jan. 31, 2024
  • Rev Recd Date: Dec. 12, 2023
  • Available Online: Feb. 20, 2024
  • Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
  • loading
  • [1]
    H. Sun, P. Saeedi, S. Karuranga, et al., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract. 183 (2022), 109119.
    [2]
    X. Wang, J. Zhao, Y. Li, et al., Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression, Front. Immunol. 13 (2022), 1090989.
    [3]
    N. Samsu, Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment, Biomed Res. Int. 2021 (2021), 1497449.
    [4]
    S. Rayego-Mateos, J.L. Morgado-Pascual, L. Opazo-Rios, et al., Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy, Int. J. Mol. Sci. 21 (2020), 3798.
    [5]
    Y. Wang, Y. Zhang, Kidney and innate immunity, Immunol. Lett. 183 (2017) 73-78.
    [6]
    M. Liu, K. Zen, Toll-like receptors regulate the development and progression of renal diseases, Kidney Dis. 7 (2021) 14-23.
    [7]
    Q. Feng, D. Liu, Y. Lu, et al., The interplay of renin-angiotensin system and toll-like receptor 4 in the inflammation of diabetic nephropathy, J. Immunol. Res. 2020 (2020), 6193407.
    [8]
    M. Lin, S.C.W. Tang, Toll-like receptors: Sensing and reacting to diabetic injury in the kidney, Nephrol. Dial. Transplant 29 (2014) 746-754.
    [9]
    T. Rodrigues, D. Reker, P. Schneider, et al., Counting on natural products for drug design, Nat. Chem. 8 (2016) 531-541.
    [10]
    Y.S. Kanwar, L. Sun, P. Xie, et al., A glimpse of various pathogenetic mechanisms of diabetic nephropathy, Annu. Rev. Pathol. 6 (2011) 395-423.
    [11]
    M.K. Arora, U.K. Singh, Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update, Vascul. Pharmacol. 58 (2013) 259-271.
    [12]
    Y.C. Lin, Y.H. Chang, S. Yang, et al., Update of pathophysiology and management of diabetic kidney disease, J. Formos. Med. Assoc. 117 (2018) 662-675.
    [13]
    S.C.W. Tang, W.H. Yiu, Innate immunity in diabetic kidney disease, Nat. Rev. Nephrol. 16 (2020) 206-222.
    [14]
    A. Flyvbjerg, The role of the complement system in diabetic nephropathy, Nat. Rev. Nephrol. 13 (2017) 311-318.
    [15]
    F.B. Hickey, F. Martin, Diabetic kidney disease and immune modulation, Curr. Opin. Pharmacol. 13 (2013) 602-612.
    [16]
    J. Chen, Q. Liu, J. He, et al., Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target, Front. Immunol. 13 (2022), 958790.
    [17]
    W. Jun, H. Makino, Innate immunity in diabetes and diabetic nephropathy, Nat. Rev. Nephrol. 12 (2016) 13-26.
    [18]
    K. Takeda, S. Akira, Toll-like receptors in innate immunity, Int. Immunol. 17 (2005) 1-14.
    [19]
    T.H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses, Clin. Microbiol. Rev. 22 (2009) 240-273.
    [20]
    V. Peek, E. Neumann, T. Inoue, et al., Age-dependent changes of adipokine and cytokine secretion from rat adipose tissue by endogenous and exogenous toll-like receptor agonists, Front. Immunol. 11 (2020), 1800.
    [21]
    R. Medzhitov, P. Preston-Hurlburt, C.A. Jr Janeway, A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature 388 (1997) 394-397.
    [22]
    B.S. Park, J.O. Lee, Recognition of lipopolysaccharide pattern by TLR4 complexes, Exp. Mol. Med. 45 (2013), e66.
    [23]
    C.G. Leon, R. Tory, J. Jia, et al., Discovery and development of toll-like receptor 4 (TLR4) antagonists: A new paradigm for treating sepsis and other diseases, pharm. Res. 25 (2008) 1751-1761.
    [24]
    M.M. Garcia, C. Goicoechea, M. Molina-Alvarez, et al., Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies, Eur. J. Pharmacol. 874 (2020), 172975.
    [25]
    E. Schweighoffer, J. Nys, L. Vanes, et al., TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK, J. Exp. Med. 214 (2017) 1269-1280.
    [26]
    J.M. Reynolds, G.J. Martinez, Y. Chung, et al., Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation, Proc. Natl. Acad. Sci. USA 109 (2012) 13064-13069.
    [27]
    H. Mudaliar, C. Pollock, J. Ma, et al., The role of TLR2 and 4-mediated inflammatory pathways in endothelial cells exposed to high glucose, PLoS One. 9 (2014), e108844.
    [28]
    J. Su, J. Ren, H. Chen, et al., microRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells, Biosci. Rep. 40 (2020), BSR20192384.
    [29]
    M.C. Banas, B. Banas, K.L. Hudkins, et al., TLR4 links podocytes with the innate immune system to mediate glomerular injury, J. Am. Soc. Nephrol. 19 (2008) 704-713.
    [30]
    K. Newton, V.M. Dixit, Signaling in innate immunity and inflammation, Cold Spring Harb. Perspect. Biol. 4 (2012), a006049.
    [31]
    M. Taghavi, A. Khosravi, E. Mortaz, et al., Role of pathogen-associated molecular patterns (PAMPS) in immune responses to fungal infections, Eur. J. Pharmacol. 808 (2017) 8-13.
    [32]
    B. Mahaling, S.W.Y. Low, M. Beck, et al., Damage-associated molecular patterns (DAMPs) in retinal disorders, Int. J. Mol. Sci. 23 (2022), 2591.
