Citation: | Wenying Shi, Zhaojun Li, Weida Wang, Xikun Liu, Haijie Wu, Xiaoguang Chen, Xunrong Zhou, Sen Zhang. Dynamic gut microbiome-metabolome in cationic bovine serum albumin induced experimental immune-complex glomerulonephritis and effect of losartan and mycophenolate mofetil on microbiota modulation[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100931. doi: 10.1016/j.jpha.2023.12.021 |
[1] |
C. Meyer-Schwesinger, S. Dehde, P. Klug, et al., Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis, J. Immunol. 187 (2011) 3218-3229.
|
[2] |
J.M. Thurman, M. Le Quintrec, Targeting the complement cascade: Novel treatments coming down the Pike, Kidney Int. 90 (2016) 746-752.
|
[3] |
G.R. Valiente, A. Munir, M.L. Hart, et al., Gut dysbiosis is associated with acceleration of lupus nephritis, Sci. Rep. 12 (2022), 152.
|
[4] |
Q. Mu, H. Zhang, X. Liao, et al., Control of lupus nephritis by changes of gut microbiota, Microbiome 5 (2017), 73.
|
[5] |
S. Zhang, W. Wang, L. Yan, et al., Nicousamide attenuates renal dysfunction and glomerular injury in remnant kidneys by inhibiting TGF-β1 internalisation and renin activity, Eur. J. Pharmacol. 845 (2019) 74-84.
|
[6] |
I.W. Wu, C. Lin, L.C. Chang, et al., Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: Discovery and validation study, Int. J. Biol. Sci. 16 (2020) 420-434.
|
[7] |
T. Gryp, K. De Paepe, R. Vanholder, et al., Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease, Kidney Int. 97 (2020) 1230-1242.
|
[8] |
A.M. Madella, J. van Bergenhenegouwen, J. Garssen, et al., Microbial-derived tryptophan catabolites, kidney disease and gut inflammation, Toxins 14 (2022), 645.
|
[9] |
R. Yacoub, G.N. Nadkarni, D.I. McSkimming, et al., Fecal microbiota analysis of polycystic kidney disease patients according to renal function: A pilot study, Exp. Biol. Med. (Maywood) 244 (2019) 505-513.
|
[10] |
D. Azzouz, A. Omarbekova, A. Heguy, et al., Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal, Ann. Rheum. Dis. 78 (2019) 947-956.
|
[11] |
H. Wu, B. Jia, X. Zhao, et al., Pathophysiology and system biology of rat c-BSA induced immune complex glomerulonephritis and pathway comparison with human gene sequencing data, Int. Immunopharmacol. 109 (2022), 108891.
|
[12] |
P.N. Furness, D.R. Turner, Chronic serum sickness glomerulonephritis: Passive immunisation inhibits the removal of glomerular antigen and electron dense deposits, Virchows Arch. A Pathol. Anat. Histopathol. 413 (1988) 551-553.
|
[13] |
K. Joh, S. Aizawa, K. Ohkawa, et al., Selective planting of cationized, haptenized ovalbumin on the rat tubular basement membrane, Virchows Arch. 424 (1994) 587-591.
|
[14] |
M.C. Villarroel, M. Hidalgo, A. Jimeno, Mycophenolate mofetil: An update, Drugs Today 45 (2009) 521-532.
|
[15] |
P. Li, H. Lin, Z. Ni, et al., Efficacy and safety of Abelmoschus manihot for IgA nephropathy: A multicenter randomized clinical trial, Phytomedicine 76 (2020), 153231.
|
[16] |
V. Sepe, C. Libetta, M.G. Giuliano, et al., Mycophenolate mofetil in primary glomerulopathies, Kidney Int. 73 (2008) 154-162.
|
[17] |
M. Platten, E.A.A. Nollen, U.F. Rohrig, et al., Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond, Nat. Rev. Drug Discov. 18 (2019) 379-401.
|
[18] |
J. Zou, X. Zhou, Y. Ma, et al., Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad, Biomed. Pharmacother. 149 (2022), 112931.
|
[19] |
H. Wang, W. Fu, Z. Jin, et al., Advanced IgA nephropathy with impaired renal function benefits from losartan treatment in rats, Ren. Fail. 35 (2013) 812-818.
|
[20] |
I. Robles-Vera, M. Toral, N. de la Visitacion, et al., Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects, Br. J. Pharmacol. 177 (2020) 2006-2023.
|
[21] |
S. Zhang, H. Xin, Y. Li, et al., Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition, Evid. Based Complement. Alternat. Med. 2013 (2013), 819296.
|
[22] |
S. Zhang, J. Ma, L. Sheng, et al., Total coumarins from Hydrangea paniculata show renal protective effects in lipopolysaccharide-induced acute kidney injury via anti-inflammatory and antioxidant activities, Front. Pharmacol. 8 (2017), 872.
|
[23] |
W. Wang, Z. Li, Y. Chen, et al., Prediction value of serum NGAL in the diagnosis and prognosis of experimental acute and chronic kidney injuries, Biomolecules 10 (2020), 981.
|
[24] |
M. Eddouks, D. Chattopadhyay, V. De Feo, et al., Medicinal plants in the prevention and treatment of chronic diseases 2013, Evid. Based Complement. Alternat. Med. 2014 (2014), 180981.
|
[25] |
C. Huang, J. Dong, X. Jin, et al., Intestinal anti-inflammatory effects of fuzi-Ganjiang herb pair against DSS-induced ulcerative colitis in mice, J. Ethnopharmacol. 261 (2020), 112951.
|
[26] |
S. Zhang, W. Wang, J. Ma, et al., Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis, Phytomedicine 57 (2019) 385-395.
