Volume 14 Issue 5
May  2024
Turn off MathJax
Article Contents
Hemanth P. R. Vikram, Tegginamath Pramod Kumar, Gunjan Kumar, Narasimha M. Beeraka, Rajashree Deka, Sheik Mohammed Suhail, Sandeep Jat, Namitha Bannimath, Gayatiri Padmanabhan, Ravandur S. Chandan, Pramod Kumar, Bannimath Gurupadayya. Nitrosamines crisis in pharmaceuticals-Insights on toxicological implications, root causes and risk assessment: A systematic review[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100919. doi: 10.1016/j.jpha.2023.12.009
Citation: Hemanth P. R. Vikram, Tegginamath Pramod Kumar, Gunjan Kumar, Narasimha M. Beeraka, Rajashree Deka, Sheik Mohammed Suhail, Sandeep Jat, Namitha Bannimath, Gayatiri Padmanabhan, Ravandur S. Chandan, Pramod Kumar, Bannimath Gurupadayya. Nitrosamines crisis in pharmaceuticals-Insights on toxicological implications, root causes and risk assessment: A systematic review[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100919. doi: 10.1016/j.jpha.2023.12.009

Nitrosamines crisis in pharmaceuticals-Insights on toxicological implications, root causes and risk assessment: A systematic review

doi: 10.1016/j.jpha.2023.12.009
Funds:

The authors would like to express their heartfelt gratitude to Shri Gunjan Kumar, Director of Xenone Healthcare Pvt. Ltd, New Delhi, and JSS Academy of Higher Education and Research (JSSAHER), India for unwavering support during the entire work and SERB-CII Prime Minister Fellowship, Government of India for the fellowship awarded to Mr. Hemanth P.R. Vikram.

  • Received Date: Jul. 05, 2023
  • Accepted Date: Dec. 08, 2023
  • Rev Recd Date: Dec. 02, 2023
  • Publish Date: May 30, 2024
  • The presence of N-nitroso compounds, particularly N-nitrosamines, in pharmaceutical products has raised global safety concerns due to their significant genotoxic and mutagenic effects. This systematic review investigates their toxicity in active pharmaceutical ingredients (APIs), drug products, and pharmaceutical excipients, along with novel analytical strategies for detection, root cause analysis, reformulation strategies, and regulatory guidelines for nitrosamines. This review emphasizes the molecular toxicity of N-nitroso compounds, focusing on genotoxic, mutagenic, carcinogenic, and other physiological effects. Additionally, it addresses the ongoing nitrosamine crisis, the development of nitrosamine-free products, and the importance of sensitive detection methods and precise risk evaluation. This comprehensive overview will aid molecular biologists, analytical scientists, formulation scientists in research and development sector, and researchers involved in management of nitrosamine-induced toxicity and promoting safer pharmaceutical products.
  • loading
  • [1]
    J.E. Kay, J.J. Corrigan, A.L. Armijo, et al., Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice, Cell Rep. 34 (2021), 108864.
    [2]
    S.S. Bharate, Critical analysis of drug product recalls due to nitrosamine impurities, J. Med. Chem. 64 (2021) 2923-2936.
    [3]
    Pfizer, Pfizer voluntary nationwide recall of lots of Accupril® (Quinapril HCl) due to N-nitroso-quinapril content. https://www.pfizer.com/news/announcements/pfizer-voluntary-nationwide-recall-lots-accuprilr-quinapril-hcl-due-n-nitroso. (Accessed 24 June 2022).
    [4]
    E.M.Agency, Champix (varenicline) - lots to be recalled due to presence of impurity N-nitroso-varenicline above the Pfizer acceptable daily intake limit. https://www.ema.europa.eu/en/medicines/dhpc/champix-varenicline-lots-be-recalled-due-presence-impurity-n-nitroso-varenicline-above-pfizer. (Accessed 24 June 2022).
    [5]
    J. Singh, International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, J. Pharmacol. Pharmacother. 6 (2015) 185-187.
    [6]
    N. Loprieno, Letter: International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risk of chemicals to man: “Relevance of data on mutagenicity”, Mutat. Res. 31 (1975), 210.
    [7]
    World Health Organization, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 30, International Agency for Research on Cancer, 1983.
    [8]
    World Health Organization, Evaluation of Certain Food Additives: Eighty-sixth Report of the Joint FAO/WHO Expert Committee on food Additives, https://www.who.int/publications/i/item/9789241210232. (Accessed 26 June 2022).
    [9]
    U. Rose, European pharmacopoeia activities on control of nitrosamines and other DNA-reactive impurities, J. Pharm. Sci. 112 (2023) 1163-1165.
    [10]
    I.W. Ashworth, O. Dirat, A. Teasdale, et al., Potential for the formation of N-nitrosamines during the manufacture of active pharmaceutical ingredients: An assessment of the risk posed by trace nitrite in water, Org. Process Res. Dev. 24 (2020) 1629-1646.
    [11]
    T. Shaikh, A. Gosar, H. Sayyed, Nitrosamine impurities in drug substances and drug products, J. Adv. Pharm. Pract. 2 (2020) 48-57.
    [12]
    N.P. Sen, D.C. Smith, L. Schwinghamer, Formation of N-nitrosamines from secondary amines and nitrite in human and animal gastric juice, Food Cosmet. Toxicol. 7 (1969) 301-307.
    [13]
    S.B. Dass, G.J. Hammons, T.J. Bucci, et al., Susceptibility of C57BL/6 mice to tumorigenicity induced by dimethylnitrosamine and 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine in the neonatal bioassay, Cancer Lett. 124 (1998) 105-110.
    [14]
    S.B. Dass, T.J. Bucci, R.H. Heflich, et al., Evaluation of the transgenic p53+/- mouse for detecting genotoxic liver carcinogens in a short-term bioassay, Cancer Lett. 143 (1999) 81-85.
