Turn off MathJax
Article Contents
Rong Jiao, Xia Lin, Jingchao Wang, Chunyan Zhu, Jiang Hu, Huali Gao, Kun Zhang. 3D-Printed Constructs Deliver Bioactive Cargos to Expedite Cartilage Regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2023.12.015
Citation: Rong Jiao, Xia Lin, Jingchao Wang, Chunyan Zhu, Jiang Hu, Huali Gao, Kun Zhang. 3D-Printed Constructs Deliver Bioactive Cargos to Expedite Cartilage Regeneration[J]. Journal of Pharmaceutical Analysis. doi: 10.1016/j.jpha.2023.12.015

3D-Printed Constructs Deliver Bioactive Cargos to Expedite Cartilage Regeneration

doi: 10.1016/j.jpha.2023.12.015
Funds:

This work was supported by National Natural Science Foundation of China (Grant Number: 82022033), Scientific and Technological Innovation Major Base of Guangxi (No.2022-36-Z05) and the program for Shanghai Young Top-Notch Talent.

  • Received Date: Sep. 23, 2023
  • Accepted Date: Dec. 19, 2023
  • Rev Recd Date: Dec. 10, 2023
  • Available Online: Dec. 22, 2023
  • Cartilage is solid connective tissue that recovers slowly from injury, and pain and dysfunction from cartilage damage affect many people. The treatment of cartilage injury is clinically challenging and there is no optimal solution, which is a hot research topic at present. With the rapid development of 3D printing technology in recent years, 3D bioprinting can better mimic the complex microstructure of cartilage tissue and thus enabling the anatomy and functional regeneration of damaged cartilage. This article reviews the methods of 3D printing used to mimic cartilage structures, the selection of cells and biological factors, and the development of bioinks and advances in scaffold structures, with an emphasis on how 3D printing structure provides bioactive cargos in each stage to enhance the effect. Finally, clinical applications and future development of simulated cartilage printing are introduced, which are expected to provide new insights into this field and guide other researchers who are engaged in cartilage repair.
  • loading
  • T.R. Coughlin, O.D. Kennedy, The role of subchondral bone damage in post-traumatic osteoarthritis, Ann. N. Y. Acad. Sci. 1383 (2016) 58-66.
    J. Trivedi, D. Betensky, S. Desai, et al., Post-traumatic osteoarthritis assessment in emerging and advanced pre-clinical meniscus repair strategies: A review, Front. Bioeng. Biotechnol. 9 (2021) 787330.
    W. Jiang, H. Liu, R. Wan, et al., Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis, Ageing. Res. Rev. 67 (2021) 101315.
    D. Primorac, V. Molnar, E. Rod, et al., Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations, Genes 11 (2020) 854.
    J. Lieberthal, N. Sambamurthy, C.R. Scanzello, Inflammation in joint injury and post-traumatic osteoarthritis, Osteoarthritis Cartilage 23 (2015) 1825-1834.
    Y. Krishnan, A.J. Grodzinsky, Cartilage diseases, Matrix Biol. 71-72 (2018) 51-69.
    M.M. Chau, M.A. Klimstra, K.L. Wise, et al., Osteochondritis dissecans: Current understanding of epidemiology, etiology, management, and outcomes, J. Bone Jt. Surg. Am. Vol. 103 (2021) 1132-1151.
    J. Harlaar, E.M. Macri, M. Wesseling, Osteoarthritis year in review 2021: Mechanics, Osteoarthr. Cartil. 30 (2022) 663-670.
    E.A. Makris, A.H. Gomoll, K.N. Malizos, et al., Repair and tissue engineering techniques for articular cartilage, Nat. Rev. Rheumatol. 11 (2015) 21-34.
    F. Frehner, J.P. Benthien, Microfracture: State of the art in cartilage surgery? Cartilage 9 (2018) 339-345.
    L. Gao, P. Orth, M. Cucchiarini, et al., Autologous matrix-induced chondrogenesis: A systematic review of the clinical evidence, Am. J. Sports Med. 47 (2019) 222-231.
    K. Karpinski, M. Haner, S. Bierke, et al., Matrix-induced chondrogenesis is a valid and safe cartilage repair option for small- to medium-sized cartilage defects of the knee: A systematic review, Knee Surg Sports Traumatol Arthrosc 29 (2021) 4213-4222.
    M. Hevesi, J.M. Denbeigh, C.A. Paggi, et al., Fresh osteochondral allograft transplantation in the knee: A viability and histologic analysis for optimizing graft viability and expanding existing standard processed graft resources using a living donor cartilage program, Cartilage 13 (2021) 948S-956S.
