Volume 14 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Shu Yang, Zhonghua Wang, Yanhua Liu, Xin Zhang, Hang Zhang, Zhaoying Wang, Zhi Zhou, Zeper Abliz. Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100944. doi: 10.1016/j.jpha.2024.01.012
Citation: Shu Yang, Zhonghua Wang, Yanhua Liu, Xin Zhang, Hang Zhang, Zhaoying Wang, Zhi Zhou, Zeper Abliz. Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100944. doi: 10.1016/j.jpha.2024.01.012

Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride

doi: 10.1016/j.jpha.2024.01.012
Funds:

This research was supported by the National Natural Science Foundation of China (Grant No.: 21927808) and the National Key Research and Development Program of China (Grant No.: 2017YFC1704006).

  • Received Date: Sep. 26, 2023
  • Accepted Date: Jan. 31, 2024
  • Rev Recd Date: Jan. 04, 2024
  • Publish Date: Feb. 03, 2024
  • Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development. In this study, we present an innovative, integrated approach that combines air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride (NC), a promising anti-tumor drug candidate. Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney, particularly within the inner cortex (IC) region, following single and repeated dose of NC. High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule. Employing spatial metabolomics based on AFADESI-MSI, we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure. These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters (organic cation transporters, multidrug and toxin extrusion, and organic cation transporter 2 (OCT2)), metabolic enzymes (protein arginine N-methyltransferase (PRMT) and nitric oxide synthase), mitochondria, oxidative stress, and inflammation in NC-induced nephrotoxicity. This study offers novel insights into NC-induced renal damage, representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.

