Volume 14 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
Yini Bao, Qiyuan Shan, Keda Lu, Qiao Yang, Ying Liang, Haodan Kuang, Lu Wang, Min Hao, Mengyun Peng, Shuosheng Zhang, Gang Cao. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100933. doi: 10.1016/j.jpha.2024.01.001
Citation: Yini Bao, Qiyuan Shan, Keda Lu, Qiao Yang, Ying Liang, Haodan Kuang, Lu Wang, Min Hao, Mengyun Peng, Shuosheng Zhang, Gang Cao. Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis[J]. Journal of Pharmaceutical Analysis, 2024, 14(8): 100933. doi: 10.1016/j.jpha.2024.01.001

Renal tubular epithelial cell quality control mechanisms as therapeutic targets in renal fibrosis

doi: 10.1016/j.jpha.2024.01.001
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 82204625), the Natural Science Foundation of Zhejiang Province (Grant Nos.: LQ23H280013 and LZ22H280001), the Chinese Medicine Research Program of Zhejiang Province (Program Nos.: 2021ZZ009, 2023ZR009, and 2021ZQ023), and the Youth Natural Science Program of Zhejiang Chinese Medical University (Program No.: 2021RCZXZK14). We appreciate the great help from the Pharmaceutical Research Center and Medical Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University.

  • Received Date: Nov. 09, 2023
  • Accepted Date: Jan. 02, 2024
  • Rev Recd Date: Dec. 20, 2023
  • Publish Date: Jan. 03, 2024
  • Renal fibrosis is a devastating consequence of progressive chronic kidney disease, representing a major public health challenge worldwide. The underlying mechanisms in the pathogenesis of renal fibrosis remain unclear, and effective treatments are still lacking. Renal tubular epithelial cells (RTECs) maintain kidney function, and their dysfunction has emerged as a critical contributor to renal fibrosis. Cellular quality control comprises several components, including telomere homeostasis, ubiquitin-proteasome system (UPS), autophagy, mitochondrial homeostasis (mitophagy and mitochondrial metabolism), endoplasmic reticulum (ER, unfolded protein response), and lysosomes. Failures in the cellular quality control of RTECs, including DNA, protein, and organelle damage, exert profibrotic functions by leading to senescence, defective autophagy, ER stress, mitochondrial and lysosomal dysfunction, apoptosis, fibroblast activation, and immune cell recruitment. In this review, we summarize recent advances in understanding the role of quality control components and intercellular crosstalk networks in RTECs, within the context of renal fibrosis.

  • loading
  • [1]
    M. Zhao, L. Wang, M. Wang, et al., Targeting fibrosis, mechanisms and cilinical trials, Signal Transduct. Target. Ther. 7(2022), 206.
    [2]
    H. Yan, J. Xu, Z. Xu, et al., Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis, Biomed. Pharmacother. 143(2021), 112115.
    [3]
    R. Huang, P. Fu, L. Ma, Kidney fibrosis: From mechanisms to therapeutic medicines, Signal Transduct. Target. Ther. 8(2023), 129.
    [4]
    L. Li, H. Fu, Y. Liu, The fibrogenic niche in kidney fibrosis: Components and mechanisms, Nat. Rev. Nephrol. 18(2022) 545-557.
    [5]
    C. Pohl, I. Dikic, Cellular quality control by the ubiquitin-proteasome system and autophagy, Science 366(2019) 818-822.
    [6]
    S. Hurtley, G. Alderton, Quality control in cell biology, Science 366(2019) 816-817.
    [7]
    M.A. Nieto, R.Y. Huang, R.A. Jackson, et al., Emt: 2016, Cell 166(2016) 21-45.
    [8]
    J. Yang, P. Antin, G. Berx, et al., Guidelines and definitions for research on epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol. 21(2020) 341-352.
    [9]
    S. Brabletz, H. Schuhwerk, T. Brabletz, et al., Dynamic EMT: A multi-tool for tumor progression, EMBO J. 40(2021), e108647.