    [15]
    A. Nishikawa, F. Furukawa, K. Kasahara, et al., Comparative study on organ-specificity of tumorigenicity, mutagenicity and cell proliferative activity induced by dimethylnitrosamine in Big Blue® mice, Cancer Lett. 117 (1997) 143-147.
    [16]
    R. Peto, R. Gray, P. Brantom, et al., Dose and time relationships for tumor induction in the liver and esophagus of 4080 inbred rats by chronic ingestion of N-nitrosodiethylamine or N-nitrosodimethylamine, Cancer Res. 51 (1991) 6452-6469.
    [17]
    S.D. Vesselinovitch, The sex-dependent difference in the development of liver tumors in mice administered dimethylnitrosamine, Cancer Res. 29 (1969) 1024-1027.
    [18]
    C.M. Weghorst, M.A. Pereira, J.E. Klaunig, Strain differences in hepatic tumor promotion by phenobarbital in diethylnitrosamine- and dimethylnitrosamine-initiated infant male mice, Carcinogenesis 10 (1989) 1409-1412.
    [19]
    H. Yamazaki, Y. Oda, Y. Funae, et al., Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodimethylamine and N-nitrosodiethylainine to products genotoxic in an acetyltransferase-overexpressing Salmonella typhimurium strain (NM2009), Carcinogenesis 13 (1992) 979-985.
    [20]
    H. Yamazaki, Y. Inui, C-H. Yun, et al., Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes, Carcinogenesis 13 (1992) 1789-1794.
    [21]
    V. Nedelcheva, I. Gut, P450 in the rat and man: Methods of investigation, substrate specificities and relevance to cancer, Xenobiotica 24 (1994) 1151-1175.
    [22]
    M. Martignoni, G.M. Groothuis, R. de Kanter, Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction, Expert Opin. Drug Metab. Toxicol. 2 (2006) 875-894.
    [23]
    K.P. Cross, D.J. Ponting, Developing structure-activity relationships for N-nitrosamine activity, Comput. Toxicol. 20 (2021), 100186.
    [24]
    C.E. Phillipson, C. Ioannides, A comparative study of the bioactivation of nitrosamines to mutagens by various animal species including man, Carcinogenesis 5 (1984) 1091-1094.
    [25]
    S. Synder, I.C. Hsu, B.F. Trump, Comparison of metabolic activation of carcinogens in human, rat, and hamster hepatocytes, Mutat. Res. 182 (1987) 31-39.
    [26]
    S. Glowienke, U. Onken, A. Elhajouji, et al., Genotoxicity evaluation of a valsartan-related complex N-nitroso-impurity, Regul. Toxicol. Pharmacol. 134 (2022), 105245.
    [27]
    X. Li, X. He, Y. Le, et al., Genotoxicity evaluation of nitrosamine impurities using human TK6 cells transduced with cytochrome P450s, Arch. Toxicol. 96 (2022) 3077-3089.
    [28]
    Cumulative Index to IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 39 (1986) 379-403.
    [29]
    V.V. Khudoley, O.A. Syrenko, Tumor induction by N-nitroso compounds in bivalve mollusks Unio pictorum, Cancer Lett. 4 (1978) 349-354.
    [30]
    H.B. Richter-Reichhelm, U. Green, M.B. Ketkar, et al., The carcinogenic effect of dimethylnitrosamine in laboratory bred European hamsters (Cricetus cricetus), Cancer Lett. 4 (1978) 1-4.
    [31]
    N. Koppang, A. Helgebostad, D. Armstrong, et al., Toxic and carcinogenic effects of dimethylnitrosamine (DMNA) in the blue fox (Alopex lagopus), Acta Vet. Scand. 22 (1981) 501-516.
    [32]
    R.F. Noronha, C.M. Goodall, Enhancement by testosterone of dimethylnitrosamine carcinogenesis in lung, liver and kidney of inbred NZR/Gd female rats, Carcinogenesis 4 (1983) 613-616.
    [33]
    E. De Stefani, F. Oreggia, A. Ronco, et al., Salted meat consumption as a risk factor for cancer of the oral cavity and pharynx: A case-control study from Uruguay, Cancer Epidemiol. Biomarkers Prev. 3 (1994) 381-385.
    [34]
    C. La Vecchia, B. D’Avanzo, L. Airoldi, et al., Nitrosamine intake and gastric cancer risk, Eur. J. Cancer Prev. 4 (1995) 469-474.
    [35]
    D. Pobel, E. Riboli, J. Cornee, et al., Nitrosamine, nitrate and nitrite in relation to gastric cancer: A case-control study in Marseille, France, Eur. J. Epidemiol. 11 (1995) 67-73.
    [36]
    S.H. Lu, W.X. Yang, L.P. Guo, et al., Determination of N-nitrosamines in gastric juice and urine and a comparison of endogenous formation of N-nitrosoproline and its inhibition in subjects from high- and low-risk areas for oesophageal cancer, IARC Sci. Publ. (1987) 538-543.
    [37]
    M. Rogers, T.L. Vaughan, S. Davis, et al., Consumption of nitrate, nitrite, and nitrosodimethylamine and the risk of upper aerodigestive tract cancer, Cancer Epidemiol. Biomarkers Prev. 4 (1995) 29-36.
    [38]
    M. Siddiqi, A.R. Tricker, R. Preussmann, Formation of N-nitroso compounds under simulated gastric conditions from Kashmir foodstuffs, Cancer Lett. 39 (1988) 259-265.
    [39]
    K. Lin, W. Shen, Z. Shen, et al., Dietary exposure and urinary excretion of total N-nitroso compounds, nitrosamino acids and volatile nitrosamine in inhabitants of high- and low-risk areas for esophageal cancer in Southern China, Int. J. Cancer 102 (2002) 207-211.
