Volume 14 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
Hao-Yang Cheng, Guang-Liang Su, Yu-Xuan Wu, Gang Chen, Zi-Li Yu. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100920. doi: 10.1016/j.jpha.2023.12.010
Citation: Hao-Yang Cheng, Guang-Liang Su, Yu-Xuan Wu, Gang Chen, Zi-Li Yu. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects[J]. Journal of Pharmaceutical Analysis, 2024, 14(7): 100920. doi: 10.1016/j.jpha.2023.12.010

Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects

doi: 10.1016/j.jpha.2023.12.010
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 82341023), the Interdisciplinary Research Project of School of Stomatology, Wuhan University, China (Grant No.: XNJC202305), the Innovative Research Team of High-level Local Universities in Shanghai, China (Grant No.: SHSMU-ZLCX20212300), and Planning Project of Innovation and Entrepreneurship Training of National Undergraduate of Wuhan University, China (Grant No.: 202310486122).

  • Received Date: Oct. 05, 2023
  • Accepted Date: Dec. 13, 2023
  • Rev Recd Date: Dec. 07, 2023
  • Publish Date: Dec. 16, 2023
  • Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.

  • loading
  • [1]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
    [2]
    C. Holohan, S. Van Schaeybroeck, D.B. Longley, et al., Cancer drug resistance: An evolving paradigm, Nat. Rev. Cancer 13 (2013) 714-726.
    [3]
    H. Valadi, K. Ekstrom, A. Bossios, et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654-659.
    [4]
    R. Kalluri, V.S. LeBleu, The biology, function, and biomedical applications of exosomes, Science 367 (2020), eaau6977.
    [5]
    Tkach M, Thery C, Communication by extracellular vesicles: Where we are and where we need to go, Cell 164 (2016) 1226-1232.
    [6]
    A.E. Morelli, A.T. Larregina, W.J. Shufesky, et al., Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells, Blood 104 (2004) 3257-3266.
    [7]
    G. van Niel, D.R.F. Carter, A. Clayton, et al., Challenges and directions in studying cell-cell communication by extracellular vesicles, Nat. Rev. Mol. Cell Biol. 23 (2022) 369-382.
    [8]
    Y. Li, Z.-K. Chen, X. Duan, et al., Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer, Exp. Mol. Med. 54 (2022) 1379-1389.
    [9]
    R. Kalluri, K.M. McAndrews, The role of extracellular vesicles in cancer, Cell 186 (2023) 1610-1626.
    [10]
    M.S. Kim, S.H. Yang, M.S. Kim, TRPML3 enhances drug resistance in non-small cell lung cancer cells by promoting Ca2+-mediated lysosomal trafficking, Biochem. Biophys. Res. Commun. 627 (2022) 152-159.
    [11]
    C. Ding, X. Yi, X. Chen, et al., Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma, J. Exp. Clin. Cancer Res. 40 (2021), 164.
    [12]
    K. Takahashi, I.K. Yan, J. Wood, et al., Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy, Mol. Cancer Res. 12 (2014) 1377-1387.
    [13]
    S. Liu, W. Wang, Y. Ning, et al., Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer, Cell Death Dis. 13 (2022), 129.
    [14]
    N. Guyon, D. Garnier, J. Briand, et al., Anti-PD1 therapy induces lymphocyte-derived exosomal miRNA-4315 release inhibiting Bim-mediated apoptosis of tumor cells, Cell Death Dis. 11 (2020), 1048.
    [15]
    A.C. Dixson, T.R. Dawson, D. Di Vizio, et al., Context-specific regulation of extracellular vesicle biogenesis and cargo selection, Nat. Rev. Mol. Cell Biol. 24 (2023) 454-476.
    [16]
    S.L.N. Maas, X.O. Breakefield, A.M. Weaver, Extracellular vesicles: Unique intercellular delivery vehicles, Trends Cell Biol. 27 (2017) 172-188.
    [17]
    G. van Niel, G. D’Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles, Nat. Rev. Mol. Cell Biol. 19 (2018) 213-228.
    [18]
    L.A. Mulcahy, R.C. Pink, D.R. Carter, Routes and mechanisms of extracellular vesicle uptake, J. Extracell. Vesicles 3 (2014), 3.
    [19]
    Y. Geng, J. Wang, S.A. Serna-Salas, et al., Hepatic stellate cells induce an inflammatory phenotype in Kupffer cells via the release of extracellular vesicles, J. Cell. Physiol. 238 (2023) 2293-2303.
    [20]
    M.S. Njock, H.S. Cheng, L.T. Dang, et al., Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs, Blood 125 (2015) 3202-3212.