    [10]
    Y. Katsuno, R. Derynck, Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family, Dev. Cell 56(2021) 726-746.
    [11]
    S. Rayego-Mateos, S. Campillo, R.R. Rodrigues-Diez, et al., Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis, Clin. Sci. (Lond.) 135(2021) 1999-2029.
    [12]
    Y. Huang, W. Hong, X. Wei, The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis, J. Hematol. Oncol. 15(2022), 129.
    [13]
    A.P. Deshmukh, S.V. Vasaikar, K. Tomczak, et al., Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing, Proc. Natl. Acad. Sci. U. S. A. 118(2021), e2102050118.
    [14]
    B. Liu, T. Tang, L. Lv, et al., Renal tubule injury: a driving force toward chronic kidney disease, Kidney Int. 93(2018) 568-579.
    [15]
    B. Liu, T. Tang, L. Lv, How tubular epithelial cell injury contributes to renal fibrosis, Adv. Exp. Med. Biol. 1165(2019) 233-252.
    [16]
    K. Lee, G.L. Gusella, J.C. He, Epithelial proliferation and cell cycle dysregulation in kidney injury and disease, Kidney Int. 100(2021) 67-78.
    [17]
    E.M. Smith, D.F. Pendlebury, J. Nandakumar, Structural biology of telomeres and telomerase, Cell. Mol. Life Sci. 77(2020) 61-79.
    [18]
    L. Roger, F. Tomas, V. Gire, Mechanisms and regulation of cellular senescence, Int. J. Mol. Sci. 22(2021), 13173.
    [19]
    N. Herranz, J. Gil, Mechanisms and functions of cellular senescence, J. Clin. Invest. 128(2018) 1238-1246.
    [20]
    C. Ghilain, E. Gilson, M.J. Giraud-Panis, Multifunctionality of the telomere-capping shelterin complex explained by variations in its protein composition, Cells 10(2021), 1753.
    [21]
    P.P. Schrumpfova, J. Fajkus, Composition and function of telomerase-a polymerase associated with the origin of eukaryotes, Biomolecules 10(2020), 1425.
    [22]
    M. Montandon, T. Hamidouche, L. Yart, et al., Telomerase is required for glomerular renewal in kidneys of adult mice, NPJ Regen. Med. 7(2022), 15.
    [23]
    M.J. Uddin, M. Farjana, A. Moni, et al., Prospective pharmacological potential of resveratrol in delaying kidney aging, Int. J. Mol. Sci. 22(2021), 8258.
    [24]
    Q. Yin, Y. Zhao, W. Ni, et al., miR-155 deficiency protects renal tubular epithelial cells from telomeric and genomic DNA damage in cisplatin-induced acute kidney injury, Theranostics 12(2022) 4753-4766.
    [25]
    J. Aguado, F. d’Adda di Fagagna, E. Wolvetang, Telomere transcription in ageing, Ageing Res. Rev. 62(2020), 101115.
    [26]
    F. Rossiello, D. Jurk, J.F. Passos, et al., Telomere dysfunction in ageing and age-related diseases, Nat. Cell Biol. 24(2022) 135-147.
    [27]
    L. Andrade, C.E. Rodrigues, S.A. Gomes, et al., Acute kidney injury as a condition of renal senescence, Cell Transplant. 27(2018) 739-753.
    [28]
    R. Kumari, P. Jat, Mechanisms of cellular senescence: Cell cycle arrest and senescence associated secretory phenotype, Front. Cell Dev. Biol. 9(2021), 645593.
    [29]
    J. Lin, E. Epel, Stress and telomere shortening: Insights from cellular mechanisms, Ageing Res. Rev. 73(2022), 101507.
    [30]
    M. Wang, Telomere shortening promotes kidney fibrosis, Nat. Rev. Nephrol. 17(2021), 368.
    [31]
    S. Kishi, C.R. Brooks, K. Taguchi, et al., Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses, J. Clin. Invest. 129(2019) 4797-4816.
