Citation: | Linxi Mao, Yan Qin, Jialong Fan, Wei Yang, Bin Li, Liang Cao, Liqin Yuan, Mengyun Wang, Bin Liu, Wei Wang. Rapid discovery of a novel “green” and natural GST inhibitor for sensitizing hepatocellular carcinoma to Cisplatin by visual screening strategy[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100923. doi: 10.1016/j.jpha.2023.12.013 |
[1] |
D.A. Fennell, Y. Summers, J. Cadranel, et al., Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer, Cancer Treat. Rev. 44 (2016) 42-50.
|
[2] |
W.S. Li, W.S. Lam, K.C. Liu, et al., Overcoming the drug resistance in breast cancer cells by rational design of efficient glutathione S-transferase inhibitors, Org. Lett. 12 (2010) 20-23.
|
[3] |
B. Niu, Y. Zhou, K. Liao, et al., “Pincer movement”: Reversing cisplatin resistance based on simultaneous glutathione depletion and glutathione S-transferases inhibition by redox-responsive degradable organosilica hybrid nanoparticles, Acta Pharm. Sin. B 12 (2022) 2074-2088.
|
[4] |
G. Housman, S. Byler, S. Heerboth, et al., Drug resistance in cancer: An overview, Cancers 6 (2014) 1769-1792.
|
[5] |
F. Huang, S. Li, X. Lu, et al., Two glutathione S-transferase inhibitors from Radix angelicae sinensis, Phytother. Res. 25 (2011) 284-289.
|
[6] |
M.G. Bolton, O.M. Colvin, J. Hilton, Specificity of isozymes of murine hepatic glutathione S-transferase for the conjugation of glutathione with L-phenylalanine mustard, Cancer Res. 51 (1991) 2410-2415.
|
[7] |
T. Geib, C. Lento, D.J. Wilson, et al., Liquid chromatography-tandem mass spectrometry analysis of acetaminophen covalent binding to glutathione S-transferases, Front. Chem. 7 (2019), 558.
|
[8] |
J. Lobo, C. Jeronimo, R. Henrique, Cisplatin resistance in testicular germ cell tumors: Current challenges from various perspectives, Cancers 12 (2020), 1601.
|
[9] |
H. Zhang, J. Liu, Y. Sun, et al., Carbon-dipyrromethenes: Bright cationic fluorescent dyes and potential application in revealing cellular trafficking of mitochondrial glutathione conjugates, J. Am. Chem. Soc. 142 (2020) 17069-17078.
|
[10] |
A. Chatterjee, S. Gupta, The multifaceted role of glutathione S-transferases in cancer, Cancer Lett. 433 (2018) 33-42.
|
[11] |
A. Sau, F. Pellizzari Tregno, F. Valentino, et al., Glutathione transferases and development of new principles to overcome drug resistance, Arch. Biochem. Biophys. 500 (2010) 116-122.
|
[12] |
Y. Musdal, U.M. Hegazy, Y. Aksoy, et al., FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1, Chem. Biol. Interact. 205 (2013) 53-62.
|
[13] |
T. Ertan-Bolelli, Y. Musdal, K. Bolelli, et al., Synthesis and biological evaluation of 2-substituted-5-(4-nitrophenylsulfonamido)benzoxazoles as human GST P1-1 inhibitors, and description of the binding site features, ChemMedChem 9 (2014) 984-992.
|
[14] |
M. Pasello, F. Michelacci, I. Scionti, et al., Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma, Cancer Res. 68 (2008) 6661-6668.
|
[15] |
F. Pellizzari Tregno, A. Sau, S. Pezzola, et al., In vitro and in vivo efficacy of 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) on human melanoma, Eur. J. Cancer 45 (2009) 2606-2617.
|
[16] |
M. Pasello, M.C. Manara, F. Michelacci, et al., Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: A promising therapeutic strategy, Anal. Cell. Pathol. (Amst) 34 (2011) 131-145.
|
[17] |
P. Turella, C. Cerella, G. Filomeni, et al., Proapoptotic activity of new glutathione S-transferase inhibitors, Cancer Res. 65 (2005) 3751-3761.
|
[18] |
P. Turella, G. Filomeni, M.L. Dupuis, et al., A strong glutathione S-transferase inhibitor overcomes the P-glycoprotein-mediated resistance in tumor cells, J. Biol. Chem. 281 (2006) 23725-23732.
