Citation: | Shaowei Huang, Xueqian Xie, Bo Xu, Zengfeng Pan, Junjie Liang, Meiling Zhang, Simin Pan, Xiaojing Wang, Meng Zhao, Qing Wang, Jinyan Chen, Yanyang Li, Lian Zhou, Xia Luo. Paeoniflorin ameliorates chronic colitis via the DR3 signaling pathway in group 3 innate lymphoid cells[J]. Journal of Pharmaceutical Analysis, 2024, 14(6): 100940. doi: 10.1016/j.jpha.2024.01.008 |
Inhibiting the death receptor 3 (DR3) signaling pathway in group 3 innate lymphoid cells (ILC3s) presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis (UC). Paeoniflorin, a prominent component of Paeonia lactiflora Pall., has demonstrated the ability to restore barrier function in UC mice, but the precise mechanism remains unclear. In this study, we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s. C57BL/6 mice were subjected to random allocation into 7 distinct groups, namely the control group, the 2% dextran sodium sulfate (DSS) group, the paeoniflorin groups (25, 50, and 100 mg/kg), the anti-tumor necrosis factor-like ligand 1A (anti-TL1A) antibody group, and the IgG group. We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry, respectively. Meanwhile, DR3-overexpressing MNK-3 cells and 2% DSS-induced Rag1-/- mice were used for verification. The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier. Simultaneously, paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines (interleukin-17A, granulocyte-macrophage colony stimulating factor, and interleukin-22). Alternatively, paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system. We additionally confirmed that paeoniflorin-conditioned medium (CM) restored the expression of tight junctions in Caco-2 cells via coculture. In conclusion, paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner, and its mechanism is associated with the inhibition of the DR3 signaling pathway.
[1] |
T. Raine, S. Bonovas, J. Burisch, et al., ECCO guidelines on therapeutics in ulcerative colitis:Medical treatment, J. Crohns Colitis 16(2022)2-17.
|
[2] |
R.P. Hirten, B.E. Sands, New therapeutics for ulcerative colitis, Annu. Rev. Med. 72(2021)199-213.
|
[3] |
T. Rath, R. Atreya, J. Bodenschatz, et al., Intestinal barrier healing is superior to endoscopic and histologic remission for predicting major adverse outcomes in inflammatory bowel disease:The prospective ERIca trial, Gastroenterology 164(2023)241-255.
|
[4] |
J. Li, W. Shi, H. Sun, et al., Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation, Nat. Commun. 10(2019), 3371.
|
[5] |
N. Porquet, A. Poirier, F. Houle, et al., Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of death receptor-3, BMC Cancer 11(2011), 285.
|
[6] |
J.G. Castellanos, V. Woo, M. Viladomiu, et al., Microbiota-induced TNF-like ligand 1A drives group 3 innate lymphoid cell-mediated barrier protection and intestinal T cell activation during colitis, Immunity 49(2018)1077-1089.e5.
|
[7] |
L. Chen, H. Qi, D. Jiang, et al., The new use of an ancient remedy:a double-blinded randomized study on the treatment of rheumatoid arthritis, Am. J. Chin. Med. 41(2013)263-280.
|
[8] |
X. Luo, X. Wang, S. Huang, et al., Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway, Int. Immunopharmacol. 90(2021), 107224.
|
[9] |
J. Li, S. Ren, M. Li, et al., Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration, Int. Immunopharmacol. 97(2021), 107667.
|
[10] |
H.S. Cooper, S.N. Murthy, R.S. Shah, et al., Clinicopathologic study of dextran sulfate sodium experimental murine colitis, Lab. Invest. 69(1993)238-249.
|
[11] |
S. Huang, X. Wang, X. Xie, et al., Dahuang Mudan Decoction repairs intestinal barrier in chronic colitic mice by regulating the function of ILC3, J. Ethnopharmacol. 299(2022), 115652.
|
[12] |
S. Huang, Y. Fu, B. Xu, et al., Wogonoside alleviates colitis by improving intestinal epithelial barrier function via the MLCK/pMLC2 pathway, Phytomedicine. 68(2020), 153179.