    J. Chahal, A.E. Gross, C. Gross, et al., Outcomes of osteochondral allograft transplantation in the knee, Arthroscopy 29 (2013) 575-588.
    A.J. Price, A. Alvand, A. Troelsen, et al., Knee replacement, Lancet 392 (2018) 1672-1682.
    Q. Liang, Y. Ma, X. Yao, et al., Advanced 3D-printing bioinks for articular cartilage repair, Int. J. Bioprint. 8 (2022) 511.
    P.R. Basso, E. Carava', M. Protasoni, et al., The synovial surface of the articular cartilage, Eur. J. Histochem. 64 (2020) 194-201.
    B. Zylinska, A. Sobczynska-Rak, U. Lisiecka, et al., Structure and pathologies of articular cartilage, In Vivo 35 (2021) 1355-1363.
    D. Yari, M.H. Ebrahimzadeh, J. Movaffagh, et al., Biochemical aspects of scaffolds for cartilage tissue engineering; from basic science to regenerative medicine, Arch. Bone Jt Surg. 10 (2022) 229-244.
    Z. Ouyang, L. Dong, F. Yao, et al., Cartilage-related collagens in osteoarthritis and rheumatoid arthritis: From pathogenesis to therapeutics, Int. J. Mol. Sci. 24 (2023) 9841.
    L. Alcaide-Ruggiero, V. Molina-Hernandez, M.M. Granados, et al., Main and minor types of collagens in the articular cartilage: The role of collagens in repair tissue evaluation in chondral defects, Int. J. Mol. Sci. 22 (2021) 13329.
    J.B. Oudart, J.C. Monboisse, F.X. Maquart, et al., Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment, Matrix Biol. 57-58 (2017) 169-177.
    Y. Gu, Y. Zou, Y. Huang, et al., 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect, Biofabrication 2024. https://doi.org/10.1088/1758-5090/ad0071.
    M. Askari, M.A. Naniz, M. Kouhi, et al., Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: A comprehensive review with focus on advanced fabrication techniques, Biomater. Sci. 9 (2021) 535-573.
    A.K. Miri, I. Mirzaee, S. Hassan, et al., Effective bioprinting resolution in tissue model fabrication, Lab a Chip 19 (2019) 2019-2037.
    H.G. Hosseinabadi, D. Nieto, A. Yousefinejad, et al., Ink material selection and optical design considerations in DLP 3D printing, Appl. Mater. Today 30 (2023) 101721.
    B.E. Kelly, I. Bhattacharya, H. Heidari, et al., Volumetric additive manufacturing via tomographic reconstruction, Science 363 (2019) 1075-1079.
    P.N. Bernal, P. Delrot, D. Loterie, et al., Volumetric bioprinting of complex living-tissue constructs within seconds, Adv. Mater. 31 (2019) 1904209.
    J. Huh, Y.W. Moon, J. Park, et al., Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting, Biofabrication 13 (2021) 034103.
    X. Cui, B.G. Soliman, C.R. Alcala-Orozco, et al., Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity, Adv. Healthc. Mater. 9 (2020) 1901667.
    H. Hong, Y.B. Seo, D.Y. Kim, et al., Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering, Biomaterials 232 (2020) 119679.
    T. Li, Z. Ma, Y. Zhang, et al., Regeneration of humeral head using a 3D bioprinted anisotropic scaffold with dual modulation of endochondral ossification, Adv. Sci. 10 (2023) 2205059.
    N. Fani, M. Peshkova, P. Bikmulina, et al., Fabricating the cartilage: Recent achievements, Cytotechnology 75 (2023) 269-292.
    Q. Li, H. Yu, F. Zhao, et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration, Adv. Sci. 10 (2023) 2303650.
    P. Apelgren, M. Amoroso, A. Lindahl, et al., Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo, PloS One 12 (2017) e0189428.
    B. Gatenholm, C. Lindahl, M. Brittberg, et al., Collagen 2A type B induction after 3D bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion, Cartilage 13 (2021) 1755S-1769S.
    Y. Yan, R. Fu, C. Liu, et al., Sequential Enzymatic Digestion of Different Cartilage Tissues: A Rapid and High-Efficiency Protocol for Chondrocyte Isolation, and Its Application in Cartilage Tissue Engineering, Cartilage 13 (2021) 1064S-1076S.