    [21]
    Y. Jia, J. Chen, Z. Zheng, et al., Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease, Mol. Med. 28 (2022), 95.
    [22]
    C. Wu, J. Li, L. Li, et al., Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells, J. Extracell. Vesicles 8 (2019), 1588538.
    [23]
    Z.W. Ye, Z.L. Yu, G. Chen, et al., Extracellular vesicles in tumor angiogenesis and resistance to anti-angiogenic therapy, Cancer Sci. 114 (2023) 2739-2749.
    [24]
    J. Johnson, S.Q.K. Law, M. Shojaee, et al., First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing, J. Extracell. Vesicles 12 (2023), e12332.
    [25]
    Y. Chen, Y. Wu, L. Guo, et al., Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis, J. Nanobiotechnol. 21 (2023), 98.
    [26]
    T. Hu, S. Chang, F. Qi, et al., Neural grafts containing exosomes derived from Schwann cell-like cells promote peripheral nerve regeneration in rats, Burns Trauma 11 (2023), tkad013.
    [27]
    X. Wang, H. Huang, K.M. Sze, et al., S100A10 promotes HCC development and progression via transfer in extracellular vesicles and regulating their protein cargos, Gut 72 (2023) 1370-1384.
    [28]
    M.S. Njock, T. O’Grady, O. Nivelles, et al., Endothelial extracellular vesicles promote tumour growth by tumour-associated macrophage reprogramming, J. Extracell. Vesicles 11 (2022), e12228.
    [29]
    P. Cohen, D. Cross, P. A. Janne, Kinase drug discovery 20 years after imatinib: progress and future directions, Nat. Rev. Drug Discov. 20 (2021) 551-569.
    [30]
    Enokida T, Tahara M, Management of VEGFR-Targeted TKI for Thyroid Cancer, Cancers 13 (2021), 5536.
    [31]
    E. E. Manasanch, R. Z. Orlowski, Proteasome inhibitors in cancer therapy, Nat. Rev. Clin. Oncol. 14 (2017) 417-433.
    [32]
    S. M. Wilhelm, C. Carter, L. Tang, et al., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis, Cancer Res. 64 (2004) 7099-7109.
    [33]
    C. Louandre, Z. Ezzoukhry, C. Godin, et al., Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib, Int. J. Cancer 133 (2013) 1732-1742.
    [34]
    W. Tang, Z. Chen, W. Zhang, et al., The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects, Signal Transduct Target Ther. 5 (2020), 87.
    [35]
    W. Zhong, Q. Li, Rituximab or irradiation promotes IL-17 secretion and thereby induces resistance to rituximab or irradiation, Cell. Mol. Immunol. 14 (2017) 1020-1022.
    [36]
    Q. Sun, Y. Ye, A. Gui, et al., MORTALIN-Ca2+ axis drives innate rituximab resistance in diffuse large B-cell lymphoma, Cancer Lett. 537 (2022), 215678.
    [37]
    A. R. Rezvani, D. G. Maloney, Rituximab resistance, Best Pract. Res., Clin. Haematol. 24 (2011) 203-216.
    [38]
    S. Vivekanandhan, K. L. Knutson, Resistance to Trastuzumab, Cancers. 14 (2022), 5115.
    [39]
    K. Pang, Z. D. Shi, L. Y. Wei, et al., Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade, Drug Resist. Updat. 66 (2023), 100907.
    [40]
    J. Wang, S. Xie, J. Yang, et al., The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy, J. Hematol. Oncol. 12 (2019), 81.
    [41]
    Y. Tian, Z. H. Chen, P. Wu, et al., MIR497HG-Derived miR-195 and miR-497 Mediate Tamoxifen Resistance via PI3K/AKT Signaling in Breast Cancer, Adv. Sci. (Weinheim, Ger.) 10 (2023), e2204819.
    [42]
    L. Ye, C. Lin, X. Wang, et al., Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer, EMBO Mol. Med. 11 (2019), e10638.
    [43]
    S. Ghosh, Cisplatin: The first metal based anticancer drug, Bioorg. Chem. 88 (2019), 102925.
    [44]
    Z. H. Siddik, Cisplatin: mode of cytotoxic action and molecular basis of resistance, Oncogene 22 (2003) 7265-7279.
    [45]
    M. S. Tomar, A. Kumar, C. Srivastava, et al., Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance, Biochim. Biophys. Acta, Rev. Cancer 1876 (2021), 188616.
    [46]
    Y. Binenbaum, S. Na’ara, Z. Gil, Gemcitabine resistance in pancreatic ductal adenocarcinoma, Drug Resist. Updat. 23 (2015) 55-68.
    [47]
    S. Dalin, M. R. Sullivan, A. N. Lau, et al., Deoxycytidine Release from Pancreatic Stellate Cells Promotes Gemcitabine Resistance, Cancer Res. 79 (2019) 5723-5733.