    [33]
    A. Poltorak, P. Ricciardi-Castagnoli, S. Citterio, et al., Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation, Proc. Natl. Acad. Sci. USA 97 (2000) 2163-2167.
    [34]
    A.J. Jenkins, V. Velarde, R.L. Klein, et al., Native and modified LDL activate extracellular signal-regulated kinases in mesangial cells, Diabetes 49 (2000) 2160-2169.
    [35]
    G.H. Tesch, MCP-1/CCL2: A new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy, Am. J. Physiol. Renal Physiol. 294 (2008) F697-F701.
    [36]
    M. Yu, H. Wang, A. Ding, et al., HMGB1 signals through toll-like receptor (TLR) 4 and TLR2, Shock 26 (2006) 174-179.
    [37]
    J. Thompson, P. Wilson, K. Brandewie, et al., Renal accumulation of biglycan and lipid retention accelerates diabetic nephropathy, Am. J. Pathol. 179 (2011) 1179-1187.
    [38]
    K. Ohashi, V. Burkart, S. Flohe, et al., Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex, J. Immunol. 164 (2000) 558-561.
    [39]
    A. Asea, M. Rehli, E. Kabingu, et al., Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4, J. Biol. Chem. 277 (2002) 15028-15034.
    [40]
    T. Kuwabara, K. Mori, M. Mukoyama, et al., Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice, Diabetologia. 55 (2012) 2256-2266.
    [41]
    Y. Okamura, M. Watari, E.S. Jerud, et al., The extra domain A of fibronectin activates Toll-like receptor 4, J. Biol. Chem. 276 (2001) 10229-10233.
    [42]
    A. Lewis, R. Steadman, P. Manley, et al., Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis, Histol. Histopathol. 23 (2008) 731-739.
    [43]
    H. Yokoyama, K. Sato, M. Okudaira, et al., Serum and urinary concentrations of heparan sulfate in patients with diabetic nephropathy, Kidney Int. 56 (1999) 650-658.
    [44]
    A.F. McGettrick, L.A.J. O’Neill, Regulators of TLR4 signaling by endotoxins, Subcell. Biochem. 53 (2010) 153-171.
    [45]
    L. Liu, J.J. Steinle, Loss of TLR4 in mouse Muller cells inhibits both MyD88-dependent and-independent signaling, PLoS One 12 (2017), e0190253.
    [46]
    N.N. Kuzmich, K.V. Sivak, V.N. Chubarev, et al., TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis, Vaccines 5 (2017), 34.
    [47]
    Y. Lu, W.C. Yeh, P.S. Ohashi, LPS/TLR4 signal transduction pathway, Cytokine. 42 (2008) 145-151.
    [48]
    K. Takeda, S. Akira, TLR signaling pathways, Semin. Immunol. 16 (2004) 3-9.
    [49]
    T. Lawrence, The nuclear factor NF-kappaB pathway in inflammation, Cold Spring Harb. Perspect. Biol. 1 (2009), a001651.
    [50]
    A. Oeckinghaus, M.S. Hayden, S. Ghosh, Crosstalk in NF-κB signaling pathways, Nat. Immunol. 12 (2011) 695-708.
    [51]
    R. Medzhitov, Toll-like receptors and innate immunity, Nat. Rev. Immunol. 1 (2001) 135-145.
    [52]
    T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors, Nat. Immunol. 11 (2010) 373-384.
    [53]
    M. Yamamoto, S. Sato, H. Hemmi, et al., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway, Science 301 (2003) 640-643.
    [54]
    M. Yamamoto, S. Sato, H. Hemmi, et al., TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway, Nat. Immunol. 4 (2003) 1144-1150.
    [55]
    N. Bayan, N. Yazdanpanah, N. Rezaei, Role of toll-like receptor 4 in diabetic retinopathy, Pharmacol. Res. 175 (2022), 105960.
    [56]
    C. Gong, Z. Li, C. Qin, et al., Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways, Oncotarget 7 (2016) 82602-82608.
    [57]
    R. Feng, Y. Xiong, Y. Lei, et al., Lysine-specific demethylase 1 aggravated oxidative stress and ferroptosis induced by renal ischemia and reperfusion injury through activation of TLR4/NOX4 pathway in mice, J. Cell. Mol. Med. 26 (2022) 4254-4267.
    [58]
    F. Yang, J. Chen, X.R. Huang, et al., Regulatory role and mechanisms of myeloid TLR4 in anti-GBM glomerulonephritis, Cell. Mol. Life Sci. 78 (2021) 6721-6734.
    [59]
    G. Garibotto, A. Carta, D. Picciotto, et al., Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy, J. Nephrol. 30 (2017) 719-727.
    [60]
    J. Kim, E. Sohn, C.S. Kim, et al., The role of high-mobility group box-1 protein in the development of diabetic nephropathy, Am. J. Nephrol. 33 (2011) 524-529.
    [61]
    H. Kaur, A. Chien, I. Jialal, Hyperglycemia induces Toll like receptor 4 expression and activity in mouse mesangial cells: Relevance to diabetic nephropathy, Am. J. Physiol. Renal Physiol. 303 (2012) F1145-F1150.
    [62]
    S. Takata, Y. Sawa, T. Uchiyama, et al., Expression of toll-like receptor 4 in glomerular endothelial cells under diabetic conditions, Acta Histochem. Cytochem. 46 (2013) 35-42.
    [63]
    J. Ma, S.J. Chadban, C.Y. Zhao, et al., TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy, PLoS One 9 (2014), e97985.
    [64]
    M. Lin, W.H. Yiu, H.J. Wu, et al., Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy, J. Am. Soc. Nephrol. 23 (2012) 86-102.