    [40]
    K. Lin, Z. Shen, S.H. Lu, et al., Intake of volatile N-nitrosamines and their ability to exogenously synthesize in the diet of inhabitants from high-risk area of esophageal cancer in Southern China, Biomed. Environ. Sci. 15 (2002) 277-282.
    [41]
    P. Knekt, R. Jarvinen, J. Dich, et al., Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: A follow-up study, Int. J. Cancer 80 (1999) 852-856.
    [42]
    D. Schmahl, M. Habs, S. Ivankovic, Carcinogenesis of N-nitrosodiethylamine (DENA) in chickens and domestic cats, Int. J. Cancer 22 (1978) 552-557.
    [43]
    D.Y. Lai, J.C. Arcos, Minireview: Dialkylnitrosamine bioactivation and carcinogenesis, Life Sci. 27 (1980) 2149-2165.
    [44]
    S.D. Vesselinovitch, M. Koka, N. Mihailovich, et al., Carcinogenicity of diethylnitrosamine in newborn, infant, and adult mice, J. Cancer Res. Clin. Oncol. 108 (1984) 60-65.
    [45]
    A. Yamamoto, A. Hisanaga, N. Ishinishi, Comparative study on the carcinogenicity of N-nitrosodiethylamine and benzo[a]pyrene to the lung of Syrian golden hamsters induced by intermittent instillations to the trachea, Cancer Lett. 25 (1985) 271-276.
    [46]
    N. Ishinishi, A. Tanaka, A. Hisanaga, et al., Comparative study on the carcinogenicity of N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosomorpholine, N-nitrosopyrrolidine and N-nitrosodi-n-propylamine to the lung of Syrian golden hamsters following intermittent instillations to the trachea, Carcinogenesis 9 (1988) 947-950.
    [47]
    A. Tanaka, A. Hisanaga, T. Inamasu, et al., A comparison of the carcinogenicity of N-nitrosodiethylamine and N-nitrosodimethylamine after intratracheal instillation into Syrian golden hamsters, Food Chem. Toxicol. 26 (1988) 847-850.
    [48]
    M. Huntrakoon, C.D. Menon, K.S. Hung, Diethylnitrosamine-induced pulmonary endocrine cell hyperplasia and its association with adenomatosis and adenocarcinoma in rabbits, Am. J. Pathol. 135 (1989) 1119-1128.
    [49]
    A. Thiyagarajah, J.M. Grizzle, Diethylnitrosamine-induced pancreatic neoplasms in the fish Rivulus ocellatus marmoratus, J. Natl. Cancer Inst. 77 (1986) 141-147.
    [50]
    U. Mohr, M. Emura, K. Kamino, et al., Increased risk of cancer in the descendants of Syrian hamsters exposed prenatally to diethylnitrosamine (DEN), Int. J. Cancer 63 (1995) 86-91.
    [51]
    R.G. Klein, B. Spiegelhalder, R. Preussmann, Inhalation carcinogenesis of N-nitrosomorpholine (NMOR) in rats and hamsters, Exp. Pathol. 40 (1990) 189-195.
    [52]
    W. Lijinsky, B.J. Thomas, R.M. Kovatch, Local and systemic carcinogenic effects of alkylating carcinogens in rats treated by intravesicular administration, Jpn. J. Cancer Res. 82 (1991) 980-986.
    [53]
    M.B. Ketkar, J. Holste, R. Preussmann, et al., Carcinogenic effect of nitrosomorpholine administered in the drinking water to Syrian golden hamsters, Cancer Lett. 17 (1983) 333-338.
    [54]
    W. Lijinsky, R.M. Kovatch, G.L. Knutsen, Carcinogenesis by nitrosomorpholines, nitrosooxazolidines and nitrosoazetidine given by gavage to Syrian golden hamsters, Carcinogenesis 5 (1984) 875-878.
    [55]
    A. Cardesa, F. Garcia-Bragado, J. Ramirez, et al., Histological types of laryngotracheal tumors induced in Syrian golden hamsters by nitrosomorpholine and nitrosopiperidine, Exp. Pathol. 40 (1990) 267-281.
    [56]
    J.A. Swenberg, D.G. Hoel, P.N. Magee, Mechanistic and statistical insight into the large carcinogenesis bioassays on N-nitrosodiethylamine and N-nitrosodimethylamine, Cancer Res. 51 (1991) 6409-6414.
    [57]
    A.E. Pegg, G. Hui, Formation and subsequent removal of O6-methylguanine from deoxyribonucleic acid in rat liver and kidney after small doses of dimethylnitrosamine, Biochem. J. 173 (1978) 739-748.
    [58]
    V.L. Souliotis, J.H. van Delft, M.J. Steenwinkel, et al., DNA adducts, mutant frequencies and mutation spectra in lambda lacZ transgenic mice treated with N-nitrosodimethylamine, Carcinogenesis 19 (1998) 731-739.
    [59]
    D.T. Beranek, Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents, Mutat. Res. 231 (1990) 11-30.
    [60]
    J.A. Calvo, C.A. Moroski-Erkul, A. Lake, et al., Aag DNA glycosylase promotes alkylation-induced tissue damage mediated by Parp1, PLoS Genet. 9 (2013), e1003413.
    [61]
    P.A. Crosbie, A.J. Watson, R. Agius, et al., Elevated N3-methylpurine-DNA glycosylase DNA repair activity is associated with lung cancer, Mutat. Res. 732 (2012) 43-46.
    [62]
    J. Hall, H. Bresil, F. Donato, et al., Alkylation and oxidative-DNA damage repair activity in blood leukocytes of smokers and non-smokers, Int. J. Cancer 54 (1993) 728-733.
