Citation: | Alongkorn Kurilung, Suphitcha Limjiasahapong, Khwanta Kaewnarin, Pattipong Wisanpitayakorn, Narumol Jariyasopit, Kwanjeera Wanichthanarak, Sitanan Sartyoungkul, Stephen Choong Chee Wong, Nuankanya Sathirapongsasuti, Chagriya Kitiyakara, Yongyut Sirivatanauksorn, Sakda Khoomrung. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100921. doi: 10.1016/j.jpha.2023.12.011 |
[1] |
F. Hadacek, G. Bachmann, Low-molecular-weight metabolite systems chemistry, Front. Environ. Sci. 3 (2015), 12.
|
[2] |
M. Luo, Z. Zhou, Z. Zhu, The application of ion mobility-mass spectrometry in untargeted metabolomics: From separation to identification, J. Anal. Test. 4 (2020) 163-174.
|
[3] |
G. Paglia, A.J. Smith, G. Astarita, Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics, Mass Spectrom. Rev. 41 (2022) 722-765.
|
[4] |
J.N. Dodds, E.S. Baker, Ion mobility spectrometry: Fundamental concepts, instrumentation, applications, and the road ahead, J. Am. Soc. Mass Spectrom. 30 (2019) 2185-2195.
|
[5] |
F. Lanucara, S.W. Holman, C.J. Gray, et al., The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics, Nat. Chem. 6 (2014) 281-294.
|
[6] |
V. Gabelica, A.A. Shvartsburg, C. Afonso, et al., Recommendations for reporting ion mobility Mass Spectrometry measurements, Mass Spectrom. Rev. 38 (2019) 291-320.
|
[7] |
D.E. Clemmer, M.F. Jarrold, Ion mobility measurements and their applications to clusters and biomolecules, J. Mass Spectrom. 32 (1997) 577-592.
|
[8] |
M. Hernandez-Mesa, B. Le Bizec, F. Monteau, et al., Collision cross section (CCS) database: An additional measure to characterize steroids, Anal. Chem. 90 (2018) 4616-4625.
|
[9] |
K.M. Hines, D.H. Ross, K.L. Davidson, et al., Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry, Anal. Chem. 89 (2017) 9023-9030.
|
[10] |
K.L. Leaptrot, J.C. May, J.N. Dodds, et al., Ion mobility conformational lipid atlas for high confidence lipidomics, Nat. Commun. 10 (2019), 985.
|
[11] |
G. Paglia, P. Angel, J.P. Williams, et al., Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification, Anal. Chem. 87 (2015) 1137-1144.
|
[12] |
G. Paglia, J.P. Williams, L. Menikarachchi, et al., Ion mobility derived collision cross sections to support metabolomics applications, Anal. Chem. 86 (2014) 3985-3993.
|
[13] |
L. Righetti, A. Bergmann, G. Galaverna, et al., Ion mobility-derived collision cross section database: Application to mycotoxin analysis, Anal. Chim. Acta 1014 (2018) 50-57.
|
[14] |
C. Tejada-Casado, M. Hernandez-Mesa, F. Monteau, et al., Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs, Anal. Chim. Acta 1043 (2018) 52-63.
|
[15] |
N. Jariyasopit, S. Limjiasahapong, A. Kurilung, et al., Traveling wave ion mobility-derived collision cross section database for plant specialized metabolites: An application to Ventilago harmandiana Pierre, J. Proteome Res. 21 (2022) 2481-2492.
|
[16] |
V. D’Atri, T. Causon, O. Hernandez-Alba, et al., Adding a new separation dimension to MS and LC-MS: What is the utility of ion mobility spectrometry? J. Separ. Sci. 41 (2018) 20-67.
|
[17] |
T. Mairinger, T.J. Causon, S. Hann, The potential of ion mobility-mass spectrometry for non-targeted metabolomics, Curr. Opin. Chem. Biol. 42 (2018) 9-15.
|
[18] |
X. Zheng, N.A. Aly, Y. Zhou, et al., A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry, Chem. Sci. 8 (2017) 7724-7736.