    [65]
    H. Mudaliar, C. Pollock, M.G. Komala, et al., The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules, Am. J. Physiol. Renal Physiol. 305 (2013) F143-F154.
    [66]
    M. Lin, W.H. Yiu, R.X. Li, et al., The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy, Kidney Int. 83 (2013) 887-900.
    [67]
    J.J. Cha, Y.Y. Hyun, M.H. Lee, et al., Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice, Endocrinology 154 (2013) 2144-2155.
    [68]
    I. Jialal, A.M. Major, S. Devaraj, Global Toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis, and podocytopathy, J. Diabetes Complications 28 (2014) 755-761.
    [69]
    T. Rao, Z. Tan, J. Peng, et al., The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective, Pharmacol. Res. 146 (2019), 104283.
    [70]
    Q. Hu, L. Jiang, Q. Yan, et al., A natural products solution to diabetic nephropathy therapy, Pharmacol. Ther. 241 (2023), 108314.
    [71]
    M. Molteni, A. Bosi, C. Rossetti, Natural products with toll-like receptor 4 antagonist activity, Int. J. Inflam. 2018 (2018), 2859135.
    [72]
    L. Zhu, J. Han, R. Yuan, et al., Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway, Biol. Res. 51 (2018), 9.
    [73]
    Y. Zhang, W. Liu, D. Li, Matrine attenuates high glucose-induced podocyte damage by inhibiting HMGB1-associated TLR4- NF-κB signaling, Int. J. Clin. Exp. Med. 12 (2019) 8512-8521.
    [74]
    S. Zhang, L. Xu, R. Liang, et al., Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells, J. Physiol. Biochem. 76 (2020) 407-416.
    [75]
    M. Qi, Y. He, Y. Cheng, et al., Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway, Food Funct. 12 (2021) 1241-1251.
    [76]
    F. Chen, X. Zhu, Z. Sun, et al., Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells, Front. Pharmacol. 9 (2018), 1187.
    [77]
    Y. Xu, Y. Xiong, C. Xu, et al., Standard puerarin prevents diabetic renal damage by inhibiting miRNA-140-5p expression, Diabetes Metab. Syndr. Obes. 13 (2020) 3947-3958.
    [78]
    L. Sun, Z. Yang, S. Lv, et al., Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation, Int. Immunopharmacol. 23 (2014) 236-246.
    [79]
    L.B. Yu, C. Guan, Y.H. Dong, et al., Secoisolariciresinol diglucoside affects inflammation and response in diabetic nephropathy mice by regulating HSP-70, J. Biol. Regul. Homeost. Agents. 35 (2021) 39-44.
    [80]
    B. Zhou, Q. Li, J. Wang, et al., Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling, Food Chem. Toxicol. 123 (2019) 16-27.
    [81]
    R. Zhang, M. Lu, S. Zhang, et al., Renoprotective effects of Tilianin in diabetic rats through modulation of oxidative stress via Nrf2-Keap1 pathway and inflammation via TLR4/MAPK/ NF-κB pathways, Int. Immunopharmacol. 88 (2020), 106967.
    [82]
    O.M. Zabad, Y.A. Samra, L.A. Eissa, P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats, Life Sci. 238 (2019), 116965.
    [83]
    J. Li, N. Li, S. Yan, et al., Ursolic acid alleviates inflammation and against diabetes-induced nephropathy through TLR4-mediated inflammatory pathway, Mol. Med. Rep. 18 (2018) 4675-4681.
    [84]
    Z. Sun, Y. Ma, F. Chen, et al., Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway, Chem. Biol. Interact. 293 (2018) 11-19.
    [85]
    V. Thakur, S. Nargis, M. Gonzalez, et al., Role of glycyrrhizin in the reduction of inflammation in diabetic kidney disease, Nephron 137 (2017) 137-147.
    [86]
    Y. Liu, Z. Hu, H. Xing, et al., Renoprotective effects of oleanolic acid and its possible mechanisms in rats with diabetic kidney disease, Biochem. Biophys. Res. Commun. 636 (2022) 1-9.
    [87]
    L. Tian, P. Fu, M. Zhou, et al., Dandelion sterol improves diabetes mellitus-induced renal injury in vitro and in vivo study, Food Sci. Nutr. 9 (2021) 5183-5197.
    [88]
    S.S. Son, J.S. Kang, E.Y. Lee, Paclitaxel ameliorates palmitate-induced injury in mouse podocytes, Med. Sci. Monit. Basic Res. 26 (2020), e928265.
    [89]
    J. Li, L. Bao, D. Zha, et al., Oridonin protects against the inflammatory response in diabetic nephropathy by inhibiting the TLR4/p38-MAPK and TLR4/NF-κB signaling pathways, Int. Immunopharmacol. 55 (2018) 9-19.
    [90]
    S. Cai, J. Chen, Y. Li, Dioscin protects against diabetic nephropathy by inhibiting renal inflammation through TLR4/NF-κB pathway in mice, Immunobiology 225 (2020), 151941.
    [91]
    H. Niu, G. Li, Y. Qiao, et al., Polydatin ameliorates renal fibrosis in a streptozotocin-induced rat model of diabetic nephropathy by inhibiting TLR4/NF-κB signaling, Trop. J. Pharm. Res. 18 (2019) 2263-2269.
    [92]
    Y. Shao, Q. Gong, X. Qi, et al., Paeoniflorin ameliorates macrophage infiltration and activation by inhibiting the TLR4 signaling pathway in diabetic nephropathy, Front. Pharmacol. 10 (2019), 566.
    [93]
    Y. Chen, Q. Liu, Z. Shan, et al., The protective effect and mechanism of catalpol on high glucose-induced podocyte injury, BMC Complementary Altern. Med. 19 (2019) 1-10.