    [63]
    H.R. Ghaffari, S. Nasseri, M. Yunesian, et al., Monitoring and exposure assessment of nitrate intake via fruits and vegetables in high and low risk areas for gastric cancer, J. Environ. Health Sci. Eng. 17 (2019) 445-456.
    [64]
    C. Zhao, J. Zhou, Y. Gu, et al., Urinary exposure of N-nitrosamines and associated risk of esophageal cancer in a high incidence area in China, Sci. Total Environ. 738 (2020), 139713.
    [65]
    J. Zheng, C.R. Daniel, R.I. Hatia, et al., Dietary N-nitroso compounds and risk of hepatocellular carcinoma: A USA-based study, Hepatology 74 (2021) 3161-3173.
    [66]
    World Cancer Research Fund and American Institute for Cancer Research, Food, nutrition, physical activity, and the prevention of cancer: A global perspective, https://www3.paho.org/hq/dmdocuments/2011/nutrition-AICR-WCR-food-physical-activ.pdf. (Accessed 12 July 2022).
    [67]
    S.E. Shephard, C. Schlatter, W.K. Lutz, Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach, Food Chem. Toxicol. 25 (1987) 91-108.
    [68]
    A.R. Tricker, R. Preussmann, Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential, Mutat. Res. 259 (1991) 277-289.
    [69]
    N.D. Freedman, A.J. Cross, K.A. McGlynn, et al., Association of meat and fat intake with liver disease and hepatocellular carcinoma in the NIH-AARP cohort, J. Natl. Cancer Inst. 102 (2010) 1354-1365.
    [70]
    W. Lijinsky, N-nitroso compounds in the diet, Mutat. Res. 443 (1999) 129-138.
    [71]
    J. Zheng, J. Stuff, H. Tang, et al., Dietary N-nitroso compounds and risk of pancreatic cancer: Results from a large case-control study, Carcinogenesis 40 (2019) 254-262.
    [72]
    H. Bartsch, R. Montesano, Relevance of nitrosamines to human cancer, Carcinogenesis 5 (1984) 1381-1393.
    [73]
    R. Peto, R. Gray, P. Brantom, et al., Nitrosamine carcinogenesis in 5120 rodents: Chronic administration of sixteen different concentrations of NDEA, NDMA, NPYR and NPIP in the water of 4440 inbred rats, with parallel studies on NDEA alone of the effect of age of starting (3, 6 or 20 weeks) and of species (rats, mice or hamsters), IARC Sci. Publ. (1984) 627-665.
    [74]
    R.D. Kimbrough, Pathological changes in human beings acutely poisoned by dimethylnitrosamine, Banbury Rep. 12 (1982) 25-35.
    [75]
    W. Lijinsky, Life-span and cancer: The induction time of tumors in diverse animal species treated with nitrosodiethylamine, Carcinogenesis 14 (1993) 2373-2375.
    [76]
    B. Flaks, B.C. Challis, Fine structure of rat liver during chronic intoxication with two heterocyclic N-nitrosamines: N-nitrosopiperidine and the non-carcinogen, 2,2',6,6'-tetramethyl-N-nitrosopiperidine, Carcinogenesis 1 (1980) 961-974.
    [77]
    H.L. Wong, S.E. Murphy, M. Wang, et al., Comparative metabolism of N-nitrosopiperidine and N-nitrosopyrrolidine by rat liver and esophageal microsomes and cytochrome P450 2A3, Carcinogenesis 24 (2003) 291-300.
    [78]
    H. Zhang, C. Zhao, Q. Liu, et al., Dysregulation of fatty acid metabolism associated with esophageal inflammation of ICR mice induced by nitrosamines exposure, Environ. Pollut. 297 (2022), 118680.
    [79]
    J. Neves Cruz, M. Santana de Oliveira, S. Gomes Silva, et al., Insight into the interaction mechanism of nicotine, NNK, and NNN with cytochrome P450 2A13 based on molecular dynamics simulation, J. Chem. Inf. Model. 60 (2020) 766-776.
    [80]
    J. Guo, X. Zhu, S. Badawy, et al., Metabolism and mechanism of human cytochrome P450 enzyme 1A2, Curr. Drug Metab. 22 (2021) 40-49.
    [81]
    R.O. Juvonen, E.M. Jokinen, J. Huuskonen, et al., Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13, Xenobiotica 51 (2021) 1207-1216.
    [82]
    H. Zhang, L. Lu, C. Zhao, et al., Lipid metabolism disorders contribute to hepatotoxicity of ICR mice induced by nitrosamines exposure, Environ. Int. 167 (2022), 107423.
    [83]
    J.E. Stuff, E.T. Goh, S.L. Barrera, et al., Construction of an N-nitroso database for assessing dietary intake, J. Food Compost Anal. 22 (2009) S42-S47.
    [84]
    H. Bartsch, H. Ohshima, B. Pignatelli, Inhibitors of endogenous nitrosation. Mechanisms and implications in human cancer prevention, Mutat. Res. 202 (1988) 307-324.
    [85]
    J.C. Lunn, G. Kuhnle, V. Mai, et al., The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract, Carcinogenesis 28 (2007) 685-690.
    [86]
    B. Aschebrook-Kilfoy, A.J. Cross, R.Z. Stolzenberg-Solomon, et al., Pancreatic cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study, Am. J. Epidemiol. 174 (2011) 305-315.
    [87]
    S. Roshankhah, M. Salahshoor, C. Jalili, et al., Pentoxifylline modulation hepatotoxicity and apoptosis induced by nitrosamine in rats, Biomed. Biotechnol. Res. J. BBRJ 4 (2020), 251.
    [88]
    K. Li, K. Ricker, F.C. Tsai, et al., Estimated cancer risks associated with nitrosamine contamination in commonly used medications, Int. J. Environ. Res. Public Health 18 (2021), 9465.