    [48]
    H. J. Broxterman, K. J. Gotink, H. M. Verheul, Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib, Drug Resist. Updat. 12 (2009) 114-126.
    [49]
    W. Wang, J. Wang, S. Liu, et al., An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer, Mol. Cancer 21 (2022), 106.
    [50]
    J. Han, J. Yun, M. Quan, et al., JAK2 regulates paclitaxel resistance in triple negative breast cancers, J Mol Med (Berl) 99 (2021) 1783-1795.
    [51]
    K. R. M. Blenman, M. Marczyk, T. Karn, et al., Predictive Markers of Response to Neoadjuvant Durvalumab with Nab-Paclitaxel and Dose-Dense Doxorubicin/Cyclophosphamide in Basal-Like Triple-Negative Breast Cancer, Clin. Cancer Res. 28 (2022) 2587-2597.
    [52]
    F. Janku, T.A. Yap, F. Meric-Bernstam, Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol. 15 (2018) 273-291.
    [53]
    G. Hoxhaj, B.D. Manning, The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism, Nat. Rev. Cancer 20 (2020) 74-88.
    [54]
    J. Yin, A. Zeng, Z. Zhang, et al., Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma, EBioMedicine 42 (2019) 238-251.
    [55]
    C. Boscher, I.R. Nabi, Caveolin-1: Role in cell signaling, Adv. Exp. Med. Biol. 729 (2012) 29-50.
    [56]
    G. Arvidson, G. Ronquist, G. Wikander, et al., Human prostasome membranes exhibit very high cholesterol/phospholipid ratios yielding high molecular ordering, Biochim. Biophys. Acta 984 (1989) 167-173.
    [57]
    G. Arienti, E. Carlini, A. Polci, et al., Fatty acid pattern of human prostasome lipid, Arch. Biochem. Biophys. 358 (1998) 391-395.
    [58]
    L. Xin, L. Zhou, C. Liu, et al., Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer, EMBO Rep. 22 (2021), e52124.
    [59]
    Y. Gao, X. Li, C. Zeng, et al., CD63+ cancer-associated fibroblasts confer tamoxifen resistance to breast cancer cells through exosomal miR-22, Adv. Sci. Weinheim Baden Wurttemberg Ger. 7 (2020), 2002518.
    [60]
    S. Shalini, L. Dorstyn, S. Dawar, et al., Old, new and emerging functions of caspases, Cell Death Differ. 22 (2015) 526-539.
    [61]
    Q. Zhang, J. Liu, S. Chen, et al., Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress, Apoptosis 21 (2016) 432-442.
    [62]
    X. Liu, Y. Lu, Y. Xu, et al., Exosomal transfer of miR-501 confers doxorubicin resistance and tumorigenesis via targeting of BLID in gastric cancer, Cancer Lett. 459 (2019) 122-134.
    [63]
    X. Jing, M. Xie, K. Ding, et al., Exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53, Clin. Transl. Med. 12 (2022), e780.
    [64]
    Q. Huang, F. Li, X. Liu, et al., Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy, Nat. Med. 17 (2011) 860-866.
    [65]
    B. Samuelsson, S.E. Dahlen, J.A. Lindgren, et al., Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects, Science 237 (1987) 1171-1176.
    [66]
    C. Cianciaruso, T. Beltraminelli, F. Duval, et al., Molecular profiling and functional analysis of macrophage-derived tumor extracellular vesicles, Cell Rep. 27 (2019) 3062-3080.e11.
    [67]
    C.L. Au Yeung, N.N. Co, T. Tsuruga, et al., Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1, Nat. Commun. 7 (2016), 11150.
    [68]
    T.F. Reubold, S. Eschenburg, A molecular view on signal transduction by the apoptosome, Cell. Signal. 24 (2012) 1420-1425.
    [69]
    T.L. Weigel, M.T. Lotze, P.K. Kim, et al., Paclitaxel-induced apoptosis in non-small cell lung cancer cell lines is associated with increased caspase-3 activity, J. Thorac. Cardiovasc. Surg. 119 (2000) 795-803.
    [70]
    Q. Yang, S. Zhao, Z. Shi, et al., Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling, J. Exp. Clin. Cancer Res. 40 (2021), 120.
    [71]
    F. Wei, C. Ma, T. Zhou, et al., Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p, Mol. Cancer 16 (2017), 132.
    [72]
    D. Wang, C. Zhao, F. Xu, et al., Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2, Theranostics 11 (2021) 2860-2875.
    [73]
    X. Cao, J. Hou, Q. An, et al., Towards the overcoming of anticancer drug resistance mediated by p53 mutations, Drug Resist. Updat. 49 (2020), 100671.