    [94]
    C. Ma, A. Shi, Picroside II prevents inflammation injury in mice with diabetic nephropathy via TLR4/NF-κB pathway, Qual. Assur. Saf. Crops Foods. 13 (2021) 38-43.
    [95]
    F. Wang, C. Liu, L. Ren, et al., Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway, Pharm. Biol. 61 (2023) 427-436.
    [96]
    T. Jiang, S. Shen, L. Wang, et al., Grifola frondosa polysaccharide ameliorates early diabetic nephropathy by suppressing the TLR4/NF-κB pathway, Appl. Biochem. Biotechnol. 194 (2022) 4093-4104.
    [97]
    Z. Liu, H. Weng, L. Zhang, et al., Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling, Chin. J. Nat. Med. 17 (2019) 641-649.
    [98]
    J. Yang, H. Dong, Y. Wang, et al., Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis, Int. J. Biol. Macromol. 163 (2020) 442-456.
    [99]
    P. Gong, D. Cui, Y. Guo, et al., A novel polysaccharide obtained from Siraitia grosvenorii alleviates inflammatory responses in a diabetic nephropathy mouse model via the TLR4-NF-κB pathway, Food Funct. 12 (2021) 9054-9065.
    [100]
    J. Wei, Y. Wang, X. Qi, et al., Melatonin ameliorates hyperglycaemia-induced renal inflammation by inhibiting the activation of TLR4 and TGF-β1/Smad3 signalling pathway, Am. J. Transl. Res. 12 (2020) 1584-1599.
    [101]
    H. Wang, S. Wang, K. Chiufai, et al., Umbelliferone ameliorates renal function in diabetic nephropathy rats through regulating inflammation and TLR/NF-κB pathway, Chin. J. Nat. Med. 17 (2019) 346-354.
    [102]
    H. Zhang, S. Lu, L. Chen, et al., 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione, isolated from the root of Averrhoa carambola L., protects against diabetic kidney disease by inhibiting TLR4/TGFβ signaling pathway, Int. Immunopharmacol. 80 (2020), 106120.
    [103]
    S. Bhambhani, K.R. Kondhare, A.P. Giri, Diversity in chemical structures and biological properties of plant alkaloids, Molecules 26 (2021), 3374.
    [104]
    M. Zhu, H. Wang, J. Chen, et al., Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats, Life Sci. 265 (2021), 118855.
    [105]
    Y.A. Samra, H.S. Said, N.M. Elsherbiny, et al., Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome, Life Sci. 157 (2016) 187-199.
    [106]
    D. Song, J. Hao, D. Fan, Biological properties and clinical applications of berberine, Front. Med. 14 (2020) 564-582.
    [107]
    I. Naz, M.S. Masoud, Z. Chauhdary, et al., Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers, J. Food Biochem. 46 (2022), e14389.
    [108]
    M. Alorabi, S. Cavalu, H.M. Al-Kuraishy, et al., Pentoxifylline, and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress, Biomed. Pharmacother. 152 (2022), 113225.
    [109]
    R. Luo, Z. Liao, Y. Song, et al., Berberine ameliorates oxidative stress-induced apoptosis by modulating ER stress and autophagy in human nucleus pulposus cells, Life Sci. 228 (2019) 85-97.
    [110]
    P. Samadi, P. Sarvarian, E. Gholipour, et al., Berberine: A novel therapeutic strategy for cancer, IUBMB Life. 72 (2020) 2065-2079.
    [111]
    A. Pirillo, A.L. Catapano, Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies, Atherosclerosis 243 (2015) 449-461.
    [112]
    A.K. Singh, S.K. Singh, M.K. Nandi, et al., Berberine: A plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease, Cent. Nerv. Syst. Agents Med. Chem. 19 (2019) 154-170.
    [113]
    Y. Qiu, L. Tang, W. Wei, Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy, Mol. Cell. Endocrinol. 443 (2017) 89-105.
    [114]
    X. Zhang, H. Xu, X. Bi, et al., Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways, Cell Death Dis. 12 (2021), 931.
    [115]
    N. Sun, H. Zhang, P. Sun, et al., Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model, Phytomedicine 77 (2020), 153289.
    [116]
    L. Li, H. Niu, J. Zhan, et al., Matrine attenuates bovine mammary epithelial cells inflammatory responses induced by Streptococcus agalactiae through inhibiting NF-κB and MAPK signaling pathways, Int. Immunopharmacol. 112 (2022), 109206.
    [117]
    K. Sun, P. Yang, R. Zhao, et al., Matrine attenuates D-galactose-induced aging-related behavior in mice via inhibition of cellular senescence and oxidative stress, Oxid. Med. Cell. Longev. 2018 (2018), 7108604.
    [118]
    Y. Lin, F. He, L. Wu, et al., Matrine exerts pharmacological effects through multiple signaling pathways: A comprehensive review, Drug Des. Devel. Ther. 16 (2022) 533-569.
    [119]
    Z. Liu, J. Wang, C. Qiu, et al., Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway, Acta Pharmacol. Sin. 36 (2015) 323-333.
    [120]
    A.N. Panche, A.D. Diwan, S.R. Chandra, Flavonoids: An overview, J. Nutr. Sci. 5 (2016), e47.
    [121]
    B. Shen, H. Zhang, Z. Zhu, et al., Baicalin relieves LPS-induced lung inflammation via the NF-κB and MAPK Pathways, Molecules 28 (2023), 1873.
    [122]
    W. Gao, B. Xu, Y. Zhang, et al., Baicalin attenuates oxidative stress in a tissue-engineered liver model of NAFLD by scavenging reactive oxygen species, Nutrients. 14 (2022), 541.