    [89]
    H. Druckrey, R. Preussmann, S. Ivankovic, et al., Organotropic carcinogenic effects of 65 various N-nitroso- compounds on BD rats, Z. Krebsforsch. 69 (1967) 103-201.
    [90]
    J.M Barnes, P.N. Magee, Some toxic properties of dimethylnitrosamine, Br. J. Ind. Med. (1954) 167-174.
    [91]
    N. Gankhuyag, K.H. Lee, J.Y. Cho, The role of nitrosamine (NNK) in breast cancer carcinogenesis, J. Mammary Gland Biol. Neoplasia 22 (2017) 159-170.
    [92]
    C.H. Lee, Y.C. Chang, C.S. Chen, et al., Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells, Breast Cancer Res. Treat. 129 (2011) 331-345.
    [93]
    C-H. Lee, C.-S. Huang, C-S. Chen, et al., Overexpression and activation of the α9-nicotinic receptor during tumorigenesis in human breast epithelial cells, J. Natl. Cancer Inst. 102 (2010) 1322-1335.
    [94]
    M.R. Improgo, L.G. Soll, A.R. Tapper, et al., Nicotinic acetylcholine receptors mediate lung cancer growth, Front. Physiol. 4 (2013), 251.
    [95]
    F. Wang, V. Gerzanich, G.B. Wells, et al., Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits, J. Biol. Chem. 271 (1996) 17656-17665.
    [96]
    P.J. Groot-Kormelink, J.P. Boorman, L.G. Sivilotti, Formation of functional α3β4α5 human neuronal nicotinic receptors in Xenopus oocytes: A reporter mutation approach, Br. J. Pharmacol. 134 (2001) 789-796.
    [97]
    J. Ramirez-Latorre, C.R. Yu, X. Qu, et al., Functional contributions of α5 subunit to neuronal acetylcholine receptor channels, Nature 380 (1996) 347-351.
    [98]
    B. Callaghan, D.J. Adams, Analgesic α-conotoxins Vc1.1 and RgIA inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice, Channels (Austin) 4 (2010) 51-54.
    [99]
    Y.S. Ho, C.H. Lee, C.H. Wu, The alpha 9-nicotinic acetylcholine receptor serves as a molecular target for breast cancer therapy, J. Exp. Clin. Med. 3 (2011) 246-251.
    [100]
    E. Katz, M. Verbitsky, C.V. Rothlin, et al., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor, Hear. Res. 141 (2000) 117-128.
    [101]
    D.L. Weddle, P. Tithoff, M. Williams, et al., β-adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas, Carcinogenesis 22 (2001) 473-479.
    [102]
    H.M. Schuller, B. Cole, Regulation of cell proliferation by β- adrenergic receptors in a human lung adenocarcinoma cell line, Carcinogenesis 10 (1989) 1753-1755.
    [103]
    B.L. Slomiany, A. Slomiany, Src-kinase-dependent epidermal growth factor receptor transactivation in salivary mucin secretion in response to β-adrenergic G-protein-coupled receptor activation, Inflammopharmacology 12 (2004) 233-245.
    [104]
    R.T. Dorsam, J.S. Gutkind, G-protein-coupled receptors and cancer, Nat. Rev. Cancer 7 (2007) 79-94.
    [105]
    J. Zhang, S.D. Selaya, D. Shakleya, et al., Rapid quantitation of four nitrosamine impurities in angiotensin receptor blocker drug substances, J. Pharm. Sci. 112 (2023) 1246-1254.
    [106]
    E.A. Shephard, J.J. Nawarskas, Nitrosamine impurities in angiotensin receptor blockers, Cardiol. Rev. 28 (2020) 262-265.
    [107]
    M. Mochizuki, M. Osabe, T. Anjo, et al., Mutagenicity of α-hydroxy N-nitrosamines in V79 Chinese hamster cells, J. Cancer Res. Clin. Oncol. 108 (1984) 290-295.
    [108]
    Y. Li, S.S. Hecht, Metabolic activation and DNA interactions of carcinogenic N-nitrosamines to which humans are commonly exposed, Int. J. Mol. Sci. 23 (2022), 4559.
    [109]
    C.S. Yang, J.S. Yoo, H. Ishizaki, et al., Cytochrome P450IIE1: Roles in nitrosamine metabolism and mechanisms of regulation, Drug Metab. Rev. 22 (1990) 147-159.
    [110]
    L. Verna, J. Whysner, G.M. Williams, N-nitrosodiethylamine mechanistic data and risk assessment: Bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation, Pharmacol. Ther. 71 (1996) 57-81.
    [111]
    R. Peto, R. Gray, P. Brantom, et al., Effects on 4080 rats of chronic ingestion of N-nitrosodiethylamine or N-nitrosodimethylamine: A detailed dose-response study, Cancer Res. 51 (1991) 6415-6451.
    [112]
    C.C. Harris, H. Autrup, G.D. Stoner, et al., Metabolism of benzo(a)pyrene, N-nitrosodimethylamine, and N-nitrosopyrrolidine and identification of the major carcinogen-DNA adducts formed in cultured human esophagus, Cancer Res. 39 (1979) 4401-4406.
    [113]
    S.A. Kyrtopoulos, DNA adducts in humans after exposure to methylating agents, Mutat. Res. 405 (1998) 135-143.
    [114]
    D.H. Phillips, Smoking-related DNA and protein adducts in human tissues, Carcinogenesis 23 (2002) 1979-2004.
    [115]
    B. Ma, I. Stepanov, S.S. Hecht, Recent studies on DNA adducts resulting from human exposure to tobacco smoke, Toxics 7 (2019), 16.
    [116]
    D.C. Herron, R.C. Shank, Methylated purines in human liver DNA after probable dimethylnitrosamine poisoning, Cancer Res. 40 (1980) 3116-3117.