|
[13] |
S. Danese, M. Klopocka, E.J. Scherl, et al., Anti-TL1A antibody PF-06480605 safety and efficacy for ulcerative colitis:A phase 2a single-arm study, Clin. Gastroenterol. Hepatol. 19(2021)2324-2332.e6.
|
[14] |
G. Esposito, E. Capoccia, F. Turco, et al., Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation, Gut 63(2014)1300-1312.
|
[15] |
J. Chang, R.W. Leong, V.C. Wasinger, et al., Impaired intestinal permeability contributes to ongoing bowel symptoms in patients with inflammatory bowel disease and mucosal healing, Gastroenterology 153(2017)723-731. e1.
|
[16] |
R.F. Loeser, L. Arbeeva, K. Kelley, et al., Association of increased serum lipopolysaccharide, but not microbial dysbiosis, with obesity-related osteoarthritis, Arthritis Rheumatol. 74(2022)227-236.
|
[17] |
C.H.T. Hall, J.S. Lee, E.M. Murphy, et al., Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, epithelial integrity, and barrier function, Gastroenterology 159(2020)984-998.e1.
|
[18] |
Y. Kurashima, H. Kiyono, Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing, Annu. Rev. Immunol. 35(2017)119-147.
|
[19] |
F. Meylan, A.C. Richard, R.M. Siegel, TL1A and DR3, a TNF family ligand-receptor pair that promotes lymphocyte costimulation, mucosal hyperplasia, and autoimmune inflammation, Immunol. Rev. 244(2011)188-196.
|
[20] |
D.S.J. Allan, C.L. Kirkham, O.A. Aguilar, et al., An in vitro model of innate lymphoid cell function and differentiation, Mucosal Immunol. 8(2015)340-351.
|
[21] |
D. M. Molina, R. Jafari, M. Ignatushchenko, et al., Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay, Science 341(2013)84-87.
|
[22] |
M. Camilleri, K. Madsen, R. Spiller, et al., Intestinal barrier function in health and gastrointestinal disease, Neuro Gastroenterol. Motil. 24(2012)503-512.
|
[23] |
G. de Palma, M.D. Lynch, J. Lu, et al., Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice, Sci. Transl. Med. 9(2017), eaaf6397.
|
[24] |
E.F. Stange, Improvement of a ‘leaky' intestinal barrier, Dig. Dis. 35(2017)21-24.
|
[25] |
L. Thoo, M. Noti, P. Krebs, Keep calm:the intestinal barrier at the interface of peace and war, Cell Death Dis. 10(2019), 849.
|
[26] |
T. Breugelmans, H. Van Spaendonk, J.G. De Man, et al., In-depth study of transmembrane mucins in association with intestinal barrier dysfunction during the course of T cell transfer and DSS-induced colitis, J. Crohns Colitis 14(2020)974-994.
|
[27] |
B. Zeng, S. Shi, G. Ashworth, et al., ILC3 function as a double-edged sword in inflammatory bowel diseases, Cell Death Dis. 10(2019), 315.
|
[28] |
V. Mitsialis, S. Wall, P. Liu, et al., Single-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's disease, Gastroenterology 159(2020)591-608.e10.
|
[29] |
P. Aparicio-Domingo, M. Romera-Hernandez, J.J. Karrich, et al., Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage, J. Exp. Med. 212(2015)1783-1791.
|
[30] |
W.B. Su, Y.H. Chang, W. Lin, et al., Differential regulation of interleukin-8 gene transcription by death receptor 3(DR3) and type I TNF receptor (TNFRI), Exp. Cell Res. 312(2006)266-277.
|
[31] |
D. Wallach, E.E. Varfolomeev, N.L. Malinin, et al., Tumor necrosis factor receptor and Fas signaling mechanisms, Annu. Rev. Immunol. 17(1999)331-367.
|
[32] |
B. Liu, B. Ye, X. Zhu, et al., An inducible circular RNA circKcnt2 inhibits ILC3 activation to facilitate colitis resolution, Nat. Commun. 11(2020), 4076.
|
[33] |
W. Zhou, G.F. Sonnenberg, Activation and suppression of group 3 innate lymphoid cells in the gut, Trends Immunol. 41(2020)721-733.
|
[34] |
Y.Y. Li, X.J. Wang, Y.L. Su, et al., Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s, Acta Pharmacol. Sin. 43(2022)1495-1507.
|