    [123]
    H. Wang, Q. Jiang, L. Zhang, Baicalin protects against renal interstitial fibrosis in mice by inhibiting the TGF-β/Smad signalling pathway, Pharm. Biol. 60 (2022) 1407-1416.
    [124]
    M. Bao, Y. Ma, M. Liang, et al., Research progress on pharmacological effects and new dosage forms of baicalin, Vet. Med. Sci. 8 (2022) 2773-2784.
    [125]
    C. He, Z. Wang, J. Shi, Pharmacological effects of icariin, Adv. Pharmacol. 87 (2020) 179-203.
    [126]
    A. Sharma, S. Gupta, S. Chauhan, et al., Astilbin: A promising unexplored compound with multidimensional medicinal and health benefits, Pharmacol. Res. 158 (2020), 104894.
    [127]
    F. Chen, Z. Sun, X. Zhu, et al., Astilbin inhibits high glucose-induced autophagy and apoptosis through the PI3K/Akt pathway in human proximal tubular epithelial cells, Biomed. Pharmacother. 106 (2018) 1175-1181.
    [128]
    Y. Zhou, H. Zhang, C. Peng, Puerarin: A review of pharmacological effects, Phytother. Res. 28 (2014) 961-975.
    [129]
    L. Ji, Q. Du, Y. Li, et al., Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-κB pathway in a rabbit model, Pharmacol. Rep. 68 (2016) 1054-1059.
    [130]
    Y. Yi, B. Adrjan, J. Li, et al., NMR studies of daidzein and puerarin: Active anti-oxidants in traditional Chinese medicine, J. Mol. Model. 25 (2019), 202.
    [131]
    X. Li, Q. Zhu, R. Zheng, et al., Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes, Front. Physiol. 11 (2020), 73.
    [132]
    X. Xu, N. Zheng, Z. Chen, et al., Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress, Gene 591 (2016) 411-416.
    [133]
    T. Liang, X. Xu, D. Ye, et al., Caspase/AIF/apoptosis pathway: A new target of puerarin for diabetes mellitus therapy, Mol. Biol. Rep. 46 (2019) 4787-4797.
    [134]
    C.G. Fraga, K.D. Croft, D.O. Kennedy, et al., The effects of polyphenols and other bioactives on human health, Food Funct. 10 (2019) 514-528.
    [135]
    S. Sapian, S.B. Budin, I.S. Taib, et al., Role of polyphenol in regulating oxidative stress, inflammation, fibrosis, and apoptosis in diabetic nephropathy, Endocr. Metab. Immune Disord. Drug Targets 22 (2022) 453-470.
    [136]
    W.N.B. Wan Mohd Tajuddin, N.H. Lajis, F. Abas, et al., Mechanistic understanding of curcumin’s therapeutic effects in lung cancer, Nutrients 11 (2019), 2989.
    [137]
    M. Boozari, A.E. Butler, A. Sahebkar, Impact of curcumin on toll-like receptors, J. Cell. Physiol. 234 (2019) 12471-12482.
    [138]
    G. Huang, X. Huang, M. Liu, et al., Secoisolariciresinol diglucoside prevents the oxidative stress-induced apoptosis of myocardial cells through activation of the JAK2/STAT3 signaling pathway, Int. J. Mol. Med. 41 (2018) 3570-3576.
    [139]
    M. Imran, N. Ahmad, F.M. Anjum, et al., Potential protective properties of flax lignan secoisolariciresinol diglucoside, Nutr. J. 14 (2015), 71.
    [140]
    A. Zeb, Ellagic acid in suppressing in vivo and in vitro oxidative stresses, Mol. Cell. Biochem. 448 (2018) 27-41.
    [141]
    L.A. BenSaad, K.H. Kim, C.C. Quah, et al., Anti-inflammatory potential of ellagic acid, Gallic acid, and punicalagin A&B isolated from Punica granatum, BMC Complement. Altern. Med. 17 (2017), 47.
    [142]
    A. Mohammadinejad, T. Mohajeri, G. Aleyaghoob, et al., Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies, Biotechnol. Appl. Biochem. 69 (2022) 2323-2356.
    [143]
    G. Derosa, P. Maffioli, A. Sahebkar, Ellagic acid and its role in chronic diseases, Adv. Exp. Med. Biol. 928 (2016) 473-479.
    [144]
    Y. Zhang, Z. Gao, X. Gao, et al., Tilianin protects diabetic retina through the modulation of Nrf2/TXNIP/NLRP3 inflammasome pathways, J. Environ. Pathol. Toxicol. Oncol. 39 (2020) 89-99.
    [145]
    L. Tian, W. Cao, R. Yue, et al., Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway, J. Pharmacol. Sci. 139 (2019) 352-360.
    [146]
    J. Yao, Y. Li, Y. Jin, et al., Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways, Int. Immunopharmacol. 96 (2021), 107728.
    [147]
    J.A. Garcia-Diaz, G. Navarrete-Vazquez, S. Garcia-Jimenez, et al., Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats, Biomed. Pharmacother. 83 (2016) 667-675.
    [148]
    Z. Rafiee, M.Z. Moaiedi, A.V. Gorji, et al., P-coumaric acid mitigates doxorubicin-induced nephrotoxicity through suppression of oxidative stress, inflammation and apoptosis, Arch. Med. Res. 51 (2020) 32-40.
    [149]
    S. Mozaffari Godarzi, A. Valizade Gorji, B. Gholizadeh, et al., Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion, Nefrologia 40 (2020) 311-319.
    [150]
    V. Amalan, N. Vijayakumar, D. Indumathi, et al., Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach, Biomed. Pharmacother. 84 (2016) 230-236.