    [117]
    J. Schlingemann, M.J. Burns, D.J. Ponting, et al., The landscape of potential small and drug substance related nitrosamines in pharmaceuticals, J. Pharm. Sci. 112 (2023) 1287-1304.
    [118]
    M.K. Parr, J.F. Joseph, NDMA impurity in valsartan and other pharmaceutical products: Analytical methods for the determination of N-nitrosamines, J. Pharm. Biomed. Anal. 164 (2019) 536-549.
    [119]
    U.S. Food and Drug Administration, Combined N-Nitrosodimethylamine (NDMA) and N-Nitrosodiethylamine (NDEA) Impurity Assay by GC/MS-Headspace. https://www.fda.gov/media/117843/download. (Accessed 6 August 2022).
    [120]
    W. Wichitnithad, O. Sudtanon, P. Srisunak, et al., Development of a sensitive headspace gas chromatography-mass spectrometry method for the simultaneous determination of nitrosamines in losartan active pharmaceutical ingredients, ACS Omega 6 (2021) 11048-11058.
    [121]
    Y.M. Alshehri, T.S. Alghamdi, F.S. Aldawsari, HS-SPME-GC-MS as an alternative method for NDMA analysis in ranitidine products, J. Pharm. Biomed. Anal. 191 (2020), 113582.
    [122]
    D.H. Lee, S.H. Hwang, S. Park, et al., A solvent-free headspace GC/MS method for sensitive screening of N-nitrosodimethylamine in drug products, Anal. Methods 13 (2021) 3402-3409.
    [123]
    S.-H. Chang, H.-Y. Ho, C.-Z. Zang, et al., Screening of nitrosamine impurities in sartan pharmaceuticals by GC-MS/MS, Mass Spectrom. Lett. 12 (2021) 31-40.
    [124]
    H.H. Lim, Y.S. Oh, H.S. Shin, Determination of N-nitrosodimethylamine and N-nitrosomethylethylamine in drug substances and products of sartans, metformin and ranitidine by precipitation and solid phase extraction and gas chromatography-tandem mass spectrometry, J. Pharm. Biomed. Anal. 189 (2020), 113460.
    [125]
    C. Gimenez-Campillo, M. Pastor-Belda, N. Campillo, et al., Development of a new methodology for the determination of N-nitrosamines impurities in ranitidine pharmaceuticals using microextraction and gas chromatography-mass spectrometry, Talanta 223 (2021), 121659.
    [126]
    K. Takatsuki, T. Kikuchi, Determination of N-nitrosodimethylamine in fish products using gas chromatography with nitrogen-phosphorus detection, J. Chromatogr. 508 (1990) 357-362.
    [127]
    J.E. Grebel, I.H. Mel Suffet, Nitrogen-phosphorus detection and nitrogen chemiluminescence detection of volatile nitrosamines in water matrices: Optimization and performance comparison, J. Chromatogr. A 1175 (2007) 141-144.
    [128]
    J.E. Grebel, C.C. Young, I.H. Suffet, Solid-phase microextraction of N-nitrosamines, J. Chromatogr. A 1117 (2006) 11-18.
    [129]
    B. Jurado-Sanchez, E. Ballesteros, M. Gallego, Comparison of the sensitivities of seven N-nitrosamines in pre-screened waters using an automated preconcentration system and gas chromatography with different detectors, J. Chromatogr. A 1154 (2007) 66-73.
    [130]
    J. Zheng, C.L. Kirkpatrick, D. Lee, et al., A full evaporation static headspace gas chromatography method with nitrogen phosphorous detection for ultrasensitive analysis of semi-volatile nitrosamines in pharmaceutical products, AAPS J. 24 (2022), 23.
    [131]
    A. Zmyslowski, I. Ksiazek, A. Szterk, N-nitrosodimethylamine contamination in the metformin finished products, Molecules 25 (2020), 5304.
    [132]
    J. Yang, T.A. Marzan, W. Ye, et al., A cautionary tale: Quantitative LC-HRMS analytical procedures for the analysis of N-nitrosodimethylamine in metformin, AAPS J. 22 (2020), 89.
    [133]
    M. Al-Kaseem, Z. Al-Assaf, F. Karabeet, Development and validation of GC-FID method for the determination of volatile N-nitrosamines in meat, Int. J. Pharm. Sci. Rev. Res. 25 (2014) 59-64.
    [134]
    W. Wichitnithad, S. Nantaphol, K. Noppakhunsomboon, et al., Current status and prospects of development of analytical methods for determining nitrosamine and N-nitroso impurities in pharmaceuticals, Talanta 254 (2023), 124102.
    [135]
    S. Banerjee, S. Mazumdar, Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte, Int. J. Anal. Chem. 2012 (2012), 282574.
    [136]
    J.H. Lee, S.U. Lee, J.E. Oh, Analysis of nine nitrosamines in water by combining automated solid-phase extraction with high-performance liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry, Int. J. Environ. Anal. Chem. 93 (2013) 1261-1273.
    [137]
    S. Chang, C.C. Chang, L. Wang, et al., A multi-analyte LC-MS/MS method for screening and quantification of nitrosamines in sartans, J. Food Drug Anal. 28 (2020) 292-301.
    [138]
    H. Kim, D. Sung, H. Yu, et al., Comparison of EI-GC-MS/MS, APCI-LC-MS/MS, and ESI-LC-MS/MS for the simultaneous analysis of nine nitrosamines eluted from synthetic resins into artificial saliva and health risk assessment, Toxics 9 (2021), 230.
    [139]
    European Directorate for the Quality of Medicines & HealthCare, LCMS/MS method “190321 NMBA APCI POS waste” (Shimadzu HPLC + Sciex QTrap 5500). https://www.edqm.eu/en/ad-hoc-projects-of-the-omcl-network. (Accessed 13 February 2023).