    P. Shen, P. Wu, T. Maleitzke, et al., Optimization of chondrocyte isolation from human articular cartilage to preserve the chondrocyte transcriptome, Front. Bioeng. Biotechnol. 10 (2022) 1046127.
    S.A. Muhammad, N. Nordin, P. Hussin, et al., Optimization of protocol for isolation of chondrocytes from human articular cartilage, Cartilage 13 (2021) 872S-884S.
    T. Lam, T. Dehne, J.P. Kruger, et al., Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage, J. Biomed. Mater. Res. B 107 (2019) 2649-2657.
    S. Tavakoli, H.R. Ghaderi Jafarbeigloo, A. Shariati, et al., Mesenchymal stromal cells; a new horizon in regenerative medicine, J. Cell. Physiol. 235 (2020) 9185-9210.
    Y. Han, X. Li, Y. Zhang, et al., Mesenchymal stem cells for regenerative medicine, Cells 8 (2019) 886.
    N. Attia, M. Mashal, Mesenchymal stem cells: The past present and future, Adv. Exp. Med. Biol. 1312 (2021) 107-129.
    P. Neybecker, C. Henrionnet, E. Pape, et al., Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid, Stem Cell Res. Ther. 11 (2020) 316.
    M. Soleimani, S. Nadri, A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow, Nat. Protoc. 4 (2009) 102-106.
    K.S. Lee, J. Lee, H.K. Kim, et al., Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p, J. Extracell. Vesicles 10 (2021) e12152.
    E. Hohmann, Editorial commentary: Stem cells. they are in the fat tissue, bone marrow, and even in the synovial fluid of the knee joint, Arthroscopy 37 (2021) 901-902.
    K. Ye, R. Felimban, K. Traianedes, et al., Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D printed chitosan scaffold, PLoS One 9 (2014) e99410.
    J. Wu, L. Kuang, C. Chen, et al., miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis, Biomaterials 206 (2019) 87-100.
    P. Li, L. Fu, Z. Liao, et al., Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment, Biomaterials 278 (2021) 121131.
    S. Jiang, G. Tian, Z. Yang, et al., Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration, Bioact. Mater. 6 (2021) 2711-2728.
    S. Qin, J. Zhu, G. Zhang, et al., Research progress of functional motifs based on growth factors in cartilage tissue engineering: A review, Front. Bioeng. Biotechnol. 11 (2023) 1127949.
    K.H. Yoo, N. Thapa, Y.J. Chwae, et al., Transforming growth factor-β family and stem cell-derived exosome therapeutic treatment in osteoarthritis (Review), Int. J. Mol. Med. 49 (2022) 62.
    J. Hauptstein, L. Forster, A. Nadernezhad, et al., Tethered TGF-β1 in a hyaluronic acid-based bioink for bioprinting cartilaginous tissues, Int. J. Mol. Sci. 23 (2022) 924.
    M.J. Ainsworth, O. Lotz, A. Gilmour, et al., Covalent protein immobilization on 3D-printed microfiber meshes for guided cartilage regeneration, Adv. Funct. Mater. 33 (2023) 2206583.
    M.C. Gomez-Puerto, P.V. Iyengar, A. Garcia de Vinuesa, et al., Bone morphogenetic protein receptor signal transduction in human disease, J. Pathol. 247 (2019) 9-20.
    X. Peng, Y. Zhang, Y. Wang, et al., IGF-1 and BMP-7 synergistically stimulate articular cartilage repairing in the rabbit knees by improving chondrogenic differentiation of bone-marrow mesenchymal stem cells, J. Cell. Biochem. 120 (2019) 5570-5582.
    X. Zhang, Y. Liu, Q. Zuo, et al., 3D bioprinting of biomimetic bilayered scaffold consisting of decellularized extracellular matrix and silk fibroin for osteochondral repair, Int. J. Bioprint. 7 (2021) 401.
    D. Kilian, S. Cometta, A. Bernhardt, et al., Core-shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes, 2022. https://doi.org/10.1088/1758-5090/ac457b.
    M. Sani, R. Hosseinie, M. Latifi, et al., Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation, Biomater. Adv. 139 (2022) 213019.
    M.A. Hossain, A. Adithan, M.J. Alam, et al., IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis, J. Inflamm. Res. 14 (2021) 3555-3568.
    M.B. Ellman, D. Yan, K. Ahmadinia, et al., Fibroblast growth factor control of cartilage homeostasis, J. Cell. Biochem. 114 (2013) 735-742.
    D. Yan, D. Chen, S.M. Cool, et al., Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes, Arthritis Res. Ther. 13 (2011) R130.