|
[19] |
G. Filomeni, P. Turella, M.L. Dupuis, et al., 6-(7-Nitro-2, 1, 3-benzoxadiazol-4-ylthio)hexanol, a specific glutathione S-transferase inhibitor, overcomes the multidrug resistance (MDR)-associated protein 1-mediated MDR in small cell lung cancer, Mol. Cancer Ther. 7 (2008) 371-379.
|
[20] |
L. Tentori, A.S. Dorio, E. Mazzon, et al., The glutathione transferase inhibitor 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) increases temozolomide efficacy against malignant melanoma, Eur. J. Cancer 47 (2011) 1219-1230.
|
[21] |
A. De Luca, F. Pellizzari Tregno, A. Sau, et al., Glutathione S-transferase P1-1 as a target for mesothelioma treatment, Cancer Sci. 104 (2013) 223-230.
|
[22] |
L. Federici, C. Lo Sterzo, S. Pezzola, et al., Structural basis for the binding of the anticancer compound 6-(7-nitro-2, 1, 3-benzoxadiazol-4-ylthio)Hexanol to human glutathione S-transferases, Cancer Res. 69 (2009) 8025-8034.
|
[23] |
W.H. Ang, I. Khalaila, C.S. Allardyce, et al., Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance, J. Am. Chem. Soc. 127 (2005) 1382-1383.
|
[24] |
K.G.Z. Lee, M.V. Babak, A. Weiss, et al., Development of an efficient dual-action GST-inhibiting anticancer platinum(IV) prodrug, ChemMedChem 13 (2018) 1210-1217.
|
[25] |
M. Won, S. Koo, H. Li, et al., An ethacrynic acid-brominated BODIPY photosensitizer (EA-BPS) construct enhances the lethality of reactive oxygen species in hypoxic tumor-targeted photodynamic therapy, Angew. Chem. Int. Ed. 60 (2021) 3196-3204.
|
[26] |
Y. Qin, C. Peng, W. Yang, et al., A bi-functional fluorescent probe for visualized and rapid natural drug screening via GSTs activity monitoring, Sens. Actuat. B 328 (2021), 129047.
|
[27] |
M. Mendes, B. Pamplona, S. Kumar, et al., Ion-pair formation in neutral potassium-neutral pyrimidine collisions: Electron transfer experiments, Front. Chem. 7 (2019), 264.
|
[28] |
C. Lu, W. Lin, W. Wang, et al., Kinetic observation of rapid electron transfer between pyrimidine electron adducts and sensitizers of riboflavin, flavin adenine dinucleotide (FAD) and chloranil: A pulse radiolysis study, Radiat. Phys. Chem. 59 (2000) 61-66.
|
[29] |
X. Liu, L. Chen, Q. Zhou, et al., Electron transfer reactions between 1, 8-dihydroxyanthraquinone and pyrimidines: A laser flash photolysis study, J. Photochem. Photobiol. A 269 (2013) 42-48.
|
[30] |
J. Chen, G. Wang, X. Su, Fabrication of red-emissive ZIF-8@QDs nanoprobe with improved fluorescence based on assembly strategy for enhanced biosensing, Sens. Actuat. B 368 (2022), 132188.
|
[31] |
X. Zhou, M. Wang, X. Su, Sensitive glutathione S-transferase assay based on Fe-doped hollow carbon nanospheres with oxidase-like activity, Sens. Actuat. B 338 (2021), 129777.
|
[32] |
L. Qin, X. He, L. Chen, et al., Turn-on fluorescent sensing of glutathione S-transferase at near-infrared region based on FRET between gold nanoclusters and gold nanorods, ACS Appl. Mater. Interfaces 7 (2015) 5965-5971.
|
[33] |
H. Chen, X. Yang, Y. Liu, et al., Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye, Anal. Bioanal. Chem. 412 (2020) 5843-5851.
|
[34] |
L.R. Kelland, Preclinical perspectives on platinum resistance, Drugs 59 (2000) 1-8; discussion 37-38.
|
[35] |
Y. Qin, M. Daniyal, W. Wang, et al., An enhanced silver nanocluster system for cytochrome c detection and natural drug screening targeted for cytochrome C, Sens. Actuat. B 291 (2019) 485-492.
|