    [140]
    European Directorate for the Quality of Medicines & HealthCare, OMCLs release three methods for determination of NDMA in sartans. https://www.edqm.eu/en/-/omcls-release-three-methods-for-determination-of-ndma-in-sartans-1. (Accessed 24 June 2022).
    [141]
    U.S. Food and Drug Administration, Liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of six nitrosamine impurities in ARB drugs. https://www.fda.gov/media/125478/download. (Accessed 10 January 2023).
    [142]
    L. Cardenes, J.H. Ayala, V. Gonzalez, et al., Fast microwave-assisted dansylation of N-nitrosamines. Analysis by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. A 946 (2002) 133-140.
    [143]
    M.G. Kokotou, C. Mantzourani, A. Bourboula, et al., A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of free hydroxy fatty acids in cow and goat milk, Molecules 25 (2020), 3947.
    [144]
    M. Mutsuga, M. Yamaguchi, Y. Kawamura, Analysis of N-nitrosamine migration from rubber teats and soothers, Am. J. Anal. Chem. 4 (2013) 277-285.
    [145]
    U.S. Food and Drug Administration, Liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of NDMA in ranitidine drug substance and drug product. https://www.fda.gov/media/130801/download. (Accessed 25 June 2022).
    [146]
    U.S. Food and Drug Administration, Liquid chromatography-high resolution mass spectrometry (LC-ESI-HRMS) method for the determination of MNP in rifampin and CPNP in rifapentine drug substance and drug product. https://www.fda.gov/media/142092/download. (Accessed 10 January 2023).
    [147]
    U.S. Food and Drug Administration, Liquid chromatography-electrospray ionization-high resolution mass spectrometry (LC-ESI-HRMS) method for the determination of nitrosamine impurities in metformin drug substance and drug product. https://www.fda.gov/media/138617/download. (Accessed 10 January 2023).
    [148]
    European Directorate for the Quality of Medicines & HealthCare, Determination of NDMA and NDEA in SARTAN drug substances by HPLC/UV. https://www.edqm.eu/documents/52006/71923/Ad-hoc-projects-OMCL-Network-ansm.pdf/40f8b0b4-a829-39c4-9f9b-1b95ac6e200f?t=1628667749603. (Accessed 10 January 2023).
    [149]
    M. Mohammed, R. Gandhimathi, New validated LC-MS method development and estimation of nitrosamine impurities in canaglifozin, Int. J. Pharm. Qual. Assur. 14 (2023) 1094-1099.
    [150]
    Health Sciences Authority, Determination of NDMA in ranitidine products by LC-MS/MS. https://www.hsa.gov.sg/docs/default-source/announcements/safety-alerts/determination-of-ndma-in-ranitidine-products-by-lcmsms.pdf. (Accessed 13 February 2023).
    [151]
    European Directorate for the Quality of Medicines & HealthCare, Test method for the determination of NDMA by LC-MS/MS in ranitidine drug substance and film coat tablets. https://www.edqm.eu/documents/52006/290719/CVUA+Karlsruhe+method+based+on+UHPLC-APCI-MS_MS.pdf/e198028d-734c-0b92-10e9-083ee1094d8a?t=1638888048231. (Accessed 14 February 2023).
    [152]
    European Directorate for the Quality of Medicines & HealthCare, AZBT impurity in valsartan, irbesartan, losartan, candesartan LC-MS/MS method (Shimadzu HPLC + AB Sciex QTrap 5500). https://www.edqm.eu/documents/52006/71923/general-methodparameters-azbt-lcms.pdf/e37991e8-2f0f-4d2d-6e79-dff141005157?t=1628668153524. (Accessed 14 February 2023).
    [153]
    European Directorate for the Quality of Medicines & HealthCare, CVUA Karlsruhe method by UHPLC-APCI-MS/MS and allows determination of NDMA and NDEA in sartan drug substances and drug products. https://www.edqm.eu/en/ad-hoc-projects-of-the-omcl-network. (Accessed 14 February 2023).
    [154]
    K.M. Shaik, B. Sarmah, G.S. Wadekar, et al., Regulatory updates and analytical methodologies for nitrosamine impurities detection in sartans, ranitidine, nizatidine, and metformin along with sample preparation techniques, Crit. Rev. Anal. Chem. 52 (2022) 53-71.
    [155]
    E. Yamamoto, H. Kan-No, N. Tomita, et al., Isolation of N-nitrosodimethylamine from drug substances using solid-phase extraction-liquid chromatography-tandem mass spectrometry, J. Pharm. Biomed. Anal. 210 (2022), 114561.
    [156]
    K.S. Chidella, V.B. Dasari, J. Anireddy, Ultra-sensitive LC-MS/MS method for the trace level quantification of six potential genotoxic nitrosamine impurities in telmisartan, Am. J. Anal. Chem. 12 (2021) 227-240.
    [157]
    R Patel, S Purohit, R Solanki, et al., Development and validation of an analytical method for trace-level quantification of genotoxic nitrosamine impurities in losartan and hydrochlorothiazide fixed-dose combination tablets using ultra performance liquid chromatography triple quadrupole mass spectrometry, Rapid Commun. Mass Spectrom. 37 (2023), e9488.
    [158]
    R. Solanki, P. Wadhwana, R. Patel, et.al., Analytical method capable of quantifying eight nitrosamine impurities from five different commercially available metformin formulations with glipizide, glibenclamide, gliclazide, evogliptin, and glimepiride by ultra high performance liquid chromatography triple quadrupole mass spectrometry, J. Pharm. Sci. 112 (2023) 1268-1276.
    [159]
    European Directorate for the Quality of Medicines & HealthCare, Nitrosamines by GC-MS/MS. https://www.edqm.eu/documents/52006/71923/Ad-hoc-projects-OMCL-Network-Swissmedic.pdf/76853d6b-4c19-c054-5bb7-ee4e77232cdf?t=1628667616159. (Accessed 15 February 2023).