    [32]
    B. Berby, C. Bichara, A. Rives-Feraille, et al., Oxidative stress is associated with telomere interaction impairment and chromatin condensation defects in spermatozoa of infertile males, Antioxidants 10(2021), 593.
    [33]
    X.J. Chen, S.R. Kim, K. Jiang, et al., Renovascular disease induces senescence in renal scattered tubular-like cells and impairs their reparative potency, Hypertension 77(2021) 507-518.
    [34]
    J. Xu, L. Zhou, Y. Liu, Cellular senescence in kidney fibrosis: Pathologic significance and therapeutic strategies, Front. Pharmacol. 11(2020), 601325.
    [35]
    J. Zhang, Y. Li, X. Zhang, et al., Cellular senescence of renal tubular epithelial cells in renal fibrosis, Front. Endocrinol. 14(2023), 1085605.
    [36]
    B. Zhou, Y. Wan, R. Chen, et al., The emerging role of cellular senescence in renal diseases, J. Cell Mol. Med. 24(2020) 2087-2097.
    [37]
    J. Chen, W. Zhang, K. Chen, et al., Urinary DcR2 is a novel biomarker for tubulointerstitial injury in patients with diabetic nephropathy, Am. J. Physiol. Ren. Physiol. 313(2017) F273-F281.
    [38]
    J. Chen, K. Chen, F. Xiao, et al., Decoy receptor 2 mediation of the senescent phenotype of tubular cells by interacting with peroxiredoxin 1 presents a novel mechanism of renal fibrosis in diabetic nephropathy, Kidney Int. 98(2020) 645-662.
    [39]
    G.G. Jayaraj, M.S. Hipp, F.U. Hartl, Functional modules of the proteostasis network, Cold Spring Harb. Perspect. Biol. 12(2020), a033951.
    [40]
    T. Dubnikov, T. Ben-Gedalya, E. Cohen, Protein quality control in health and disease, Cold Spring Harb. Perspect. Biol. 9(2017), a023523.
    [41]
    G.A. Collins, A.L. Goldberg, The logic of the 26S proteasome, Cell 169(2017) 792-806.
    [42]
    G. Celebi, H. Kesim, E. Ozer, et al., The effect of dysfunctional ubiquitin enzymes in the pathogenesis of most common diseases, Int. J. Mol. Sci. 21(2020), 6335.
    [43]
    Y.T. Kwon, A. Ciechanover, The ubiquitin code in the ubiquitin-proteasome system and autophagy, Trends Biochem. Sci. 42(2017) 873-886.
    [44]
    J.A.M. Bard, E.A. Goodall, E.R. Greene, et al., Structure and function of the 26S proteasome, Annu. Rev. Biochem. 87(2018) 697-724.
    [45]
    C. Pla-Prats, N.H. Thoma, Quality control of protein complex assembly by the ubiquitin-proteasome system, Trends Cell Biol. 32(2022) 696-706.
    [46]
    V. Radon, M. Czesla, J. Reichelt, et al., Ubiquitin C-Terminal Hydrolase L1 is required forregulated protein degradation through theubiquitin proteasome system in kidney, Kidney Int. 93(2018) 110-127.
    [47]
    Y. Shao, W. Zhang, D. Du, et al., Ubiquitin-like protein FAT10 promotes renal fibrosis by stabilizing USP7 to prolong CHK1-mediated G2/M arrest in renal tubular epithelial cells, Aging 14(2022) 7527-7546.
    [48]
    D. Peng, M. Fu, M. Wang, et al., Targeting TGF-β signal transduction for fibrosis and cancer therapy, Mol. Cancer 21(2022), 104.
    [49]
    H. Fukasawa, The role of the ubiquitin-proteasome system in kidney diseases, Clin. Exp. Nephrol. 16(2012) 507-517.
    [50]
    L. Chen, T. Yang, D. Lu, et al., Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment, Biomed. Pharmacother. 101(2018) 670-681.