    [151]
    D. Navaneethan, M. Rasool, P-Coumaric acid, a common dietary polyphenol, protects cadmium chloride-induced nephrotoxicity in rats, Ren. Fail. 36 (2014) 244-251.
    [152]
    D. Navaneethan, M.K. Rasool, An experimental study to investigate the impact of p-coumaric acid, a common dietary polyphenol, on cadmium chloride-induced renal toxicity, Food Funct. 5 (2014) 2438-2445.
    [153]
    A. Venkatesan, A. Roy, S. Kulandaivel, et al., p-coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in streptozotocin-induced diabetic rats, Metabolites 12 (2022), 1166.
    [154]
    A. Mani, K. Kushwaha, N. Khurana, et al., P-Coumaric acid attenuates high-fat diet-induced oxidative stress and nephropathy in diabetic rats, J. Anim. Physiol. Anim. Nutr. 106 (2022) 872-880.
    [155]
    D. Tholl, Biosynthesis and biological functions of terpenoids in plants, Adv. Biochem. Eng. Biotechnol. 148 (2015) 63-106.
    [156]
    A. Alqahtani, K. Hamid, A. Kam, et al., The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications, Curr. Med. Chem. 20 (2013) 908-931.
    [157]
    X. Wang, Y. Gong, B. Zhou, et al., Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats, Biomed. Pharmacother. 97 (2018) 1461-1467.
    [158]
    M. Luan, H. Wang, J. Wang, et al., Advances in anti-inflammatory activity, mechanism and therapeutic application of ursolic acid, Mini Rev. Med. Chem. 22 (2022) 422-436.
    [159]
    S. Wan, F. Luo, C. Huang, et al., Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways, Aging 12 (2020) 10614-10632.
    [160]
    L.B. Barradell, A. Fitton, Artesunate. A review of its pharmacology and therapeutic efficacy in the treatment of malaria, Drugs 50 (1995) 714-741.
    [161]
    T. Efferth, M. Romero, D. Wolf, et al., The antiviral activities of artemisinin and artesunate, Clin. Infect. Dis. 47 (2008) 804-811.
    [162]
    Z. Xu, X. Liu, D. Zhuang, Artesunate inhibits proliferation, migration, and invasion of thyroid cancer cells by regulating the PI3K/AKT/FKHR pathway, Biochem. Cell Biol. 100 (2022) 85-92.
    [163]
    Z. Yang, L. Qiu, Q. Chen, et al., Artesunate alleviates the inflammatory response of ulcerative colitis by regulating the expression of miR-155, Pharm. Biol. 59 (2021) 97-105.
    [164]
    L.J. Ming, A.C. Yin, Therapeutic effects of glycyrrhizic acid, Nat. Prod. Commun. 8 (2013) 415-418.
    [165]
    H. Zhang, R. Zhang, J. Chen, et al., High mobility group Box1 inhibitor glycyrrhizic acid attenuates kidney injury in streptozotocin-induced diabetic rats, Kidney Blood Press. Res. 42 (2017) 894-904.
    [166]
    H. Yang, H. Wang, U. Andersson, Targeting inflammation driven by HMGB1, Front. Immunol. 11 (2020), 484.
    [167]
    J.M. Castellano, S. Ramos-Romero, J.S. Perona, Oleanolic acid: Extraction, characterization, and biological activity, Nutrients 14 (2022), 623.
    [168]
    H. Iskender, E. Dokumacioglu, K.A. Terim Kapakin, et al., Effects of oleanolic acid on inflammation and metabolism in diabetic rats, Biotech. Histochem. 97 (2022) 269-276.
    [169]
    E.S. Lee, H.M. Kim, J.S. Kang, et al., Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model, Nephrol. Dial. Transplant 31 (2016) 391-400.
    [170]
    Y. Wang, G. Li, X. Liu, et al., In vivo anti-inflammatory effects of taraxasterol against animal models, Afr. J. Tradit. Complementary Altern. Med. 14 (2016) 43-51.
    [171]
    C.M. Park, Y.S. Cha, H.J. Youn, et al., Amelioration of oxidative stress by dandelion extract through CYP2E1 suppression against acute liver injury induced by carbon tetrachloride in Sprague-Dawley rats, Phytother. Res. 24 (2010) 1347-1353.
    [172]
    M. Takasaki, T. Konoshima, K. Tokuda, et al., Anti-carcinogenic activity of Taraxacum plant. II, Biol. Pharm. Bull. 22 (1999) 606-610.
    [173]
    S.Y. Cho, J.Y. Park, E.M. Park, et al., Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract, Clin. Chim. Acta 317 (2002) 109-117.
    [174]
    R. Sang, Y. Yu, B. Ge, et al., Taraxasterol from Taraxacum prevents concanavalin A-induced acute hepatic injury in mice via modulating TLRs/NF-κB and Bax/Bc1-2 signalling pathways, Artif. Cells Nanomed. Biotechnol. 47 (2019) 3929-3937.
    [175]
    M. Yousefi Ghale-Salimi, M. Eidi, N. Ghaemi, et al., Antiurolithiatic effect of the taraxasterol on ethylene glycol induced kidney calculi in male rats, Urolithiasis 46 (2018) 419-428.
    [176]
    Y. Yang, J. Mao, X. Tan, Research progress on the source, production, and anti-cancer mechanisms of paclitaxel, Chin. J. Nat. Med. 18 (2020) 890-897.
    [177]
    L. Zhu, L. Chen, Progress in research on paclitaxel and tumor immunotherapy, Cell. Mol. Biol. Lett. 24 (2019) 1-11.
    [178]
    Y. Xia, H. Jiang, J. Chen, et al., Low dose Taxol ameliorated renal fibrosis in mice with diabetic kidney disease by downregulation of HIPK2, Life Sci. 320 (2023), 121540.
