Citation: | Shi-Qi Wang, Xun Zhao, Li-Jun Zhang, Yue-Mei Zhao, Lei Chen, Jin-Lin Zhang, Bao-Cheng Wang, Sheng Tang, Tom Yuan, Yaozuo Yuan, Mei Zhang, Hian Kee Lee, Hai-Wei Shi. Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100929. doi: 10.1016/j.jpha.2023.12.019 |
[1] |
R. Muzzalupo, L. Tavano, C.O. Rossi, et al., Synthesis and properties of methacrylic-functionalized tween monomer networks, Langmuir 25 (2009) 1800-1806.
|
[2] |
A. Raval, P. Bahadur, A. Raval, Effect of nonionic surfactants in release media on accelerated in-vitro release profile of sirolimus eluting stents with biodegradable polymeric coating, J. Pharm. Anal. 8 (2018) 45-54.
|
[3] |
H. Kumari, S.R. Kline, J.L. Atwood, Aqueous solubilization of hydrophobic supramolecular metal-organic nanocapsules, Chem. Sci. 5 (2014) 2554-2559.
|
[4] |
C. Caddeo, M.L. Manca, J.E. Peris, et al., Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration, Int. J. Pharm. 551 (2018) 34-41.
|
[5] |
C. Yucel, V. Quagliariello, R.V. Iaffaioli, et al., Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake, Int. J. Pharm. 494 (2015) 357-369.
|
[6] |
R. Jain, R.K. Yadav, Voltammetric behavior of sedative drug midazolam at glassy carbon electrode in solubilized systems, J. Pharm. Anal. 2 (2012) 123-129.
|
[7] |
A. Kannan, I.C. Shieh, P.G. Negulescu, et al., Adsorption and aggregation of monoclonal antibodies at silicone oil-water interfaces, Mol. Pharmaceutics 18 (2021) 1656-1665.
|
[8] |
A.S. Roy, A.K. Dinda, N.K. Pandey, et al., Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin, J. Pharm. Anal. 6 (2016) 256-267.
|
[9] |
A.D. Kanthe, M. Krause, S. Zheng, et al., Armoring the interface with surfactants to prevent the adsorption of monoclonal antibodies, ACS Appl. Mater. Interfaces 12 (2020) 9977-9988.
|
[10] |
T.A. Khan, H.C. Mahler, R.S.K. Kishore, Key interactions of surfactants in therapeutic protein formulations: A review, Eur. J. Pharm. Biopharm. 97 (2015) 60-67.
|
[11] |
J.S. Katz, Y. Tan, K. Kuppannan, et al., Amino-acid-incorporating nonionic surfactants for stabilization of protein pharmaceuticals, ACS Biomater. Sci. Eng. 2 (2016) 1093-1096.
|
[12] |
K. Yang, A. Hewarathna, I. Geerlof-Vidavsky, et al., Screening of polysorbate-80 composition by high resolution mass spectrometry with rapid H/D exchange, Anal. Chem. 91 (2019) 14649-14656.
|
[13] |
J.R. Snelling, C.A. Scarff, J.H. Scrivens, Characterization of complex polysorbate formulations by means of shape-selective mass spectrometry, Anal. Chem. 84 (2012) 6521-6529.
|
[14] |
Y. Li, D. Hewitt, Y.K. Lentz, et al., Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry, Anal. Chem. 86 (2014) 5150-5157.
|
[15] |
N. Doshi, B. Demeule, S. Yadav, Understanding particle formation: Solubility of free fatty acids as polysorbate 20 degradation byproducts in therapeutic monoclonal antibody formulations, Mol. Pharm. 12 (2015) 3792-3804.
|
[16] |
D.H. Evers, T. Schultz-Fademrecht, P. Garidel, et al., Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UPLC QDa detection, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1157 (2020), 122287.
|
[17] |
S. Dubey, R. Giovannini, Stability of biologics and the quest for polysorbate alternatives, Trends Biotechnol. 39 (2021) 546-549.
|
[18] |
X. Li, Z. Wang, B. Zheng, et al., Novel strategy to rapidly profile and identify oxidized species of polysorbate 80 using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, Anal. Chem. 95 (2023) 9156-9163.
|
[19] |
K. Zhang, J.D. Pellett, A.S. Narang, et al., Reactive impurities in large and small molecule pharmaceutical excipients - A review, Trac Trends Anal. Chem. 101 (2018) 34-42.
|
[20] |
A. Tomlinson, B. Demeule, B. Lin, et al., Polysorbate 20 degradation in biopharmaceutical formulations: Quantification of free fatty acids, characterization of particulates, and insights into the degradation mechanism, Mol. Pharmaceutics 12 (2015) 3805-3815.
