Turn off MathJax
Article Contents
Dayue Liu, Anning Yang, Yulin Li, Zhenxian Li, Peidong You, Hongwen Zhang, Shangkun Quan, Yue Sun, Yaling Zeng, Shengchao Ma, Jiantuan Xiong, Yinju Hao, Guizhong Li, Bin Liu, Huiping Zhang, Yideng Jiang. Targeted delivery of rosuvastatin enhances treatment of HHcy-induced atherosclerosis using macrophage membrane-coated nanoparticles[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.01.005
Citation: Dayue Liu, Anning Yang, Yulin Li, Zhenxian Li, Peidong You, Hongwen Zhang, Shangkun Quan, Yue Sun, Yaling Zeng, Shengchao Ma, Jiantuan Xiong, Yinju Hao, Guizhong Li, Bin Liu, Huiping Zhang, Yideng Jiang. Targeted delivery of rosuvastatin enhances treatment of HHcy-induced atherosclerosis using macrophage membrane-coated nanoparticles[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2024.01.005

Targeted delivery of rosuvastatin enhances treatment of HHcy-induced atherosclerosis using macrophage membrane-coated nanoparticles

doi: 10.1016/j.jpha.2024.01.005
  • Received Date: Oct. 18, 2023
  • Accepted Date: Jan. 11, 2024
  • Rev Recd Date: Jan. 06, 2024
  • Available Online: Jan. 15, 2024
  • Rosuvastatin (RVS) is an excellent drug with anti-inflammatory and lipidlowering properties in the academic and medical fields. However, this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia (HHcy), including high oral dosage, poor targeting, and longterm toxic side effects. In this study, we applied nanotechnology to construct a biomimetic nano-delivery system, macrophage membrane (Møm)-coated RVS-loaded Prussian blue (PB) nanoparticles (MPR NPs), for improving the bioavailability and targeting capacity of RVS, specifically to the plaque lesions associated with HHcyinduced atherosclerosis. In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4 (TLR4)/hypoxia-inducible factor-1α (HIF-1α/nucleotide-binding and oligomerization domain (NOD)-like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathways, reducing pyroptosis and inflammatory response in macrophages. Additionally, MPR NPs reversed the abnormal distribution of ABCA1/ABCG1 caused by HIF-1α, promoting cholesterol efflux and reducing lipid deposition. In vivo studies using apolipoprotein E knockout (ApoE-/-) mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable biosecurity, the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes. These findings suggest that the synthesis of Møm-coated RVS-loaded PB NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
  • loading
  • [1]
    N. Zhang, L. Zhu, X. Wu, et al., The regulation of Ero1-alpha in homocysteineinduced macrophage apoptosis and vulnerable plaque formation in atherosclerosis, Atherosclerosis 334(2021) 39–47.
    [2]
    X. Lu, Impact of macrophages in atherosclerosis, Curr. Med. Chem. 23(2016) 1926–1937.
    [3]
    J. Shah, V. Lingiah, N. Pyrsopoulos, et al., Acute Liver Injury in a Patient Treated With Rosuvastatin: A Rare Adverse Effect. Gastroenterology Res. 12(2019) 263–266.
    [4]
    M. Cheraghi, B. Negahdari, H. Daraee, et al., Heart targeted nanoliposomal/nanoparticles drug delivery: An updated review, Biomed. Pharmacother. 86(2017) 316-323.
    [5]
    Z. Qin, Y. Li, N. Gu, Progress in applications of Prussian blue nanoparticles in biomedicine, Adv. Healthc. Mater. 7(2018), e1800347.
    [6]
    Y. Zhang, Y. Yin, W. Zhang, et al., Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis, J. Nanobiotechnology. 19(2021), 161.
    [7]
    J. Lopes, D. Lopes, M. Pereira-Silva, et al., Macrophage cell membrane-cloaked nanoplatforms for biomedical applications, Small Methods 6(2022), e2200289.
    [8]
    R. Wang, Y. Wang, N. Mu, et al., Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoEdeficient mice, Lab Invest. 97(2017) 922–934.
    [9]
    J. Shi, Y. Zhao, K. Wang, et al., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature 526(2015) 660–665.
    [10]
    P. Yu, X. Zhang, N. Liu, et al., Pyroptosis: mechanisms and diseases, Signal Transduct. Target. Ther. 6(2021), 128.
    [11]
    S. Ma, Y. Hao, Y. Jiao, et al., Homocysteine-induced oxidative stress through TLR4/NF-κB/DNMT1-mediated LOX-1 DNA methylation in endothelial cells, Mol. Med. Rep. 16(2017) 9181–9188.