    [74]
    B. Polonia, C.P.R. Xavier, J. Kopecka, et al., The role of Extracellular Vesicles in glycolytic and lipid metabolic reprogramming of cancer cells: Consequences for drug resistance, Cytokine Growth Factor Rev. 73 (2023) 150-162.
    [75]
    M. Xu, C. Zhou, J. Weng, et al., Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway, J. Exp. Clin. Cancer Res. 41 (2022), 253.
    [76]
    Z. Zeng, Y. Zhao, Q. Chen, et al., Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis, Oncogene 40 (2021) 5505-5517.
    [77]
    X. Qu, B. Liu, L. Wang, et al., Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer, Drug Resist. Updat. 68 (2023), 100936.
    [78]
    Y. Wang, X. Wu, Z. Ren, et al., Overcoming cancer chemotherapy resistance by the induction of ferroptosis, Drug Resist. Updat. 66 (2023), 100916.
    [79]
    H. Zhang, T. Deng, R. Liu, et al., CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer, Mol. Cancer 19 (2020), 43.
    [80]
    R. Qi, Y. Bai, K. Li, et al., Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs, Drug Resist. Updat. 68 (2023), 100960.
    [81]
    Q. Zhang, T. Deng, H. Zhang, et al., Adipocyte-derived exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal cancer, Adv. Sci. Weinheim Baden Wurttemberg Ger. 9 (2022), e2203357.
    [82]
    T. Jiang, X. Chen, X. Ren, et al., Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance, Drug Resist. Updat. 56 (2021), 100752.
    [83]
    M.M. Kadhim, A.A. Ramirez-Coronel, A.T. Jalil, et al., Autophagy as a self-digestion signal in human cancers: Regulation by microRNAs in affecting carcinogenesis and therapy response, Pharmacol. Res. 189 (2023), 106695.
    [84]
    E. White, E.C. Lattime, J.Y. Guo, Autophagy regulates stress responses, metabolism, and anticancer immunity, Trends Cancer 7 (2021) 778-789.
    [85]
    Y. Qiu, X. Wang, Y. Sun, et al., TCF12 regulates exosome release from epirubicin-treated CAFs to promote ER+ breast cancer cell chemoresistance, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1869 (2023), 166727.
    [86]
    X. Wu, Z. Zhou, S. Xu, et al., Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling, Cancer Lett. 478 (2020) 93-106.
    [87]
    J. Liu, S. Zhu, W. Tang, et al., Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p, Cancer Cell Int. 21 (2021), 55.
    [88]
    S.J. Chung, G.P. Nagaraju, A. Nagalingam, et al., ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis, Autophagy 13 (2017) 1386-1403.
    [89]
    Y. Ma, D. Yuwen, J. Chen, et al., Exosomal transfer of cisplatin-induced miR-425-3p confers cisplatin resistance in NSCLC through activating autophagy, Int. J. Nanomed. 14 (2019) 8121-8132.
    [90]
    Z. Yu, H. Tang, S. Chen, et al., Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy, Drug Resist. Updat. 67 (2023), 100915.
    [91]
    P. Xiao, Y. Liu, W. Han, et al., Exosomal delivery of FTO confers gefitinib resistance to recipient cells through ABCC10 regulation in an m6A-dependent manner, Mol. Cancer Res. 19 (2021) 726-738.
    [92]
    H. Zhao, Y. Huang, J. Shi, et al., ABCC10 plays a significant role in the transport of gefitinib and contributes to acquired resistance to gefitinib in NSCLC, Front. Pharmacol. 9 (2018), 1312.
    [93]
    L. Braconi, E. Teodori, C. Riganti, et al., New dual P-glycoprotein (P-gp) and human carbonic anhydrase XII (hCA XII) inhibitors as multidrug resistance (MDR) reversers in cancer cells, J. Med. Chem. 65 (2022) 14655-14672.
    [94]
    C. Federici, F. Petrucci, S. Caimi, et al., Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin, PLoS One 9 (2014), e88193.
    [95]
    E. Yang, L. Wang, W. Jin, et al., PTRF/Cavin-1 enhances chemo-resistance and promotes temozolomide efflux through extracellular vesicles in glioblastoma, Theranostics 12 (2022) 4330-4347.
    [96]
    F. Luciani, M. Spada, A. De Milito, et al., Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs, J Natl Cancer Inst. 96 (2004) 1702-1713.
    [97]
    T. Aung, B. Chapuy, D. Vogel, et al., Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3, Proc. Natl. Acad. Sci. USA 108 (2011) 15336-15341.
    [98]
    J. Yao, K. Deng, J. Huang, et al., Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer, Front. Pharmacol. 11 (2020), 592912.