    [51]
    J. Yang, Y. Ruan, D. Wang, et al., VHL-recruiting PROTAC attenuates renal fibrosis and preserves renal function via simultaneous degradation of Smad3 and stabilization of HIF-2α, Cell Biosci. 12(2022), 203.
    [52]
    J. Song, T. Wang, X. Chi, et al., Kindlin-2 inhibits the hippo signaling pathway by promoting degradation of MOB1, Cell Rep. 29(2019) 3664-3677.e5.
    [53]
    L. Galluzzi, D.R. Green, Autophagy-independent functions of the autophagy machinery, Cell 177(2019) 1682-1699.
    [54]
    T.J. Mercer, Y. Ohashi, S. Boeing, et al., Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy, EMBO J. 40(2021), e105985.
    [55]
    T. Nishimura, S.A. Tooze, Emerging roles of ATG proteins and membrane lipids in autophagosome formation, Cell Discov. 6(2020), 32.
    [56]
    L. Li, M. Tong, Y. Fu, et al., Lipids and membrane-associated proteins in autophagy, Protein Cell 12(2021) 520-544.
    [57]
    D.J. Klionsky, G. Petroni, R.K. Amaravadi, et al., Autophagy in major human diseases, EMBO J. 40(2021), e108863.
    [58]
    S. Saha, D.P. Panigrahi, S. Patil, et al., Autophagy in health and disease: A comprehensive review, Biomed. Pharmacother. 104(2018) 485-495.
    [59]
    Z. Ma, L. Li, M.J. Livingston, et al., p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease, J. Clin. Invest. 130(2020) 5011-5026.
    [60]
    H. Wang, Y. Wang, X. Wang, et al., PTEN alleviates maladaptive repair of renal tubular epithelial cells by restoring CHMP2A-mediated phagosome closure, Cell Death Dis. 12(2021), 1087.
    [61]
    X. Peng, Y. Wang, H. Li, et al., ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury, Cell Death Dis. 10(2019), 253.
    [62]
    Y. Wang, Z. Liu, S. Shu, et al., AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury, Front. Physiol. 11(2020), 619730.
    [63]
    S. Yang, C. Lin, X. Zhuo, et al., Glucagon-like peptide-1 alleviates diabetic kidney disease through activation of autophagy by regulating AMP-activated protein kinase-mammalian target of rapamycin pathway, Am. J. Physiol. Endocrinol. Metab. 319(2020) E1019-E1030.
    [64]
    X. Liu, J. Chen, N. Sun, et al., Ginsenoside Rb1 ameliorates autophagy via the AMPK/mTOR pathway in renal tubular epithelial cells in vitro and in vivo, Int. J. Biol. Macromol. 163(2020) 996-1009.
    [65]
    A.F. MacDonald, A. Bettaieb, D.R. Donohoe, et al., Concurrent regulation of LKB1 and CaMKK2 in the activation of AMPK in castrate-resistant prostate cancer by a well-defined polyherbal mixture with anticancer properties, BMC Complement. Altern. Med. 18(2018), 188.
    [66]
    S. Liang, Y. Wu, D. Li, et al., Autophagy and renal fibrosis, Aging Dis. 13(2022) 712-731.
    [67]
    C. Liu, X. Wang, X. Wang, et al., A new LKB1 activator, piericidin analogue S14, retards renal fibrosis through promoting autophagy and mitochondrial homeostasis in renal tubular epithelial cells, Theranostics 12(2022) 7158-7179.
    [68]
    A. Li, B. Yi, H. Han, et al., Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway, Autophagy 18(2022) 877-890.
    [69]
    W. Gong, C. Luo, F. Peng, et al., Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis, Clin. Sci. (Lond.) 135(2021) 1873-1895.
    [70]
    A. Papaioannou, F. Centonze, A. Metais, et al., Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs, Life Sci. Alliance 5(2022), e202201379.