|
[27] |
S. Zhang, D. Wang, N. Xue, et al., Nicousamide protects kidney podocyte by inhibiting the TGFβ receptor II phosphorylation and AGE-RAGE signaling, Am. J. Transl. Res. 9 (2017) 115-125.
|
[28] |
L.F. Gomez-Arango, H.L. Barrett, S.A. Wilkinson, et al., Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women, Gut Microbes 9 (2018) 189-201.
|
[29] |
Y. Feng, G. Cao, D. Chen, et al., Microbiome-metabolomics reveals gut microbiota associated with glycine-conjugated metabolites and polyamine metabolism in chronic kidney disease, Cell. Mol. Life Sci. 76 (2019) 4961-4978.
|
[30] |
D. Chen, G. Cao, H. Chen, et al., Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan, Nat. Commun. 10 (2019), 1476.
|
[31] |
C.J. Chang, C. Lin, C.C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6 (2015), 7489.
|
[32] |
S. Dong, Q. Liu, X. Zhou, et al., Effects of losartan, atorvastatin, and aspirin on blood pressure and gut microbiota in spontaneously hypertensive rats, Molecules 28 (2023), 612.
|
[33] |
S.J. Chadban, R.C. Atkins, Glomerulonephritis, Lancet 365 (2005) 1797-1806.
|
[34] |
A.C. Webster, E.V. Nagler, R.L. Morton, et al., Chronic kidney disease, Lancet 389 (2017) 1238-1252.
|
[35] |
B. Liu, Y. Cao, D. Wang, et al., Zhen-wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways, Front. Pharmacol. 12 (2021), 777670.
|
[36] |
M. Chi, K. Ma, J. Wang, et al., The immunomodulatory effect of the gut microbiota in kidney disease, J. Immunol. Res. 2021 (2021), 5516035.
|
[37] |
A. Rutsch, J.B. Kantsjo, F. Ronchi, The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology, Front. Immunol. 11 (2020), 604179.
|
[38] |
Y. Zhao, Y. Liu, S. Li, et al., Role of lung and gut microbiota on lung cancer pathogenesis, J. Cancer Res. Clin. Oncol. 147 (2021) 2177-2186.
|
[39] |
P. Wang, T. Wang, X. Zheng, et al., Gut microbiota, key to unlocking the door of diabetic kidney disease, Nephrology (Carlton) 26 (2021) 641-649.
|
[40] |
A. Zaky, S.J. Glastras, M.Y.W. Wong, et al., The role of the gut microbiome in diabetes and obesity-related kidney disease, Int. J. Mol. Sci. 22 (2021), 9641.
|
[41] |
R. Suraya, T. Nagano, K. Kobayashi, et al., Microbiome as a target for cancer therapy, Integr. Cancer Ther. 19 (2020), 1534735420920721.
|
[42] |
R.C. Newsome, R.Z. Gharaibeh, C.M. Pierce, et al., Interaction of bacterial Genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort, Genome Med. 14 (2022), 35.
|
[43] |
R. Chen, J. Wang, R. Zhan, et al., Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-Yang deficiency syndrome and the intervention effect of You-Gui pill, J. Ethnopharmacol. 244 (2019), 112139.
|
[44] |
M. Vacca, G. Celano, F.M. Calabrese, et al., The controversial role of human gut Lachnospiraceae, Microorganisms 8 (2020), 573.
|
[45] |
K. Sasaki, J. Inoue, D. Sasaki, et al., Construction of a model culture system of human colonic microbiota to detect decreased Lachnospiraceae abundance and butyrogenesis in the feces of ulcerative colitis patients, Biotechnol. J. 14 (2019), e1800555.
|
[46] |
J. Yang, S.Y. Lim, Y.S. Ko, et al., Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease, Nephrol. Dial. Transplant 34 (2019) 419-428.
|
[47] |
Y. Zeng, Z. Dai, F. Lu, et al., Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease, Oncotarget 7 (2016) 17468-17478.
|
[48] |
C. Barrios, M. Beaumont, T. Pallister, et al., Gut-microbiota-metabolite axis in early renal function decline, PLoS One 10 (2015), e0134311.
|
[49] |
L. Nazzal, J. Roberts, P. Singh, et al., Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease, Nephrol. Dial. Transplant 32 (2017) 1809-1817.
|
[50] |
M.T. Pallotta, S. Rossini, C. Suvieri, et al., Indoleamine 2, 3-dioxygenase 1 (IDO1): An up-to-date overview of an eclectic immunoregulatory enzyme, FEBS J. 289 (2022) 6099-6118.
|
[51] |
H.M. Roager, T.R. Licht, Microbial tryptophan catabolites in health and disease, Nat. Commun. 9 (2018), 3294.
|
[52] |
J. Liu, H. Miao, D. Deng, et al., Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation, Cell. Mol. Life Sci. 78 (2021) 909-922.
|
[53] |
S. Kalim, E.P. Rhee, An overview of renal metabolomics, Kidney Int. 91 (2017) 61-69.
|
[54] |
C.Y. Yang, T. Chen, W. Lu, et al., Synbiotics alleviate the gut indole load and dysbiosis in chronic kidney disease, Cells 10 (2021), 114.
|
[55] |
S. Cigarran Guldris, E. Gonzalez Parra, A. Cases Amenos, Gut microbiota in chronic kidney disease, Nefrologia 37 (2017) 9-19.
|
[56] |
J. Wong, E. Vilar, K. Farrington, Endotoxemia in end-stage kidney disease, Semin. Dial. 28 (2015) 59-67.
|
[57] |
S. Mohammad, C. Thiemermann, Role of metabolic endotoxemia in systemic inflammation and potential interventions, Front. Immunol. 11 (2020), 594150.
|