    [179]
    X. Li, C. Zhang, W. Ma, et al., Oridonin: A review of its pharmacology, pharmacokinetics and toxicity, Front. Pharmacol. 12 (2021), 645824.
    [180]
    Y. Yan, R. Tan, P. Liu, et al., Oridonin alleviates IRI-induced kidney injury by inhibiting inflammatory response of macrophages via AKT-related pathways, Med. Sci. Monit. 26 (2020), e921114.
    [181]
    H. Gu, M.G. Gwon, J.H. Kim, et al., Oridonin attenuates cisplatin-induced acute kidney injury via inhibiting oxidative stress, apoptosis, and inflammation in mice, Biomed Res. Int. 2022 (2022), 3002962.
    [182]
    K. Kytidou, M. Artola, H.S. Overkleeft, et al., Plant glycosides and glycosidases: A treasure-trove for therapeutics, Front. Plant Sci. 11 (2020), 357.
    [183]
    L. Yang, S. Ren, F. Xu, et al., Recent advances in the pharmacological activities of dioscin, Biomed Res. Int. 2019 (2019), 5763602.
    [184]
    S. Bandopadhyay, U. Anand, V.S. Gadekar, et al., Dioscin: A review on pharmacological properties and therapeutic values, BioFactors 48 (2022) 22-55.
    [185]
    X. Tao, L. Yin, L. Xu, et al., Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections, Pharmacol. Res. 137 (2018) 259-269.
    [186]
    Y. Zhong, J. Liu, D. Sun, et al., Dioscin relieves diabetic nephropathy via suppressing oxidative stress and apoptosis, and improving mitochondrial quality and quantity control, Food Funct. 13 (2022) 3660-3673.
    [187]
    A. Karami, S. Fakhri, L. Kooshki, et al., Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits, Molecules 27 (2022), 6474.
    [188]
    L. Zhou, P. Yu, T. Wang, et al., Polydatin attenuates cisplatin-induced acute kidney injury by inhibiting ferroptosis, Oxid. Med. Cell. Longev. 2022 (2022), 9947191.
    [189]
    P. Liao, Y. He, F. Yang, et al., Polydatin effectively attenuates disease activity in lupus-prone mouse models by blocking ROS-mediated NET formation, Arthritis Res. Ther. 20 (2018), 254.
    [190]
    L. Chen, Z. Lan, Polydatin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation by inhibiting NF-κB/NLRP3 inflammasome activation via the AMPK/SIRT1 pathway, Food Funct. 8 (2017) 1785-1792.
    [191]
    Q. Xin, R. Yuan, W. Shi, et al., A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders, Life Sci. 237 (2019), 116925.
    [192]
    L. Zhang, W. Wei, Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony, Pharmacol. Ther. 207 (2020), 107452.
    [193]
    T. Wang, X. Zhou, G. Kuang, et al., Paeoniflorin modulates oxidative stress, inflammation and hepatic stellate cells activation to alleviate CCl4-induced hepatic fibrosis by upregulation of heme oxygenase-1 in mice, J. Pharm. Pharmacol. 73 (2021) 338-346.
    [194]
    T. Zhang, Q. Zhu, Y. Shao, et al., Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy, Biosci. Trends 11 (2017) 308-318.
    [195]
    S.K. Bhattamisra, H.M. Koh, S.Y. Lim, et al., Molecular and biochemical pathways of catalpol in alleviating diabetes mellitus and its complications, Biomolecules 11 (2021), 323.
    [196]
    Y. Chen, Q. Liu, Z. Shan, et al., Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy, Front. Pharmacol. 10 (2019), 1477.
    [197]
    Y. Chen, J. Chen, M. Jiang, et al., Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling, Life Sci. 252 (2020), 117653.
    [198]
    L. Zhai, M. Liu, T. Wang, et al., Picroside II protects the blood-brain barrier by inhibiting the oxidative signaling pathway in cerebral ischemia-reperfusion injury, PLoS One 12 (2017), e0174414.
    [199]
    L. Wang, X. Liu, H. Chen, et al., Effect of picroside II on apoptosis induced by renal ischemia/reperfusion injury in rats, Exp. Ther. Med. 9 (2015) 817-822.
    [200]
    J. Choi, B.K. Choi, J.S. Kim, et al., Picroside II attenuates airway inflammation by downregulating the transcription factor GATA3 and Th2-related cytokines in a mouse model of HDM-induced allergic asthma, PLoS One 11 (2016), e0167098.
    [201]
    Y. Zhao, B. Yan, Z. Wang, et al., Natural polysaccharides with immunomodulatory activities, Mini Rev. Med. Chem. 20 (2020) 96-106.
    [202]
    K. Zhou, J. Zhang, C. Liu, et al., Sanziguben polysaccharides inhibit diabetic nephropathy through NF-κB-mediated anti-inflammation, Nutr. Metab. 18 (2021), 81.
    [203]
    G.H. Mao, Z.H. Zhang, F. Fei, et al., Effect of Grifola frondosa polysaccharide on anti-tumor activity in combination with 5-Fu in Heps-bearing mice, Int. J. Biol. Macromol. 121 (2019) 930-935.
    [204]
    Z. Chen, Y. Tang, A. Liu, et al., Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action, Mol. Nutr. Food Res. 61 (2017), 313.
    [205]
    X. Ma, M. Meng, L. Han, et al., Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa, Chin. J. Nat. Med. 13 (2015) 906-914.
    [206]
    M. Xu, S. Sun, J. Ge, et al., Bupleurum chinense polysaccharide improves LPS-induced senescence of RAW264.7 cells by regulating the NF-κB signaling pathway, Evid. Based Complement. Alternat. Med. 2020 (2020), 7060812.