    [71]
    S. Preissler, D. Ron, Early events in the endoplasmic reticulum unfolded protein response, Cold Spring Harb. Perspect. Biol. 11(2019), a033894.
    [72]
    C. Hetz, The unfolded protein response: Controlling cell fate decisions under ER stress and beyond, Nat. Rev. Mol. Cell Biol. 13(2012) 89-102.
    [73]
    R.L. Wiseman, J.S. Mesgarzadeh, L.M. Hendershot, Reshaping endoplasmic reticulum quality control through the unfolded protein response, Mol. Cell 82(2022) 1477-1491.
    [74]
    M. Khanna, N. Agrawal, R. Chandra, et al., Targeting unfolded protein response: A new horizon for disease control, Expert Rev. Mol. Med. 23(2021), e1.
    [75]
    R. Inagi, Y. Ishimoto, M. Nangaku, Proteostasis in endoplasmic reticulum: New mechanisms in kidney disease, Nat. Rev. Nephrol. 10(2014) 369-378.
    [76]
    R. Inagi, Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury, Nephron Exp. Nephrol. 112(2009) e1-e9.
    [77]
    J. Chen, C.H. Wu, J.R. Jheng, et al., The down-regulation of XBP1, an unfolded protein response effector, promotes acute kidney injury to chronic kidney disease transition, J. Biomed. Sci. 29(2022), 46.
    [78]
    Y. Ju, Y. Su, Q. Chen, et al., Protective effects of Astragaloside IV on endoplasmic reticulum stress-induced renal tubular epithelial cells apoptosis in type 2 diabetic nephropathy rats, Biomed. Pharmacother. 109(2019) 84-92.
    [79]
    X. Wu, Y. He, Y. Jing, et al., Albumin overload induces apoptosis in renal tubular epithelial cells through a CHOP-dependent pathway, OMICS 14(2010) 61-73.
    [80]
    H. Yang, M. Niemeijer, B. van de Water, et al., ATF6 is a critical determinant of CHOP dynamics during the unfolded protein response, iScience 23(2020), 100860.
    [81]
    P. Limonta, R.M. Moretti, M. Marzagalli, et al., Role of endoplasmic reticulum stress in the anticancer activity of natural compounds, Int. J. Mol. Sci. 20(2019), 961.
    [82]
    Y. Huang, Y. Sun, Y. Cao, et al., HRD1 prevents apoptosis in renal tubular epithelial cells by mediating eIF2α ubiquitylation and degradation, Cell Death Dis. 8(2017), 3202.
    [83]
    X. Yang, W. Pan, G. Xu, et al., Mitophagy: A crucial modulator in the pathogenesis of chronic diseases, Clin. Chim. Acta 502(2020) 245-254.
    [84]
    M. Onishi, K. Yamano, M. Sato, et al., Molecular mechanisms and physiological functions of mitophagy, EMBO J. 40(2021), e104705.
    [85]
    N. Wang, P. Zhu, R. Huang, et al., PINK1: The guard of mitochondria, Life Sci. 259(2020), 118247.
    [86]
    M.A. Eldeeb, R.A. Thomas, M.A. Ragheb, et al., Mitochondrial quality control in health and in Parkinson’s disease, Physiol. Rev. 102(2022) 1721-1755.
    [87]
    S.A. Killackey, D.J. Philpott, S.E. Girardin, Mitophagy pathways in health and disease, J. Cell Biol. 219(2020), e202004029.
    [88]
    M.A. Lampert, A.M. Orogo, R.H. Najor, et al., BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation, Autophagy 15(2019) 1182-1198.
    [89]
    T.N. Nguyen, J. Sawa-Makarska, G. Khuu, et al., Unconventional initiation of PINK1/Parkin mitophagy by Optineurin, Mol. Cell 83(2023) 1693-1709.e9.