    [99]
    Y. Wei, X. Lai, S. Yu, et al., Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells, Breast Cancer Res. Treat. 147 (2014) 423-431.
    [100]
    N. Javidi-Sharifi, J. Martinez, I. English, et al., FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells, eLife 8 (2019), e40033.
    [101]
    F. Wang, I. Oudaert, C. Tu, et al., System Xc- inhibition blocks bone marrow-multiple myeloma exosomal crosstalk, thereby countering bortezomib resistance, Cancer Lett. 535 (2022), 215649.
    [102]
    J. Wang, A. Hendrix, S. Hernot, et al., Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells, Blood 124 (2014) 555-566.
    [103]
    R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer 16 (2016) 582-598.
    [104]
    A. Mantovani, F. Marchesi, A. Malesci, et al., Tumour-associated macrophages as treatment targets in oncology, Nat. Rev. Clin. Oncol. 14 (2017) 399-416.
    [105]
    J. Tian, H. Zhang, S. Li, et al., Tumor cell-derived extracellular vesicles in modulating phenotypes and immune functions of macrophages: Mechanisms and therapeutic applications, J. Cancer 14 (2023) 1321-1334.
    [106]
    L. Zhu, Y. Yang, H. Li, et al., Exosomal microRNAs induce tumor-associated macrophages via PPARγ during tumor progression in SHH medulloblastoma, Cancer Lett. 535 (2022), 215630.
    [107]
    R. Vats, T. Brzoska, M.F. Bennewitz, et al., Platelet extracellular vesicles drive inflammasome-IL-1β-dependent lung injury in sickle cell disease, Am. J. Respir. Crit. Care Med. 201 (2020) 33-46.
    [108]
    Z. Niu, Q. Shi, W. Zhang, et al., Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs, Nat. Commun. 8 (2017), 766.
    [109]
    A. Sancar, L.A. Lindsey-Boltz, K. Unsal-Kacmaz, et al., Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Annu. Rev. Biochem. 73 (2004) 39-85.
    [110]
    Z. Zhang, J. Yin, C. Lu, et al., Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma, J. Exp. Clin. Cancer Res. 38 (2019), 166.
    [111]
    Q. Yu, Y. Li, S. Peng, et al., Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p, Open Med. 16 (2021) 512-525.
    [112]
    Z. Li, Y. Zhang, S. Sui, et al., Targeting HMGB3/hTERT axis for radioresistance in cervical cancer, J. Exp. Clin. Cancer Res. 39 (2020), 243.
    [113]
    M. Ge, Z. Qiao, Y. Kong, et al., Exosomes mediate intercellular transfer of non-autonomous tolerance to proteasome inhibitors in mixed-lineage leukemia, Cancer Sci. 111 (2020) 1279-1290.
    [114]
    X. Qin, H. Guo, X. Wang, et al., Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5, Genome Biol. 20 (2019), 12.
    [115]
    A. Kreso, J.E. Dick, Evolution of the cancer stem cell model, Cell Stem Cell 14 (2014) 275-291.
    [116]
    K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits, Nat. Rev. Cancer 9 (2009) 265-273.
    [117]
    T. Shibue, R.A. Weinberg, EMT, CSCs, and drug resistance: The mechanistic link and clinical implications, Nat. Rev. Clin. Oncol. 14 (2017) 611-629.
    [118]
    C.J. Lin, E.J. Yun, U.G. Lo, et al., The paracrine induction of prostate cancer progression by caveolin-1, Cell Death Dis. 10 (2019), 834.
    [119]
    B. Ou, Y. Liu, Z. Gao, et al., Senescent neutrophils-derived exosomal piRNA-17560 promotes chemoresistance and EMT of breast cancer via FTO-mediated m6A demethylation, Cell Death Dis. 13 (2022), 905.
    [120]
    C. Wu, T. Rakhshandehroo, H.I. Wettersten, et al., Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ECM-enriched niche and support tumour initiation, Nat. Cell Biol. 25 (2023) 309-322.
    [121]
    C. Wu, S.M. Weis, D.A. Cheresh, Tumor-initiating cells establish a niche to overcome isolation stress, Trends Cell Biol. (2023), S0962-S8924(23)00165-4.
    [122]
    S. Buratta, L. Urbanelli, K. Sagini, et al., Extracellular vesicles released by fibroblasts undergoing H-Ras induced senescence show changes in lipid profile, PLoS One 12 (2017), e0188840.
    [123]
    D. Wang, X. Wu, Y. Sun, Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response, Signal Transduct. Target. Ther. 7 (2022), 331.
    [124]
    B. Lv, Y. Wang, D. Ma, et al., Immunotherapy: Reshape the tumor immune microenvironment, Front. Immunol. 13 (2022), 844142.