    E.E. Moore, A.M. Bendele, D.L. Thompson, et al., Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis, Osteoarthritis Cartilage 13 (2005) 623-631.
    H. Chen, Y. Cui, D. Zhang, et al., The role of fibroblast growth factor 8 in cartilage development and disease, J. Cell. Mol. Med. 26 (2022) 990-999.
    W. Zhai, H. Lu, S. Dong, et al., Identification of potential key genes and key pathways related to clear cell renal cell carcinoma through bioinformatics analysis, Acta Biochim. Biophys. Sin. 52 (2020) 853-863.
    L. Chen, J. Liu, M. Guan, et al., Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering, Int. J. Nanomed. 15 (2020) 6097-6111.
    Q. Li, H. Yu, F. Zhao, et al., 3D printing of microenvironment-specific bioinspired and exosome-reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration, Adv. Sci. 10 (2023) 2303650.
    Y.P. Singh, J.C. Moses, A. Bandyopadhyay, et al., 3D bioprinted silk-based in vitro osteochondral model for osteoarthritis therapeutics, Adv. Healthc. Mater. 11 (2022) 2200209.
    R.V. Badhe, A. Chatterjee, D. Bijukumar, et al., Current advancements in bio-ink technology for cartilage and bone tissue engineering, Bone 171 (2023) 116746.
    M. Meyer, Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online 18 (2019) 24.
    J. Xu, S. Zheng, X. Hu, et al., Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting, Polymers 12 (2020) 1237.
    A. Dravid, A. McCaughey-Chapman, B. Raos, et al., Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation, Biomed. Mater. 17 (2022) 055001.
    W. Wei, W. Liu, H. Kang, et al., A one-stone-two-birds strategy for osteochondral regeneration based on a 3D printable biomimetic scaffold with kartogenin biochemical stimuli gradient, Adv. Healthc. Mater. 12 (2023) 2300108.
    M. Kolodziejska, K. Jankowska, M. Klak, et al., Chitosan as an underrated polymer in modern tissue engineering, Nanomaterials 11 (2021) 3019.
    C.C. Wong, K. Ou, Y.H. Lin, et al., Platelet-rich fibrin facilitates one-stage cartilage repair by promoting chondrocytes viability, migration, and matrix synthesis, Int. J. Mol. Sci. 21 (2020) 577.
    D. Trucco, L. Vannozzi, E. Teblum, et al., Graphene oxide-doped gellan gum-PEGDA bilayered hydrogel mimicking the mechanical and lubrication properties of articular cartilage, Adv. Healthc. Mater. 10 (2021) 2100873.
    T. Jiang, S. Heng, X. Huang, et al., Biomimetic poly(poly(ε-caprolactone)-polytetrahydrofuran urethane) based nanofibers enhanced chondrogenic differentiation and cartilage regeneration, J. Biomed. Nanotechnol. 15 (2019) 1005-1017.
    W. Kosorn, M. Sakulsumbat, T. Lertwimol, et al., Chondrogenic phenotype in responses to poly(ɛ-caprolactone) scaffolds catalyzed by bioenzymes: Effects of surface topography and chemistry, J. Mater. Sci. Mater. Med. 30 (2019) 128.
    M. Nofar, D. Sacligil, P.J. Carreau, et al., Poly (lactic acid) blends: Processing, properties and applications, Int. J. Biol. Macromol. 125 (2019) 307-360.
    C.V. Rocha, V. Goncalves, M.C. da Silva, et al., PLGA-based composites for various biomedical applications, Int. J. Mol. Sci. 23 (2022) 2034.
    M. Qu, X. Liao, N. Jiang, et al., Injectable open-porous PLGA microspheres as cell carriers for cartilage regeneration, J. Biomed. Mater. Res. A 109 (2021) 2091-2100.
    J. Huang, Z. Huang, Y. Liang, et al., 3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair, Biomater. Sci. 9 (2021) 2620-2630.
    R. Schwartz, M. Malpica, G.L. Thompson, et al., Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution, J. Mech. Behav. Biomed. Mater. 103 (2020) 103524.
    S.H. Kim, Y.B. Seo, Y.K. Yeon, et al., 4D-bioprinted silk hydrogels for tissue engineering, Biomaterials 260 (2020) 120281.
    Z. Feng, D. Wang, Y. Zheng, et al., A novel waterborne polyurethane with biodegradability and high flexibility for 3D printing, Biofabrication 12 (2020) 035015.