    [207]
    L. Pan, H. Weng, H. Li, et al., Therapeutic effects of Bupleurum polysaccharides in streptozotocin induced diabetic mice, PLoS One 10 (2015), e0133212.
    [208]
    J. Wu, Y. Zhang, L. Guo, et al., Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating toll-like receptor 4 signaling, PLoS One 8 (2013), e78051.
    [209]
    C.H. Yang, C. Su, S. Liu, et al., Isolation, anti-inflammatory activity and physico-chemical properties of bioactive polysaccharides from fruiting bodies of cultivated Cordyceps cicadae (ascomycetes), Int. J. Med. Mushrooms 21 (2019) 995-1006.
    [210]
    O.J. Olatunji, Y. Feng, O.O. Olatunji, et al., Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage, Carbohydr. Polym. 153 (2016) 187-195.
    [211]
    Y. Zhu, X. Yu, Q. Ge, et al., Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae, Int. J. Biol. Macromol. 157 (2020) 394-400.
    [212]
    X. Zhang, J. Li, B. Yang, et al., Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats, Chem. Biodivers. 18 (2021), e2100065.
    [213]
    X. Gong, N. Chen, K. Ren, et al., The fruits of Siraitia grosvenorii: A review of a Chinese food-medicine, Front. Pharmacol. 10 (2019), 1400.
    [214]
    Y. Zhu, L. Pan, L. Zhang, et al., Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii, Int. J. Biol. Macromol. 165 (2020) 1900-1910.
    [215]
    P. Gong, M. Wang, Y. Guo, et al., Structure characterization, in vitro antioxidant and anti-tumor activity of sulfated polysaccharide from Siraitia grosvenorii, Foods 12 (2023), 2133.
    [216]
    G. Lin, T. Jiang, X. Hu, et al., Effect of Siraitia grosvenorii polysaccharide on glucose and lipid of diabetic rabbits induced by feeding high fat/high sucrose chow, Exp. Diabetes Res. 2007 (2007), 67435.
    [217]
    A. Galano, R.J. Reiter, Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection, J. Pineal Res. 65 (2018), e12514.
    [218]
    S.M. Nabavi, S.F. Nabavi, A. Sureda, et al., Anti-inflammatory effects of Melatonin: A mechanistic review, Crit. Rev. Food Sci. Nutr. 59 (2019) S4-S16.
    [219]
    M.H. Asghari, M. Moloudizargari, E. Ghobadi, et al., Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer, Life Sci. 185 (2017) 38-45.
    [220]
    M. Pohanka, New uses of melatonin as a drug; A review, Curr. Med. Chem. 29 (2022) 3622-3637.
    [221]
    M. Satari, F. Bahmani, Z. Reiner, et al., Metabolic and anti-inflammatory response to melatonin administration in patients with diabetic nephropathy, Iran. J. Kidney Dis. 1 (2021) 22-30.
    [222]
    H. Ebaid, S.A.E. Bashandy, A.M. Abdel-Mageed, et al., Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress, Nutr. Metab. 17 (2020), 6.
    [223]
    H. Tang, M. Yang, Y. Liu, et al., Melatonin alleviates renal injury by activating mitophagy in diabetic nephropathy, Front. Endocrinol. 13 (2022), 889729.
    [224]
    Z. Lin, X. Cheng, H. Zheng, Umbelliferon: A review of its pharmacology, toxicity and pharmacokinetics, Inflammopharmacology 31 (2023) 1731-1750.
    [225]
    J. Naowaboot, N. Somparn, S. Saentaweesuk, et al., Umbelliferone improves an impaired glucose and lipid metabolism in high-fat diet/streptozotocin-induced type 2 diabetic rats, Phytother. Res. 29 (2015) 1388-1395.
    [226]
    J. Yin, H. Wang, G. Lu, Umbelliferone alleviates hepatic injury in diabetic db/db mice via inhibiting inflammatory response and activating Nrf2-mediated antioxidant, Biosci. Rep. 38 (2018), BSR20180444.
    [227]
    T. Jin, C. Chen, Umbelliferone delays the progression of diabetic nephropathy by inhibiting ferroptosis through activation of the Nrf-2/HO-1 pathway, Food Chem. Toxicol. 163 (2022), 112892.
    [228]
    L. Wang, J. Cao, Q. Xu, et al., 2-dodecyl-6-methoxycyclohexa-2, 5-diene-1, 4-Dione ameliorates diabetic cognitive impairment through inhibiting Hif3α and apoptosis, Front. Pharmacol. 12 (2021), 708141.
    [229]
    B.S. Park, D.H. Song, H.M. Kim, et al., The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex, Nature 458 (2009) 1191-1195.
    [230]
    M. Zusso, G. Mercanti, F. Belluti, et al., Phenolic 1, 3-diketones attenuate lipopolysaccharide-induced inflammatory response by an alternative magnesium-mediated mechanism, Br. J. Pharmacol. 174 (2017) 1090-1103.
    [231]
    N. Resman, H. Gradisar, J. Vasl, et al., Taxanes inhibit human TLR4 signaling by binding to MD-2, FEBS Lett. 582 (2008) 3929-3934.
    [232]
    M. Chu, R. Ding, Z. Chu, et al., Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor, BMC Complement. Altern. Med. 14 (2014), 89.
    [233]
    J. Gong, J. Li, H. Dong, et al., Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88, BMC Complement. Altern. Med. 19 (2019), 314.
    [234]
    X. Niu, Y. Yu, H. Guo, et al., Molecular modeling reveals the inhibition mechanism and binding mode of ursolic acid to TLR4-MD2, Comput. Theor. Chem. 1123 (2018) 73-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (64) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return