    [125]
    P. Sharma, J.P. Allison, The future of immune checkpoint therapy, Science 348 (2015) 56-61.
    [126]
    S.M. Morrissey, J. Yan, Exosomal PD-L1: Roles in tumor progression and immunotherapy, Trends Cancer 6 (2020) 550-558.
    [127]
    Q. Xie, J. Zheng, J. Ding, et al., Exosome-mediated immunosuppression in tumor microenvironments, Cells 11 (2022), 1946.
    [128]
    S. Serrati, M. Guida, R. Di Fonte, et al., Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma, Mol. Cancer 21 (2022), 20.
    [129]
    G. Chen, A.C. Huang, W. Zhang, et al., Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response, Nature 560 (2018) 382-386.
    [130]
    M. Poggio, T. Hu, C.C. Pai, et al., Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory, Cell 177 (2019) 414-427.e13.
    [131]
    Y. Yang, C.W. Li, L. Chan, et al., Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth, Cell Res. 28 (2018) 862-864.
    [132]
    J. Chen, Y. Song, F. Miao, et al., PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis, Cancer Sci. 112 (2021) 3437-3454.
    [133]
    S.J. Kim, K.J. Ryu, B. Park, et al., Exosomal and soluble programed death-ligand 1 (PD-L1) predicts responses to pembrolizumab in patients with extranodal NK/T-cell lymphoma, Cancers 14 (2022), 5618.
    [134]
    L. Guan, B. Wu, T. Li, et al., HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors, Nat. Commun. 13 (2022), 4078.
    [135]
    S. Chen, S. Zhu, X. Pei, et al., Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC, Mol. Cancer 20 (2021), 144.
    [136]
    Z. Hu, G. Chen, Y. Zhao, et al., Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma, Mol. Cancer 22 (2023), 55.
    [137]
    R. Turiello, M. Capone, E. Morretta, et al., Exosomal CD73 from serum of patients with melanoma suppresses lymphocyte functions and is associated with therapy resistance to anti-PD-1 agents, J. Immunother. Cancer 10 (2022), e004043.
    [138]
    R. Xu, Z. Yu, X. Liu, et al., Aptamer-assisted traceless isolation of PD-L1-positive small extracellular vesicles for dissecting their subpopulation signature and function, Anal. Chem. 95 (2023) 1016-1026.
    [139]
    N. Liu, J. Zhang, M. Yin, et al., Inhibition of xCT suppresses the efficacy of anti-PD-1/L1 melanoma treatment through exosomal PD-L1-induced macrophage M2 polarization, Mol. Ther. 29 (2021) 2321-2334.
    [140]
    P. Zhang, C. Gao, X. Huang, et al., Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma, Mol. Cancer 19 (2020), 110.
    [141]
    S. Yu, H. Sha, X. Qin, et al., EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells, Oncogene 39 (2020) 2643-2657.
    [142]
    J. Chen, J. Yang, W. Wang, et al., Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1, Cell. Mol. Immunol. 19 (2022) 1290-1301.
    [143]
    R.A. Sharma, R. Plummer, J.K. Stock, et al., Clinical development of new drug-radiotherapy combinations, Nat. Rev. Clin. Oncol. 13 (2016) 627-642.
    [144]
    D.E. Citrin, Recent developments in radiotherapy, N. Engl. J. Med. 377 (2017) 1065-1075.
    [145]
    Y. Wu, Y. Song, R. Wang, et al., Molecular mechanisms of tumor resistance to radiotherapy, Mol. Cancer 22 (2023), 96.
    [146]
    S. Moertl, D. Buschmann, O. Azimzadeh, et al., Radiation exposure of peripheral mononuclear blood cells alters the composition and function of secreted extracellular vesicles, Int. J. Mol. Sci. 21 (2020), 2336.
    [147]
    T. Szatmari, K. Balazs, I.B. Csordas, et al., Effect of radiotherapy on the DNA cargo and cellular uptake mechanisms of extracellular vesicles, Strahlenther. Oncol. 199 (2023) 1191-1213.
    [148]
    F. Zhang, Z. Zheng, L. Wang, et al., PKC-ζ mediated reduction of the extracellular vesicles-associated TGF-β1 overcomes radiotherapy resistance in cancer, Breast Cancer Res. 25 (2023), 38.
    [149]
    M. Cerreto, S. Sennato, F. Tortolici, et al., Effect of the irradiation on Neuroblastoma-derived microvesicles: A physical and biological investigation, Colloids Surf. A 532 (2017) 195-202.
    [150]
    N. Jabbari, M. Nawaz, J. Rezaie, Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: A possible way to communicate resistance against radiotherapy, Int. J. Mol. Sci. 20 (2019), 3649.