|
[19] |
L. Belova, N. Caballero-Casero, A.L.N. van Nuijs, et al., Ion mobility-high-resolution mass spectrometry (IM-HRMS) for the analysis of contaminants of emerging concern (CECs): Database compilation and application to urine samples, Anal. Chem. 93 (2021) 6428-6436.
|
[20] |
Z. Zhou, X. Shen, J. Tu, et al., Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry, Anal. Chem. 88 (2016) 11084-11091.
|
[21] |
C. Di Poto, X. Tian, X. Peng, et al., Metabolomic profiling of human urine samples using LC-TIMS-QTOF mass spectrometry, J. Am. Soc. Mass Spectrom. 32 (2021) 2072-2080.
|
[22] |
J.A. Picache, B.S. Rose, A. Balinski, et al., Collision cross section compendium to annotate and predict multi-omic compound identities, Chem. Sci. 10 (2019) 983-993.
|
[23] |
Z. Zhou, M. Luo, X. Chen, et al., Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics, Nat. Commun. 11 (2020), 4334.
|
[24] |
D.H. Ross, J.H. Cho, L. Xu, Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections, Anal. Chem. 92 (2020) 4548-4557.
|
[25] |
Z. Zhou, J. Tu, X. Xiong, et al., LipidCCS: Prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics, Anal. Chem. 89 (2017) 9559-9566.
|
[26] |
W.B. Struwe, K. Pagel, J.L. Benesch, et al., GlycoMob: An ion mobility-mass spectrometry collision cross section database for glycomics, Glycoconj. J. 33 (2016) 399-404.
|
[27] |
J.C. May, C.B. Morris, J.A. McLean, Ion mobility collision cross section compendium, Anal. Chem. 89 (2017) 1032-1044.
|
[28] |
T.J. Causon, L. Si-Hung, K. Newton, et al., Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics, Anal. Bioanal. Chem. 411 (2019) 6265-6274.
|
[29] |
D. Morsa, V. Gabelica, E. De Pauw, Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry, J. Am. Soc. Mass Spectrom. 25 (2014) 1384-1393.
|
[30] |
A.A. Shvartsburg, R.D. Smith, Fundamentals of traveling wave ion mobility spectrometry, Anal. Chem. 80 (2008) 9689-9699.
|
[31] |
R. Guevremont, High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry, J. Chromatogr. A 1058 (2004) 3-19.
|
[32] |
D. Morsa, V. Gabelica, E. De Pauw, Effective temperature of ions in traveling wave ion mobility spectrometry, Anal. Chem. 83 (2011) 5775-5782.
|
[33] |
S.I. Merenbloom, T.G. Flick, E.R. Williams, How hot are your ions in TWAVE ion mobility spectrometry? J. Am. Soc. Mass Spectrom. 23 (2012) 553-562.
|
[34] |
G. Paglia, G. Astarita, Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry, Nat. Protoc. 12 (2017) 797-813.
|
[35] |
A.M. King, L.G. Mullin, I.D. Wilson, et al., Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC-MS and ion mobility enabled HILIC-MS, Metabolomics 15 (2019), 17.
|
[36] |
F. Lermyte, F. Sobott, A broader view on ion heating in traveling-wave devices using fragmentation of CsI clusters and extent of H· migration as molecular thermometers, Analyst 142 (2017) 3388-3399.
|
[37] |
K. Anekthanakul, S. Manocheewa, K. Chienwichai, et al., Predicting lupus membranous nephritis using reduced picolinic acid to tryptophan ratio as a urinary biomarker, iScience 24 (2021), 103355.
|
[38] |
D.S. Wishart, A. Guo, E. Oler, et al., HMDB 5.0: The human metabolome database for 2022, Nucleic Acids Res. 50 (2022) D622-D631.
|
[39] |
L.S. Fenn, M. Kliman, A. Mahsut, et al., Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples, Anal. Bioanal. Chem. 394 (2009) 235-244.
|
[40] |
J.C. May, C.R. Goodwin, N.M. Lareau, et al., Conformational ordering of biomolecules in the gas phase: Nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer, Anal. Chem. 86 (2014) 2107-2116.