  • loading
  • [1]
    Q. Lu, R. Ma, Y. Yang, et al., Zanthoxylum nitidum (Roxb.) DC: Traditional uses, phytochemistry, pharmacological activities and toxicology, J. Ethnopharmacol. 260 (2020), 112946.
    [2]
    J. Hu, W. Zhang, R. Liu, et al., Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC, and their analgesic and anti-inflammatory activities, Chem. Biodivers. 3 (2006) 990-995.
    [3]
    N. Yang, R. Yue, J. Ma, et al., Nitidine chloride exerts anti-inflammatory action by targeting Topoisomerase I and enhancing IL-10 production, Pharmacol. Res. 148 (2019), 104368.
    [4]
    J. Bouquet, M. Rivaud, S. Chevalley, et al., Biological activities of nitidine, a potential anti-malarial lead compound, Malar. J. 11 (2012), 67.
    [5]
    Q. Lu, C. Li, G. Wu, Insight into the inhibitory effects of Zanthoxylum nitidum against Helicobacter pylori urease and jack bean urease: Kinetics and mechanism, J. Ethnopharmacol. 249 (2020), 112419.
    [6]
    G. Yang, D. Chen, Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects, Chem. Biodivers. 5 (2008) 1718-1722.
    [7]
    L. Liu, D. Xiong, P. Lin, et al., DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride, Int. J. Oncol. 53 (2018) 1897-1912.
    [8]
    J. Chen, J. Wang, L. Lin, et al., Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer, Mol. Cancer Ther. 11 (2012) 277-287.
    [9]
    M. Sun, N. Zhang, X. Wang, et al., Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells, Cell Biosci. 6 (2016), 44.
    [10]
    F. Ding, T. Liu, N. Yu, et al., Nitidine chloride inhibits proliferation, induces apoptosis via the Akt pathway and exhibits a synergistic effect with doxorubicin in ovarian cancer cells, Mol. Med. Rep. 14 (2016) 2853-2859.
    [11]
    H. Xu, T. Cao, X. Zhang, et al., Nitidine chloride inhibits SIN1 expression in osteosarcoma cells, Mol. Ther. Oncolytics 12 (2019) 224-234.
    [12]
    L. Li, M. Tu, X. Yang, et al., The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity, Drug Metab. Dispos. 42 (2014) 1227-1234.
    [13]
    Y. Hong, W. Xu, J. Feng, et al., Nitidine chloride induces cardiac hypertrophy in mice by targeting autophagy-related 4B cysteine peptidase, Acta Pharmacol. Sin. 44 (2023) 561-572.
    [14]
    L. Li, F.F. Song, Y.Y. Weng, et al., Role of OCT2 and MATE1 in renal disposition and toxicity of nitidine chloride, Br. J. Pharmacol. 173 (2016) 2543-2554.
    [15]
    C.B. Lietz, E. Gemperline, L. Li, Qualitative and quantitative mass spectrometry imaging of drugs and metabolites, Adv. Drug Deliv. Rev. 65 (2013) 1074-1085.
    [16]
    J. He, C. Sun, T. Li, et al., A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology, Adv. Sci. (Weinh.) 5 (2018), 1800250.
    [17]
    D. Liu, J. Huang, S. Gao, et al., A temporo-spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging, Acta Pharm. Sin. B 12 (2022) 3341-3353.
    [18]
    B. Jin, X. Pang, Q. Zang, et al., Spatiotemporally resolved metabolomics and isotope tracing reveal CNS drug targets, Acta Pharm. Sin. B 13 (2023) 1699-1710.
    [19]
    E.M. Wans, M.M. Ahmed, A.A. Mousa, et al., Ameliorative effects of corn silk extract on acetaminophen-induced renal toxicity in rats, Environ. Sci. Pollut. Res. Int. 28 (2021) 1762-1774.
    [20]
    F. Jia, X. Zhao, Y. Zhao, Advancements in ToF-SIMS imaging for life sciences, Front. Chem. 11 (2023), 1237408.
    [21]
    A.V. Bensussan, J. Lin, C. Guo, et al., Distinguishing non-small cell lung cancer subtypes in fine needle aspiration biopsies by desorption electrospray ionization mass spectrometry imaging, Clin. Chem. 66 (2020) 1424-1433.
    [22]
    Y. Zhu, Q. Zang, Z. Luo, et al., An organ-specific metabolite annotation approach for ambient mass spectrometry imaging reveals spatial metabolic alterations of a whole mouse body, Anal. Chem. 94 (2022) 7286-7294.
    [23]
    K. Qi, L. Wu, C. Liu, et al., Recent advances of ambient mass spectrometry imaging and its applications in lipid and metabolite analysis, Metabolites 11 (2021), 780.
    [24]
    Y. Lin, K. Wu, F. Jia, et al., Single cell imaging reveals cisplatin regulating interactions between transcription (co) factors and DNA, Chem. Sci. 12 (2021) 5419-5429.
    [25]
    Z. Wang, B. He, Y. Liu, et al., In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging, Acta Pharm. Sin. B 10 (2020) 1083-1093.
    [26]
    C.B.A. Stoffels, T.B. Angerer, H. Robert, et al., Lipidomic profiling of PFOA-exposed mouse liver by multi-modal mass spectrometry analysis, Anal. Chem. 95 (2023) 6568-6576.
    [27]
    D.S. Wishart, Y.D. Feunang, A. Marcu, et al., HMDB 4.0: The human metabolome database for 2018, Nucleic Acids Res. 46 (2018) D608-D617.
    [28]
    C.A. Smith, G. O’Maille, E.J. Want, et al., METLIN: A metabolite mass spectral database, Ther. Drug Monit. 27 (2005) 747-751.
    [29]
    Z. Zeng, H. Yang, Y. Wang, et al., Omega-3 polyunsaturated fatty acids attenuate fibroblast activation and kidney fibrosis involving MTORC2 signaling suppression, Sci. Rep. 7 (2017), 46146.
    [30]
    Z. Wang, W. Fu, M. Huo, et al., Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging, Acta Pharm. Sin. B 11 (2021) 3665-3677.
    [31]
    H. Shapiro, M. Theilla, J. Attal-Singer, et al., Effects of polyunsaturated fatty acid consumption in diabetic nephropathy, Nat. Rev. Nephrol. 7 (2011) 110-121.
    [32]