    [151]
    S. Pazzaglia, B. Tanno, I. De Stefano, et al., Micro-RNA and proteomic profiles of plasma-derived exosomes from irradiated mice reveal molecular changes preventing apoptosis in neonatal cerebellum, Int. J. Mol. Sci. 23 (2022), 2169.
    [152]
    M. Schneider, K. Winkler, R. Kell, et al., The chaperone protein GRP78 promotes survival and migration of head and neck cancer after direct radiation exposure and extracellular vesicle-transfer, Front. Oncol. 12 (2022), 842418.
    [153]
    F. Chen, B. Xu, J. Li, et al., Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10, J. Exp. Clin. Cancer Res. 40 (2021), 38.
    [154]
    M. Jiang, Y. Chen, J. Dai, et al., Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer, Mol. Cancer 19 (2020), 68.
    [155]
    X. Wang, F. Xu, H. Kou, et al., Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy, J. Extracell. Vesicles 12 (2023), e12342.
    [156]
    K. Yamana, J. Inoue, R. Yoshida, et al., Extracellular vesicles derived from radioresistant oral squamous cell carcinoma cells contribute to the acquisition of radioresistance via the miR-503-3p-BAK axis, J. Extracell. Vesicles 10 (2021), e12169.
    [157]
    Q. Li, M. Lv, L. Lv, et al., Identifying HER2 from serum-derived exosomes in advanced gastric cancer as a promising biomarker for assessing tissue HER2 status and predicting the efficacy of trastuzumab-based therapy, Cancer Med. 12 (2023) 4110-4124.
    [158]
    S. Shi, Z. Yu, J. Jia, The roles of exosomes in the diagnose, development and therapeutic resistance of oral squamous cell carcinoma, Int. J. Mol. Sci. 24 (2023), 1968.
    [159]
    G.P. Vadla, B. Daghat, N. Patterson, et al., Combining plasma extracellular vesicle Let-7b-5p, miR-184 and circulating miR-22-3p levels for NSCLC diagnosis and drug resistance prediction, Sci. Rep. 12 (2022), 6693.
    [160]
    D. Yu, Y. Li, M. Wang, et al., Exosomes as a new frontier of cancer liquid biopsy, Mol. Cancer 21 (2022), 56.
    [161]
    B. Irmer, S. Chandrabalan, L. Maas, et al., Extracellular vesicles in liquid biopsies as biomarkers for solid tumors, Cancers 15 (2023), 1307.
    [162]
    E.K. Vetsika, P. Sharma, I. Samaras, et al., Small extracellular vesicles in pre-therapy plasma predict clinical outcome in non-small-cell lung cancer patients, Cancers 13 (2021), 2041.
    [163]
    D. de Miguel-Perez, A. Russo, O. Arrieta, et al., Extracellular vesicle PD-L1 dynamics predict durable response to immune-checkpoint inhibitors and survival in patients withnon-small cell lung cancer, J. Exp. Clin. Cancer Res. 41 (2022), 186.
    [164]
    J. Liu, Z. Yu, Q. Fu, et al., Immunosuppressive effect of small extracellular vesicle PD-L1 is restricted by co-expression of CD80, Br. J. Cancer 129 (2023) 925-934.
    [165]
    B. He, Z. Zhao, Q. Cai, et al., miRNA-based biomarkers, therapies, and resistance in cancer, Int. J. Biol. Sci. 16 (2020) 2628-2647.
    [166]
    X. Peng, R. Yu, X. Wu, et al., Correlation of plasma exosomal microRNAs with the efficacy of immunotherapy in EGFR/ALK wild-type advanced non-small cell lung cancer, J. Immunother. Cancer 8 (2020), e000376.
    [167]
    S. Wang, M. Ping, B. Song, et al., Exosomal CircPRRX1 Enhances Doxorubicin Resistance in Gastric Cancer by Regulating MiR-3064-5p/PTPN14 Signaling, Yonsei Med. J. 61 (2020) 750-761.
    [168]
    T. Ning, J. Li, Y. He, et al., Exosomal miR-208b related with oxaliplatin resistance promotes Treg expansion in colorectal cancer, Mol. Ther. 29 (2021) 2723-2736.
    [169]
    M. Del Re, V. Conteduca, S. Crucitta, et al., Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide, Prostate Cancer Prostatic Dis. 24 (2021) 524-531.
    [170]
    B. Yang, F. Teng, L. Chang, et al., Tumor-derived exosomal circRNA_102481 contributes to EGFR-TKIs resistance via the miR-30a-5p/ROR1 axis in non-small cell lung cancer, Aging 13 (2021) 13264-13286.
    [171]
    C. Liu, C. Hu, T. Chen, et al., The role of plasma exosomal lnc-SNAPC5-3:4 in monitoring the efficacy of anlotinib in the treatment of advanced non-small cell lung cancer, J. Cancer Res. Clin. Oncol. 148 (2022) 2867-2879.