|
[41] |
Y. Djoumbou Feunang, R. Eisner, C. Knox, et al., ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy, J. Cheminform. 8 (2016), 61.
|
[42] |
G.B. Gonzales, G. Smagghe, S. Coelus, et al., Collision cross section prediction of deprotonated phenolics in a travelling-wave ion mobility spectrometer using molecular descriptors and chemometrics, Anal. Chim. Acta 924 (2016) 68-76.
|
[43] |
J.N. Dodds, J.C. May, J.A. McLean, Investigation of the complete suite of the leucine and isoleucine isomers: Toward prediction of ion mobility separation capabilities, Anal. Chem. 89 (2017) 952-959.
|
[44] |
M.L. Feuerstein, M. Hernandez-Mesa, Y. Valadbeigi, et al., Critical evaluation of the role of external calibration strategies for IM-MS, Anal. Bioanal. Chem. 414 (2022) 7483-7493.
|
[45] |
E.A. Mason, H.W. Schamp, Mobility of gaseous lons in weak electric fields, Ann. Phys. 4 (1958) 233-270.
|
[46] |
S.M. Stow, T.J. Causon, X. Zheng, et al., An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements, Anal. Chem. 89 (2017) 9048-9055.
|
[47] |
K.M. Hines, J.C. May, J.A. McLean, et al., Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry, Anal. Chem. 88 (2016) 7329-7336.
|
[48] |
J.G. Forsythe, A.S. Petrov, C.A. Walker, et al., Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry, Analyst 140 (2015) 6853-6861.
|
[49] |
L.W. Sumner, A. Amberg, D. Barrett, et al., Proposed minimum reporting standards for chemical analysis working group (CAWG) metabolomics standards initiative (MSI), Metabolomics 3 (2007) 211-221.
|
[50] |
D.H. Ross, R.P. Seguin, A.M. Krinsky, et al., High-throughput measurement and machine learning-based prediction of collision cross sections for drugs and drug metabolites, J. Am. Soc. Mass Spectrom. 33 (2022) 1061-1072.
|
[51] |
P.L. Plante, E. Francovic-Fontaine, J.C. May, et al., Predicting ion mobility collision cross-sections using a deep neural network: DeepCCS, Anal. Chem. 91 (2019) 5191-5199.
|
[52] |
J.R.F.B. Connolly, J. Munoz-Muriedas, C. Lapthorn, et al., Investigation into small molecule isomeric glucuronide metabolite differentiation using in silico and experimental collision cross-section values, J. Am. Soc. Mass Spectrom. 32 (2021) 1976-1986.
|
[53] |
A. Delvaux, E. Rathahao-Paris, S. Alves, Different ion mobility-mass spectrometry coupling techniques to promote metabolomics, Mass Spectrom. Rev. 41 (2022) 695-721.
|
[54] |
S.V.B. Garimella, G. Nagy, Y.M. Ibrahim, et al., Opening new paths for biological applications of ion mobility - mass spectrometry using Structures for Lossless Ion Manipulations, Trends Analyt. Chem. 116 (2019) 300-307.
|
[55] |
Y.M. Ibrahim, A.M. Hamid, L. Deng, et al., New frontiers for mass spectrometry based upon structures for lossless ion manipulations, Analyst 142 (2017) 1010-1021.
|
[56] |
K. Giles, J. Ujma, J. Wildgoose, et al., A cyclic ion mobility-mass spectrometry system, Anal. Chem. 91 (2019) 8564-8573.
|
[57] |
J. Ujma, D. Ropartz, K. Giles, et al., Cyclic ion mobility mass spectrometry distinguishes anomers and open-ring forms of pentasaccharides, J. Am. Soc. Mass Spectrom. 30 (2019) 1028-1037.
|
[58] |
K.L. Wormwood Moser, G. Van Aken, D. DeBord, et al., High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics, Anal. Chim. Acta 1146 (2021) 77-87.
|
[59] |
M. McCullagh, K. Giles, K. Richardson, et al., Investigations into the performance of travelling wave enabled conventional and cyclic ion mobility systems to characterise protomers of fluoroquinolone antibiotic residues, Rapid Commun. Mass Spectrom. 33 (2019) 11-21.
|