    [12]
    M. Xu, Z. Ye, X. Zhao, et al., Deficiency of tenascin-C attenuated cardiac injury by inactivating TLR4/NLRP3/caspase-1 pathway after myocardial infarction, Cell. Signal. 86(2021), 110084.
    [13]
    Z. Hong, X. Zhang, T. Zhang, et al., The ROS/GRK2/HIF-1α/NLRP3 pathway mediates pyroptosis of fibroblast-like synoviocytes and the regulation of monomer derivatives of paeoniflorin, Oxid. Med. Cell. Longev. 2022(2022), 4566851.
    [14]
    R. Chen, T. Chen, Z. Zhou, et al., Integrated pyroptosis measurement and metabolomics to elucidate the effect and mechanism of tangzhiqing on atherosclerosis, Front. Physiol. 13(2022), 937737.
    [15]
    Y. Yang, Y. Zhang, Y. Xu, et al., Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice, Food Funct. 10(2019) 5952–5968.
    [16]
    Q. Chen, C. Wang, F. Zhao, et al., Effects of methionine partially replaced by methionyl-methionine dipeptide on intestinal function in methionine-deficient pregnant mice, J. Anim. Physiol. Anim. Nutr. 103(2019) 1610–1618.
    [17]
    M. Witkowski, T. Weeks, S. Hazen, Gut microbiota and cardiovascular disease, Circ Res. 127(2020) 553–570.
    [18]
    X. Liang,H. Li,X. Li, et al., Highly sensitive H2O2-scavenging nano-bionic system for precise treatment of atherosclerosis, Acta Pharm. Sin. B 13(2023) 372–389.
    [19]
    X. Zhang, Y. Qin, X. Wan, et al., Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities, J. Transl. Med. 19(2021), 62.
    [20]
    J. Nickels, K. Bonifer, R. Tindall, et al., Improved chemical and isotopic labeling of biomembranes in Bacillus subtilis by leveraging CRISPRi inhibition of betaketoacyl-ACP synthase (fabF), Front. Mol. Biosci. 9(2022), 1011981.
    [21]
    X. Hou, H. Zeng, X. Chi, et al., Pathogen receptor membrane-coating facet structures boost nanomaterial immune escape and antibacterial performance, Nano Lett. 21(2021) 9966–9975.
    [22]
    J. Calderwood, J. Williams, M. Morgan, et al., ANCA induces beta2 integrin and CXC chemokine-dependent neutrophil-endothelial cell interactions that mimic those of highly cytokine-activated endothelium. J Leukoc Biol. 77(2005) 33–43.
    [23]
    X. Chen, Q. Wang, L. Liu, et al., Double-sided effect of tumor microenvironment on platelets targeting nanoparticles, Biomaterials 183(2018) 258–267.
    [24]
    N. Khatoon, Z. Zhang, C. Zhou, et al., Macrophage membrane coated nanoparticles: a biomimetic approach for enhanced and targeted delivery, Biomater. Sci. 10(2022), 1193–1208.
    [25]
    M. Linton, V. Babaev, J. Huang, et al. Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis, Circ. J. 80(2016) 2259–2268.
    [26]
    M. Lombardi, M. Mantione, D. Baccellieri, et al., P2X7 receptor antagonism modulates IL-1β and MMP9 in human atherosclerotic vessels, Sci. Rep. 7(2017), 4872.
    [27]
    J. Geng, H. Xu, W. Fu, et al. Rosuvastatin protects against endothelial cell apoptosis in vitro and alleviates atherosclerosis in ApoE-/- mice by suppressing endoplasmic reticulum stress. Exp. Ther. Med 20(2020) 550–560.
    [28]
    S. Liu, J. Tao, F. Duan, et al., HHcy induces pyroptosis and atherosclerosis via the lipid raft-mediated NOX-ROS-NLRP3 inflammasome pathway in ApoE-/- mice, Cells. 11(2022), 2438.
    [29]
    J. Yang, L. Wise, K. Fukuchi, TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in alzheimer’s disease. Front. Immunol. 11(2020), 724.