    [172]
    K. Janpipatkul, N. Trachu, P. Watcharenwong, et al., Exosomal microRNAs as potential biomarkers for osimertinib resistance of non-small cell lung cancer patients, Cancer Biomark. 31 (2021) 281-294.
    [173]
    F. Pantano, F. Zalfa, M. Iuliani, et al., Large-Scale Profiling of Extracellular Vesicles Identified miR-625-5p as a Novel Biomarker of Immunotherapy Response in Advanced Non-Small-Cell Lung Cancer Patients, Cancers 14 (2022), 2435.
    [174]
    C. Genova, R. Tasso, A. Rosa, et al., Prognostic Role of Soluble and Extracellular Vesicle-Associated PD-L1, B7-H3 and B7-H4 in Non-Small Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors, Cells 12 (2023), 832.
    [175]
    X. Dou, Y. Hua, Z. Chen, et al., Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer, Clin. Exp. Immunol. 207 (2022) 307-317.
    [176]
    L. Porcelli, M. Guida, S. De Summa, et al., uPAR(+) extracellular vesicles: a robust biomarker of resistance to checkpoint inhibitor immunotherapy in metastatic melanoma patients, J. Immunother. Cancer 9 (2021), e002372.
    [177]
    C. H. Lee, J. H. Bae, E. J. Choe, et al., Macitentan improves antitumor immune responses by inhibiting the secretion of tumor-derived extracellular vesicle PD-L1, Theranostics. 12 (2022) 1971-1987.
    [178]
    J. Yan, X. Liu, F. Wu, et al., Platelet pharmacytes for the hierarchical amplification of antitumor immunity in response to self-generated immune signals, Adv. Mater. 34 (2022), e2109517.
    [179]
    W. Wang, M. Green, J.E. Choi, et al., CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy, Nature 569 (2019) 270-274.
    [180]
    G. Wang, L. Xie, B. Li, et al., A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis, Nat. Commun. 12 (2021), 5733.
    [181]
    L. Xie, J. Li, G. Wang, et al., Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy, J. Am. Chem. Soc. 144 (2022) 787-797.
    [182]
    X. Cen, Q. Chen, B. Wang, et al., UBE2O ubiquitinates PTRF/CAVIN1 and inhibits the secretion of exosome-related PTRF/CAVIN1, Cell Commun. Signal. 20 (2022), 191.
    [183]
    R. Koch, T. Aung, D. Vogel, et al., Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone, Clin. Cancer Res. 22 (2016) 395-404.
    [184]
    T. Aung, B. Chapuy, D. Vogel, et al., Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 15336-15341.
    [185]
    Z. Yu, X. Liu, M. Wu, et al., Untouched isolation enables targeted functional analysis of tumour-cell-derived extracellular vesicles from tumour tissues, J. Extracell. Vesicles 11 (2022), e12214.
    [186]
    Y. Hao, H. Song, Z. Zhou, et al., Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities, J. Control. Release 340 (2021) 136-148.
    [187]
    A. Katti, B.J. Diaz, C.M. Caragine, et al., CRISPR in cancer biology and therapy, Nat. Rev. Cancer 22 (2022) 259-279.
    [188]
    G. Kara, G.A. Calin, B. Ozpolat, RNAi-based therapeutics and tumor targeted delivery in cancer, Adv. Drug Deliv. Rev. 182 (2022), 114113.
    [189]
    H. Zhang, J. Lu, J. Liu, et al., Advances in the discovery of exosome inhibitors in cancer, J. Enzyme Inhib. Med. Chem. 35 (2020) 1322-1330.
    [190]
    A. Matsumoto, Y. Takahashi, H.Y. Chang, et al., Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance, J. Extracell. Vesicles 9 (2020), 1696517.
    [191]
    T. Imai, Y. Takahashi, M. Nishikawa, et al., Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice, J. Extracell. Vesicles 4 (2015), 26238.
    [192]
    S. Li, Y. Guo, J. Tian, et al., Anti-tumor strategies by harnessing the phagocytosis of macrophages, Cancers 15 (2023), 2717.
    [193]
    X. Xie, H. Nie, Y. Zhou, et al., Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles, Nat. Commun. 10 (2019), 5476.
    [194]
    S. Chatterjee, A. Chatterjee, S. Jana, et al., Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer, Carcinogenesis 42 (2021) 38-47.
    [195]
    B. Xiao, X. Wang, H. Xia, et al., HRS regulates small extracellular vesicle PD-L1 secretion and is associated with anti-PD-1 treatment efficacy, Cancer Immunol. Res. 11 (2023) 228-240.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (165) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return