    X. Cao, L. Sun, Z. Luo, et al., Aquaculture derived hybrid skin patches for wound healing, Engineered Regeneration 4 (2023) 28-35.
    B.A.G. de Melo, Y.A. Jodat, S. Mehrotra, et al., 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties, Adv. Funct. Mater. 29 (2019) 1906330.
    L. Zhang, G. Yang, B.N. Johnson, et al., Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16-33.
    F.J. O’Brien, An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects, Biofabrication 16 (2024) 015007.
    K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials 73 (2015) 254-271.
    S. Xiao, T. Zhao, J. Wang, et al., Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: An effective strategy for tissue engineering, Stem Cell Rev. Rep. 15 (2019) 664-679.
    T. Collins, D. Alexander, B. Barkatali, Platelet-rich plasma: A narrative review, EFORT Open Rev. 6 (2021) 225-235.
    Z. Li, X. Zhang, T. Yuan, et al., Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration, Tissue Eng. Part A 26 (2020) 886-895.
    L. Wei, S. Wu, M. Kuss, et al., 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering, Bioact. Mater. 4 (2019) 256-260.
    G. Jiang, S. Li, K. Yu, et al., A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model, Acta Biomater. 128 (2021) 150-162.
    Y. Wang, C.K. Adokoh, R. Narain, Recent development and biomedical applications of self-healing hydrogels, Expert Opin. Drug Deliv. 15 (2018) 77-91.
    J. Omar, D. Ponsford, C.A. Dreiss, et al., Supramolecular hydrogels: Design strategies and contemporary biomedical applications, Chem. Asian. J. 17 (2022) 2200081.
    Y. Wu, Q. Zhang, X. Yang, et al., 3D-printed tough zwitterionic polycarbonate polyurethane meniscus substitute ameliorates cartilage abrasion, Sci. China Mater. 66 (2023) 3744-3756.
    Q. Chen, X. Tian, J. Fan, et al., An interpenetrating alginate/gelatin network for three-dimensional (3D) cell cultures and organ bioprinting, Molecules 25 (2020) 756.
    X. Lin, L. Cai, X. Cao, et al., Stimuli-responsive silk fibroin for on-demand drug delivery, Smart Med. 2 (2023) e20220019.
    Q. Li, S. Xu, Q. Feng, et al., 3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration, Bioact. Mater. 6 (2021) 3396-3410.
    K. Shu, Z. Huang, X. Pei, et al., 3D printing of high-strength photo-crosslinking flaxseed gum bioink for cartilage regeneration, Compos. B. Eng. 263 (2023) 110864.
    N. Di Marzio, D. Eglin, T. Serra, et al., Bio-fabrication: Convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine, Front. Bioeng. Biotechnol. 8 (2020) 326.
    R. Hosseinnezhad, I. Vozniak, F. Zairi, in situ generation of green hybrid nanofibrillar polymer-polymer composites-a novel approach to the triple shape memory polymer formation, Polymers 13 (2021) 1900.
    S. Zhu, Y. Li, Z. He, et al., Advanced injectable hydrogels for cartilage tissue engineering, Front. Bioeng. Biotechnol. 10 (2022) 954501.
    P. Cui, P. Pan, L. Qin, et al., Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration, Bioact. Mater. 19 (2022) 487-498.
    S. Camarero-Espinosa, L. Moroni, Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration, Nat. Commun. 12 (2021) 1031.
    H. Budharaju, A. Zennifer, S. Sethuraman, et al., Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications, Mater. Horiz. 9 (2022) 1141-1166.
    G.M. Cunniffe, T. Gonzalez-Fernandez, A. Daly, et al., * three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering, Tissue Eng. Part A 23 (2017) 891-900.
    J. Muller, A.C. Jakel, D. Schwarz, et al., Programming diffusion and localization of DNA signals in 3D-printed DNA-functionalized hydrogels, Small 16 (2020) 2001815.
    J. Liang, P. Liu, X. Yang, et al., Biomaterial-based scaffolds in promotion of cartilage regeneration: Recent advances and emerging applications, J. Orthop. Translat. 41 (2023) 54-62.
    S.M. Bittner, B.T. Smith, L. Diaz-Gomez, et al., Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering, Acta Biomater. 90 (2019) 37-48.
    Y. Rotbaum, C. Puiu, D. Rittel, et al., Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures, Mater. Sci. Eng. C Mater. Biol. Appl. 96 (2019) 176-182.
    Z. Qiao, M. Lian, Y. Han, et al., Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration, Biomaterials 266 (2021) 120385.