    [30]
    A. Ajoolabady, Y. Bi, D. McClements, et al., Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy, Pharmacol. Res. 176(2022), 106072.
    [31]
    Y. Wang, H. Dong, Y. Tan, et al., HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction, Cell Death Discov. 8(2022), 178.
    [32]
    X. Ma, J. Hao, J. Wu, et al., Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv. Mater. 34(2022), e2106723.
    [33]
    C. Xiao, C. Tong, J. Fan, et al., Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation, J. Control. Release 339(2021) 259–273.
    [34]
    A. Chen, Z. Chen, Y. Zhou, et al., Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation, Cell Death Dis. 12(2021), 78.
    [35]
    C. Thomas, D. Leleu, D. Masson, Cholesterol and HIF-1α: dangerous liaisons in atherosclerosis, Front. Immunol. 13(2022), 868958.
    [36]
    I. Hussain, S. Waheed, K. Ahmad, et al., Scutellaria baicalensis targets the hypoxiainducible factor-1α and enhances cisplatin efficacy in ovarian cancer, J. Cell. Biochem 119(2018) 7515–7524.
    [37]
    L. Shen, H. Li, W. Chen, et al., Integrated application of transcriptome and metabolomics reveals potential therapeutic targets for the polarization of atherosclerotic macrophages, Biochim. Biophys. Acta Mol. Basis Dis. 1848(2022), 166550.
    [38]
    L. Anto, C.N. Blesso, Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism, J. Nutr. Biochem. 105(2022), 108991.
    [39]
    H. Jian, Q. Xu, X. Wang, et al., Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valineinduced NAFLD of laying hens, Front. Nutr. 9(2022), 849767.
    [40]
    R. Cazzola, M. Rondanelli, N-Oleoyl-Phosphatidyl-Ethanolamine and Epigallo Catechin-3-Gallate Mitigate Oxidative Stress in Overweight and Class I Obese People on a Low-Calorie Diet, J. Med. Food 23(2020) 319–325.
    [41]
    H. Lee, S. Yun, J. Ha, et al. Prostaglandin D(2) stimulates phenotypic changes in vascular smooth muscle cells, Exp. Mol. Med 51(2019) 1–10.
    [42]
    H. Wu, M. Zhang, W. Li, et al., Stachydrine attenuates IL-1β-induced inflammatory response in osteoarthritis chondrocytes through the NF-κB signaling pathway, Chem. Biol. Interact. 326(2020), 109136.
    [43]
    Y. Du, X. Gu, H. Meng, et al., Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-κB and NLRP3 inflammasome, Am. J. Transl Res 10(2018) 4235–4246.
    [44]
    X. Gao, Y. Ruan, X. Zhu, et al., Deoxycholic acid promotes pyroptosis in free fatty acid-induced steatotic hepatocytes by Inhibiting PINK1-mediated mitophagy, Inflammation. 45(2022) 639–650.
    [45]
    M.M. Sayed-Ahmed, M.M. Khattab, M.Z. Gad, et al., L-carnitine prevents the progression of atherosclerotic lesions in hypercholesterolaemic rabbits, Pharmacol. Res 44(2001) 235–242.
    [46]
    R. Tabrizi, V. Ostadmohammadi, K. Lankarani, et al., The effects of inositol supplementation on lipid profiles among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials, Lipids Health Dis. 17(2018), 123.
    [47]
    K. Sachin, S.K. Karn, Microbial fabricated nanosystems: applications in drug delivery and targeting. Front. Chem. 9(2021), 617353.
    [48]
    Y. Wang, Y. Xu, X. Xu, et al., Ginkgo biloba extract ameliorates atherosclerosis via rebalancing gut flora and microbial metabolism, Phytother. Res. 36(2022) 2463–2480.
    [49]
    Z. Wang, B. Peters, M. Usyk, et al., Gut microbiota, Plasma metabolomic profiles, and Carotid artery atherosclerosis in HIV infection, Arterioscler. Thromb. Vasc. Biol. 42(2022) 1081–1093.
    [50]
    T. Zhang, Q. Li, L. Cheng, et al., Akkermansia muciniphila is a promising probiotic, Microb. Biotechnol. 12(2019) 1109-1125.
    [51]
    S. Sun, X. Xu, L. Liang, et al., Lactic acid-producing probiotic saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota, Front. Immunol. 12(2021), 777665.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (303) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return