    J.N. van der Veen, J.P. Kennelly, S. Wan, et al., The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease, Biochim. Biophys. Acta Biomembr. 1859 (2017) 1558-1572.
    [33]
    T. Xu, X. Xu, L. Zhang, et al., Lipidomics reveals serum specific lipid alterations in diabetic nephropathy, Front. Endocrinol. 12 (2021), 781417.
    [34]
    F. Yang, L. Ren, L. Zhuo, et al., Involvement of oxidative stress in the mechanism of triptolide-induced acute nephrotoxicity in rats, Exp. Toxicol. Pathol. 64 (2012) 905-911.
    [35]
    S.M. Lam, Y. Wang, B. Li, et al., Metabolomics through the lens of precision cardiovascular medicine, J. Genet. Genom. 44 (2017) 127-138.
    [36]
    Y. Li, H. Deng, L. Ju, et al., Screening and validation for plasma biomarkers of nephrotoxicity based on metabolomics in male rats, Toxicol. Res. 5 (2016) 259-267.
    [37]
    M.M. Adeva-Andany, I. Calvo-Castro, C. Fernandez-Fernandez, et al., Significance of l-carnitine for human health, IUBMB Life 69 (2017) 578-594.
    [38]
    N. Longo, M. Frigeni, M. Pasquali, Carnitine transport and fatty acid oxidation, Biochim. Biophys. Acta 1863 (2016) 2422-2435.
    [39]
    J. Liu, E. Head, H. Kuratsune, et al., Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress biomarkers in the brain of old rats, Ann. N Y Acad. Sci. 1033 (2004) 117-131.
    [40]
    T. Ulinski, M. Cirulli, M.A. Virmani, The role of L-carnitine in kidney disease and related metabolic dysfunctions, Kidney Dial. 3 (2023) 178-191.
    [41]
    J. Pekala, B. Patkowska-Sokola, R. Bodkowski, et al., L-Carnitine: Metabolic functions and meaning in humans life, Curr. Drug Metab. 12 (2011) 667-678.
    [42]
    R.J.A. Wanders, G. Visser, S. Ferdinandusse, et al., Mitochondrial fatty acid oxidation disorders: Laboratory diagnosis, pathogenesis, and the complicated route to treatment, J. Lipid Atheroscler. 9 (2020) 313-333.
    [43]
    S. Illsinger, N. Janzen, S. Sander, et al., Preeclampsia and HELLP syndrome: Impaired mitochondrial function in umbilical endothelial cells, Reprod. Sci. 17 (2010) 219-226.
    [44]
    C. Baylis, Arginine, arginine analogs and nitric oxide production in chronic kidney disease, Nat. Clin. Pract. Nephrol. 2 (2006) 209-220.
    [45]
    C.R. Martens, J.M. Kuczmarski, S. Lennon-Edwards, et al., Impaired L-arginine uptake but not arginase contributes to endothelial dysfunction in rats with chronic kidney disease, J. Cardiovasc. Pharmacol. 63 (2014) 40-48.
    [46]
    G. Wu, S.M. Morris Jr., Arginine metabolism: Nitric oxide and beyond, Biochem. J. 336 (1998) 1-17.
    [47]
    D. Tsikas, Urinary dimethylamine (DMA) and its precursor asymmetric dimethylarginine (ADMA) in clinical medicine, in the context of nitric oxide (NO) and beyond, J. Clin. Med. 9 (2020), 1843.
    [48]
    M.D. Fulton, T. Brown, Y.G. Zheng, The biological axis of protein arginine methylation and asymmetric dimethylarginine, Int. J. Mol. Sci. 20 (2019), 3322.
    [49]
    A.E. El-Sadek, E.G. Behery, A.A. Azab, et al., Arginine dimethylation products in pediatric patients with chronic kidney disease, Ann. Med. Surg. 2012 9 (2016) 22-27.
    [50]
    E. Guccione, S. Richard, The regulation, functions and clinical relevance of arginine methylation, Nat. Rev. Mol. Cell Biol. 20 (2019) 642-657.
    [51]
    R.S. Blanc, S. Richard, Arginine methylation: The coming of age, Mol. Cell 65 (2017) 8-24.
    [52]
    E. Smith, W. Zhou, P. Shindiapina, et al., Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy, Expert Opin. Ther. Targets 22 (2018) 527-545.
    [53]
    B.Y. Ahn, M.H. Jeong, J.H. Pyun, et al., PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation, Cell. Mol. Life Sci. 79 (2022), 99.
    [54]
    A. Jeong, Y. Cho, M. Cho, et al., PRMT7 inhibitor SGC8158 enhances doxorubicin-induced DNA damage and its cytotoxicity, Int. J. Mol. Sci. 23 (2022), 12323.
    [55]
    J.W. Hwang, Y. Cho, G.U. Bae, et al., Protein arginine methyltransferases: Promising targets for cancer therapy, Exp. Mol. Med. 53 (2021) 788-808.
    [56]
    S. Benito, A. Sanchez, N. Unceta, et al., LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: Application to identify potential biomarkers in pediatric chronic kidney disease, Anal. Bioanal. Chem. 408 (2016) 747-760.
    [57]
    S. Mathialagan, A.D. Rodrigues, B. Feng, Evaluation of renal transporter inhibition using creatinine as a substrate in vitro to assess the clinical risk of elevated serum creatinine, J. Pharm. Sci. 106 (2017) 2535-2541.
    [58]
    W.S. Waring, A. Moonie, Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury, Clin. Toxicol. (Phila.) 49 (2011) 720-728.
    [59]
    O. Lopes Abath Neto, L. Medne, S. Donkervoort, et al., MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase, Brain 144 (2021) 2722-2731.
    [60]
    J.R. Poortmans, M. Francaux, Adverse effects of creatine supplementation: Fact or fiction? Sports Med. 30 (2000) 155-170.
    [61]
    Z. Wang, B. He, C. Sun, et al., Study on tissue distribution of a variety of endogenous metabolites by air flow assisted ionization-ultra high resolution mass spectrometry imaging, Chin. J. Anal. Chem. 46 (2018) 406-411.
    [62]
    J. Feng, X. Yang, R. Huang, et al., Development and validation of an LC-ESI-MS/MS method for the determination of nitidine chloride in rat plasma, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 887-888 (2012) 43-47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (132) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return