|
[21] |
N. Doshi, J. Martin, A. Tomlinson, Improving prediction of free fatty acid particle formation in biopharmaceutical drug products: Incorporating ester distribution during polysorbate 20 degradation, Mol. Pharm. 17 (2020) 4354-4363.
|
[22] |
M. Dwivedi, M. Blech, I. Presser, et al., Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes, Int. J. Pharm. 552 (2018) 422-436.
|
[23] |
M. Manaargadoo-Catin, A. Ali-Cherif, J.L. Pougnas, et al., Hemolysis by surfactants: A review, Adv. Colloid Interface Sci. 228 (2016) 1-16.
|
[24] |
J. Ye, L. Li, J. Yin, et al., Tumor-targeting intravenous lipid emulsion of paclitaxel: Characteristics, stability, toxicity, and toxicokinetics, J. Pharm. Anal. 12 (2022) 901-912.
|
[25] |
S. Yang, J. Liu, Y. Chen, et al., Reversal effect of Tween-20 on multidrug resistance in tumor cells in vitro, Biomed. Pharmacother. 66 (2012) 187-194.
|
[26] |
D. Hewitt, M. Alvarez, K. Robinson, et al., Mixed-mode and reversed-phase liquid chromatography-tandem mass spectrometry methodologies to study composition and base hydrolysis of polysorbate 20 and 80, J. Chromatogr. A 1218 (2011) 2138-2145.
|
[27] |
Q. Zhang, Y. Meng, H. Yang, et al., Quantitative analysis of polysorbates 20 and 40 by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 27 (2013) 2777-2782.
|
[28] |
N. Glucklich, S. Carle, J. Buske, et al., Assessing the polysorbate degradation fingerprints and kinetics of lipases - how the activity of polysorbate degrading hydrolases is influenced by the assay and assay conditions, Eur. J. Pharm. Sci. 166 (2021), 105980.
|
[29] |
M. Dwivedi, J. Buske, F. Haemmerling, et al., Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: Towards understanding polysorbate degradation in biopharmaceutical formulations, Eur. J. Pharm. Sci. 144 (2020), 105211.
|
[30] |
J. Kim, J. Qiu, Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thiocyanate derivatization, Anal. Chim. Acta 806 (2014) 144-151.
|
[31] |
A. Martos, M. Berger, W. Kranz, et al., Novel high-throughput assay for polysorbate quantification in biopharmaceutical products by using the fluorescent dye DiI, J. Pharm. Sci. 109 (2020) 646-655.
|
[32] |
D. Hewitt, T. Zhang, Y.H. Kao, Quantitation of polysorbate 20 in protein solutions using mixed-mode chromatography and evaporative light scattering detection, J. Chromatogr. A 1215 (2008) 156-160.
|
[33] |
T. Diederichs, J.J. Mittag, J. Humphrey, et al., Existence of a superior polysorbate fraction in respect to protein stabilization and particle formation? Int. J. Pharm. 635 (2023), 122660.
|
[34] |
S. Fekete, K. Ganzler, J. Fekete, Simultaneous determination of polysorbate 20 and unbound polyethylene-glycol in protein solutions using new core-shell reversed phase column and condensation nucleation light scattering detection, J. Chromatogr. A 1217 (2010) 6258-6266.
|
[35] |
S. Lippold, S.H.S. Koshari, R. Kopf, et al., Impact of mono- and poly-ester fractions on polysorbate quantitation using mixed-mode HPLC-CAD/ELSD and the fluorescence micelle assay, J. Pharm. Biomed. Anal. 132 (2017) 24-34.
|
[36] |
X. Zhou, X. Meng, L. Cheng, et al., Development and application of an MSALL-based approach for the quantitative analysis of linear polyethylene glycols in rat plasma by liquid chromatography triple-quadrupole/time-of-flight mass spectrometry, Anal. Chem. 89 (2017) 5193-5200.
|
[37] |
Z. Wang, Y. Wang, C. Tie, et al., A fast strategy for profiling and identifying pharmaceutic excipient polysorbates by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry, J. Chromatogr. A 1609 (2020), 460450.
|
[38] |
O.V. Borisov, J.A. Ji, Y.J. Wang, et al., Toward understanding molecular heterogeneity of polysorbates by application of liquid chromatography-mass spectrometry with computer-aided data analysis, Anal. Chem. 83 (2011) 3934-3942.
|
[39] |
T. Vehovec, A. Obreza, Review of operating principle and applications of the charged aerosol detector, J. Chromatogr. A 1217 (2010) 1549-1556.
|
[40] |
Q. Xu, S. Tan, Quantitative analysis of 3-isopropylamino-1, 2-propanediol as a degradation product of metoprolol in pharmaceutical dosage forms by HILIC-CAD, J. Pharm. Anal. 9 (2019) 431-436.
|