    [90]
    C. Tang, H. Han, M. Yan, et al., PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury, Autophagy 14(2018) 880-897.
    [91]
    Q. Lin, S. Li, N. Jiang, et al., PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation, Redox Biol. 26(2019), 101254.
    [92]
    L. Xiao, X. Xu, F. Zhang, et al., The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1, Redox Biol. 11(2017) 297-311.
    [93]
    Z. Fu, Z. Wang, L. Xu, et al., HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury, Redox Biol. 36(2020), 101671.
    [94]
    Q. Lin, S. Li, N. Jiang, et al., Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy, Autophagy 17(2021) 2975-2990.
    [95]
    Y. Han, S. Tang, Y. Liu, et al., AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice, Cell Death Dis. 12(2021), 925.
    [96]
    T. Liu, Q. Yang, X. Zhang, et al., Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis, Life Sci. 257(2020), 118116.
    [97]
    K. Chen, H. Dai, J. Yuan, et al., Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy, Cell Death Dis. 9(2018), 105.
    [98]
    L. Liu, F. Bai, H. Song, et al., Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy, Redox Biol. 50(2022), 102260.
    [99]
    J.A. Votava, S.R. Reese, K.M. Deck, et al., Dysregulation of the sensory and regulatory pathways controlling cellular iron metabolism in unilateral obstructive nephropathy, Am. J. Physiol. Ren. Physiol. 322(2022) F89-F103.
    [100]
    A.J. Clark, S.M. Parikh, Mitochondrial metabolism in acute kidney injury, Semin. Nephrol. 40(2020) 101-113.
    [101]
    P. Wahl, G.M. Ducasa, A. Fornoni, Systemic and renal lipids in kidney disease development and progression, Am. J. Physiol. Ren. Physiol. 310(2016) F433-F445.
    [102]
    G. Wang, B. Heijs, S. Kostidis, et al., Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation, Cell Stem Cell 29(2022) 1580-1593.e7.
    [103]
    H.M. Kang, S.H. Ahn, P. Choi, et al., Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development, Nat. Med. 21(2015) 37-46.
    [104]
    Y. Chen, Q. Yan, M. Lv, et al., Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis, Cell Death Dis. 11(2020), 994.
    [105]
    V. Miguel, J. Tituana, J.I. Herrero, et al., Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis, J. Clin. Invest. 131(2021), e140695.
    [106]
    K. Shirakawa, M. Sano, Sodium-glucose co-transporter 2 inhibitors correct metabolic maladaptation of proximal tubular epithelial cells in high-glucose conditions, Int. J. Mol. Sci. 21(2020), 7676.
    [107]
    S. Xu, P. Jia, Y. Fang, et al., Nuclear farnesoid X receptor attenuates acute kidney injury through fatty acid oxidation, Kidney Int. 101(2022) 987-1002.
    [108]
    M. Li, C. Li, Z. Ye, et al., Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice, J. Cell Mol. Med. 24(2020) 5109-5121.
    [109]
    T. Chiba, K.D. Peasley, K.R. Cargill, et al., Sirtuin 5 regulates proximal tubule fatty acid oxidation to protect against AKI, J. Am. Soc. Nephrol. 30(2019) 2384-2398.
    [110]
    S.R. Bonam, F. Wang, S. Muller, Lysosomes as a therapeutic target, Nat. Rev. Drug Discov. 18(2019) 923-948.
    [111]
    A. Ballabio, J.S. Bonifacino, Lysosomes as dynamic regulators of cell and organismal homeostasis, Nat. Rev. Mol. Cell Biol. 21(2020) 101-118.
    [112]
    M. Wu, M. Zhang, Y. Zhang, et al., Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease, Cell Death Dis. 12(2021), 958.
    [113]
    Z. Zhang, P. Yue, T. Lu, et al., Role of lysosomes in physiological activities, diseases, and therapy, J. Hematol. Oncol. 14(2021), 79.