    C. Antich, J. de Vicente, G. Jimenez, et al., Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs, Acta Biomater. 106 (2020) 114-123.
    A.A. Golebiowska, S.P. Nukavarapu, Bio-inspired zonal-structured matrices for bone-cartilage interface engineering, Biofabrication 14 (2022) 025016.
    Y. Liu, L. Peng, L. Li, et al., 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model, Biomaterials 279 (2021) 121216.
    X. Zhou, S. Tenaglio, T. Esworthy, et al., Three-dimensional printing biologically inspired DNA-based gradient scaffolds for cartilage tissue regeneration, ACS Appl. Mater. Interfaces 12 (2020) 33219-33228.
    C. Deng, J. Yang, H. He, et al., 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects, Biomater. Sci. 9 (2021) 4891-4903.
    D. Zhang, W. Li, Y. Shang, et al., Programmable microfluidic manipulations for biomedical applications, Eng. Regen. 3 (2022) 258-261.
    Y. Gao, Q. Ma, Bacterial infection microenvironment-responsive porous microspheres by microfluidics for promoting anti-infective therapy, Smart Med. 1 (2022) e20220012.
    J. Idaszek, M. Costantini, T.A. Karlsen, et al., 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head, Biofabrication 11 (2019) 044101.
    Y. Sun, Y. You, W. Jiang, et al., 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration, Sci. Adv. 6 (2020) eaay1422.
    Y.S. Lui, W.T. Sow, L.P. Tan, et al., 4D printing and stimuli-responsive materials in biomedical aspects, Acta Biomater. 92 (2019) 19-36.
    A. Ding, O. Jeon, D. Cleveland, et al., Jammed micro-flake hydrogel for four-dimensional living cell bioprinting, Adv. Mater. 34 (2022) 2109394.
    X. Chen, S. Han, W. Wu, et al., Harnessing 4D printing bioscaffolds for advanced orthopedics, Small 18 (2022) 2106824.
    P. Tournier, G. Saint-Pe, N. Lagneau, et al., Clickable dynamic bioinks enable post-printing modifications of construct composition and mechanical properties controlled over time and space, Adv. Sci. 10 (2023) e2300055.
    X. Guo, L. Xi, M. Yu, et al., Regeneration of articular cartilage defects: Therapeutic strategies and perspectives, J. Tissue Eng. 14 (2023) 20417314231164765.
    Y.M. Michelacci, R.Y.A. Baccarin, N.N.P. Rodrigues, Chondrocyte homeostasis and differentiation: Transcriptional control and signaling in healthy and osteoarthritic conditions, Life. 13 (2023) 1460.
    A.M. Chen, M. Lashmet, A. Isidan, et al., Oxygenation profiles of human blood, cell culture medium, and water for perfusion of 3D-bioprinted tissues using the FABRICA bioreactor platform, Sci. Rep. 10 (2020) 7237.
    R.M. Schulz, N. Wustneck, C.C. van Donkelaar, et al., Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs, Biotechnol. Bioeng. 101 (2008) 714-728.
    L.J. Smith, P. Li, M.R. Holland, et al., FABRICA: A bioreactor platform for printing, perfusing, observing, & stimulating 3D tissues, Sci. Rep. 8 (2018) 7561.
    S. Gabetti, B. Masante, A. Cochis, et al., An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations, Sci. Rep. 12 (2022) 13859.
    G. Go, S.G. Jeong, A. Yoo, et al., Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo, Sci. Robot. 5 (2020) eaay6626.
    M. Sahranavard, S. Sarkari, S. Safavi, et al., Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: A systematic review, Biomater. Transl. 3 (2022) 105-115.
    E.J. Bos, P. Doerga, C.C. Breugem, et al., The burned ear; possibilities and challenges in framework reconstruction and coverage, Burns 42 (2016) 1387-1395.
    N. Bhamare, K. Tardalkar, P. Parulekar, et al., 3D printing of human ear pinna using cartilage specific ink, Biomed. Mater. 16 (2021) 055008.
    Y.A. Jodat, K. Kiaee, D. Vela Jarquin, et al., A 3D-printed hybrid nasal cartilage with functional electronic olfaction, Adv. Sci. 7 (2020) 1901878.
    R. Di Gesu, A.P. Acharya, I. Jacobs, et al., 3D printing for tissue engineering in otolaryngology, Connect. Tissue Res. 61 (2020) 117-136.
    P. Chen, L. Zheng, Y. Wang, et al., Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration, Theranostics 9 (2019) 2439-2459.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (283) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return