    [114]
    W. Liu, B. Xu, L. Ye, et al., Urinary proteins induce lysosomal membrane permeabilization and lysosomal dysfunction in renal tubular epithelial cells, Am. J. Physiol. Renal Physiol. 308(2015) F639-F649.
    [115]
    S. Wang, R. Guo, Y. Su, et al., Swainsonine promotes apoptosis by impairing lysosomal function and inhibiting autophagic degradation in rat primary renal tubular epithelial cells, Chem. Biol. Interact. 336(2021), 109319.
    [116]
    R.M. Perera, C. Di Malta, A. Ballabio, MiT/TFE family of transcription factors, lysosomes, and cancer, Annu. Rev. Cancer Biol. 3(2019) 203-222.
    [117]
    S. Kim, H.S. Song, J. Yu, et al., MiT family transcriptional factors in immune cell functions, Mol. Cells 44(2021) 342-355.
    [118]
    Z. Li, Z. Liu, M. Luo, et al., The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury, Cell Death Dis. 8(2022), 239.
    [119]
    T. Yamamoto, Y. Takabatake, A. Takahashi, et al., High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney, J. Am. Soc. Nephrol. 28(2017) 1534-1551.
    [120]
    J. Nakamura, T. Yamamoto, Y. Takabatake, et al., TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney, JCI Insight 8(2023), e162498.
    [121]
    C. Yang, X. Chen, Z. Li, et al., SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy, Autophagy 17(2021) 2325-2344.
    [122]
    M. Mack, M. Yanagita, Origin of myofibroblasts and cellular events triggering fibrosis, Kidney Int. 87(2015) 297-307.
    [123]
    W. Hong, G. Zhang, H. Lu, et al., Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis, Cell Commun. Signal. 17(2019), 145.
    [124]
    V.S. LeBleu, G. Taduri, J. O’Connell, et al., Origin and function of myofibroblasts in kidney fibrosis, Nat. Med. 19(2013) 1047-1053.
    [125]
    L. Gewin, R. Zent, A. Pozzi, Progression of chronic kidney disease: Too much cellular talk causes damage, Kidney Int. 91(2017) 552-560.
    [126]
    M.V. Plikus, X. Wang, S. Sinha, et al., Fibroblasts: Origins, definitions, and functions in health and disease, Cell 184(2021) 3852-3872.
    [127]
    X. Zhao, J. Chen, H. Sun, et al., New insights into fibrosis from the ECM degradation perspective: The macrophage-MMP-ECM interaction, Cell Biosci. 12(2022), 117.
    [128]
    M.J. Livingston, S. Shu, Y. Fan, et al., Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis, Autophagy 19(2023) 256-277.
    [129]
    H. Guan, R. Peng, L. Mao, et al., Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes, Exp. Cell Res. 392(2020), 112007.
    [130]
    M. Li, F. Luan, Y. Zhao, et al., Epithelial-mesenchymal transition: An emerging target in tissue fibrosis, Exp. Biol. Med. (Maywood) 241(2016) 1-13.
    [131]
    Y. Imamichi, A. Menke, Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition, Cells Tissues Organs 185(2007) 180-190.
    [132]
    S. Xu, X. Yang, Q. Chen, et al., Leukemia inhibitory factor is a therapeutic target for renal interstitial fibrosis, EBioMedicine 86(2022), 104312.
    [133]
    A. Shen, L. Lv, Tubule epithelial cells and fibroblasts communication: Vicious cycle of renal fibrosis, EBioMedicine 86(2022), 104360.
    [134]
    E. Huang, N. Peng, F. Xiao, et al., The roles of immune cells in the pathogenesis of fibrosis, Int. J. Mol. Sci. 21(2020), 5203.
    [135]
    R. Qi, C. Yang, Renal tubular epithelial cells: The neglected mediator of tubulointerstitial fibrosis after injury, Cell Death Dis. 9(2018), 1126.
    [136]
    F. do Valle Duraes, A. Lafont, M. Beibel, et al., Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis, JCI Insight 5(2020), e130651.
    [137]
    T.T. Tapmeier, A. Fearn, K. Brown, et al., Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction, Kidney Int. 78(2010) 351-362.
    [138]
    J. Wang, J. Tian, J. Sun, et al., Two identified subsets of CD8 T cells in obstructed kidneys play different roles in inflammation and fibrosis, Aging 12(2020) 17528-17540.
    [139]
    P.C. Breda, T. Wiech, C. Meyer-Schwesinger, et al., Renal proximal tubular epithelial cells exert immunomodulatory function by driving inflammatory CD4+ T cell responses, Am. J. Physiol. Ren. Physiol. 317(2019) F77-F89.
    [140]
    M.M. Jurewicz, L.J. Stern, Class II MHC antigen processing in immune tolerance and inflammation, Immunogenetics 71(2019) 171-187.
    [141]
    M. Sadasivam, C. Jie, A.R.A. Hamad, Renal tubular epithelial cells are constitutive non-cognate stimulators of resident T cells, Cell Rep. 42(2023), 113210.
    [142]
    Y. Zhou, Z. Luo, C. Liao, et al., MHC class II in renal tubules plays an essential role in renal fibrosis, Cell. Mol. Immunol. 18(2021) 2530-2540.
    [143]
    D.J. Nikolic-Paterson, CD4+ T cells: a potential player in renal fibrosis, Kidney Int. 78(2010) 333-335.
    [144]
    C. Cantoni, S. Granata, M. Bruschi, et al., Recent advances in the role of natural killer cells in acute kidney injury, Front. Immunol. 11(2020), 1484.
    [145]
    H.J. Kim, J.S. Lee, A. Kim, et al., TLR2 signaling in tubular epithelial cells regulates NK cell recruitment in kidney ischemia-reperfusion injury, J. Immunol. 191(2013) 2657-2664.
    [146]
    J.E. Turner, C. Rickassel, H. Healy, et al., Natural killer cells in kidney health and disease, Front. Immunol. 10(2019), 587.
    [147]
    S. von Vietinghoff, C. Kurts, Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease, Cell Tissue Res. 385(2021) 335-344.
    [148]
    X. Meng, J. Jin, H. Lan, Driving role of macrophages in transition from acute kidney injury to chronic kidney disease, Chin. Med. J. 135(2022) 757-766.
    [149]
    V. Masola, G. Zaza, G. Bellin, et al., Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury, FASEB J. 32(2018) 742-756.
    [150]
    Q. Cao, D.C.H. Harris, Y. Wang, Macrophages in kidney injury, inflammation, and fibrosis, Physiology (Bethesda) 30(2015) 183-194.
    [151]
    X. Wang, J. Chen, J. Xu, et al., The role of macrophages in kidney fibrosis, Front. Physiol. 12(2021), 705838.
    [152]
    C.C. Yu, C.T. Chien, T.C. Chang, M2 macrophage polarization modulates epithelial-mesenchymal transition in cisplatin-induced tubulointerstitial fibrosis, Biomedicine (Taipei) 6(2016), 5.
    [153]
    T.K. Tan, G. Zheng, T.T. Hsu, et al., Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage, Lab. Invest. 93(2013) 434-449.
    [154]
    W. Jiang, C. Xu, C. Du, et al., Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy, Theranostics 12(2022) 324-339.
    [155]
    Y. Lu, R. Zhang, X. Gu, et al., Exosomes from tubular epithelial cells undergoing epithelial-to-mesenchymal transition promote renal fibrosis by M1 macrophage activation, FASEB Bioadv. 5(2023) 101-113.
    [156]
    H. Fu, Y. Gu, J. Tan, et al., CircACTR2 in macrophages promotes renal fibrosis by activating macrophage inflammation and epithelial-mesenchymal transition of renal tubular epithelial cells, Cell. Mol. Life Sci. 79(2022), 253.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (206) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return