    [160]
    E.R. Kosuri, M. Bhanti, M.A. Jaywant, et al., A GC-MS/MS method for trace level quantification of six nitrosamine impurities (NDMA, NDEA, NEIPA, NDIPA, NDPA, and NDBA) in commercially used organic solvents: Dichloromethane, ethyl acetate, toluene, and o-xylene, J. Pharm. Sci. 112 (2023) 1225-1230.
    [161]
    European Directorate for the Quality of Medicines & HealthCare, Determination of NDMA (HS-GC-MS). https://www.edqm.eu/documents/52006/286293/PALG+method+based+on+Headspace+GC-MS+(single+quad).pdf/0ce8ad50-e57a-7186-6f81-e319ec8120e2?t=1638887392387. (Accessed 15 February 2023).
    [162]
    Health Canada, Nitrosamine impurities in medications: Test methods and test results. https://www.canada.ca/en/health-canada/services/drugs-health-products/compliance-enforcement/information-health-product/drugs/nitrosamine-impurities/test-results.html. (Accessed 15 February 2023).
    [163]
    U.S. Food and Drug Administration, GC/MS headspace method for NDMA in valsartan drug substance and drug products. https://www.fda.gov/media/115965/download. (Accessed 15 February 2023).
    [164]
    U.S. Food and Drug Administration, Combined direct injection N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosoethylisopropylamine (NEIPA), N-nitrosodiisopropylamine (NDIPA) and N-nitrosodibutylamine (NDBA) impurity assay by GC-MS/MS. https://www.fda.gov/media/123409/download. (Accessed 15 February 2023).
    [165]
    U.S. Food and Drug Administration, Combined headspace N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosoethylisopropylamine (NEIPA), N-nitrosodiisopropylamine (NDIPA) impurity assay by GC-MS/MS. https://www.fda.gov/media/124025/download. (Accessed 15 February 2023).
    [166]
    Health Sciences Authority, Determination of N-nitrosodimethylamine (NDMA) in metformin products by HRAM-GCMS. https://www.hsa.gov.sg/docs/default-source/announcements/safety-alerts/determination-of-ndma-in-metformin-products-by-hram-gcms.pdf. (Accessed 15 February 2023).
    [167]
    A.B. Witkowska, J Giebultowicz, M Dabrowska, et.al., Development of a sensitive screening method for simultaneous determination of nine genotoxic nitrosamines in active pharmaceutical ingredients by GC-MS, Int. J. Mol. Sci. 23 (2020), 12125.
    [168]
    M. Al-Kaseem, Z. Al-Assaf, F. Karabeet, A rapid, validated RP-HPLC method for the determination of seven volatile N-nitrosamines in meat, Pharmacol. Pharm. 5 (2014) 298-308.
    [169]
    W. Li, N. Chen, Y. Zhao, et al., Online coupling of tandem liquid-phase extraction with HPLC-UV for the determination of trace N-nitrosamines in food products, Anal. Methods 10 (2018) 1733-1739.
    [170]
    W. Cha, P. Fox, B. Nalinakumari, High-performance liquid chromatography with fluorescence detection for aqueous analysis of nanogram-level N-nitrosodimethylamine, Anal. Chim. Acta 566 (2006) 109-116.
    [171]
    S. Lu, D. Wu, G. Li, et al., Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction, Food Chem. 234 (2017) 408-415.
    [172]
    D. Boczar, E. Wyszomirska, B. Zabrzewska, et al., Development and validation of a method for the semi-quantitative determination of N-nitrosamines in active pharmaceutical ingredient enalapril maleate by means of derivatisation and detection by HPLC with fluorimetric detector, Appl. Sci. 11 (2021), 7590.
    [173]
    S. Masada, G. Tsuji, R. Arai, et al., Rapid and efficient high-performance liquid chromatography analysis of N-nitrosodimethylamine impurity in valsartan drug substance and its products, Sci. Rep. 9 (2019), 11852.
    [174]
    T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas, et al., Automated solid-phase extraction and high-performance liquid chromatographic determination of nitrosamines using post-column photolysis and tris(2,2'-bipyridyl) ruthenium(III) chemiluminescence, J. Chromatogr. A 1077 (2005) 49-56.
    [175]
    K.B. Bodiwala, B.G. Panchal, S.S. Savale, et al., Simultaneous estimation of six nitrosamine impurities in valsartan using liquid chromatographic method, J. AOAC Int. 105 (2022) 1-10.
    [176]
    U.S. Food and Drug Administration, Control of Nitrosamine Impurities in Human Drugs. Guidance for Industry. https://www.fda.gov/media/141720/download. (Accessed 15 February 2023).
    [177]
    I. Sedlo, T. Kolonic, S.Tomic, Presence of nitrosamine impurities in medicinal products, Arch. Ind. Hyg. Toxicol. 72 (2021) 1-5.
    [178]
    D.P. Elder, G.E. Johnson, D.J. Snodin, Tolerability of risk: A commentary on the nitrosamine contamination issue, J. Pharm. Sci. 110 (2021) 2311-2328.
    [179]
    F.J. King, A.D. Searle, M.W. Urquhart, Ranitidine-Investigations into the root cause for the presence of N-nitroso-N,N-dimethylamine in ranitidine hydrochloride drug substances and associated drug products, Org. Process Res. Dev. 24 (2020) 2915-2926.
    [180]
    R. Ruepp, R. Frotschl, R. Bream, et al., The EU response to the presence of nitrosamine impurities in medicines, Front. Med. 8 (2021), 782536.
    [181]
    S. Torres, R. Boetzel, E. Gatimu, et al., ICH Q3D drug product elemental risk assessment: The use of an elemental impurities excipients database, J. Pharm. Sci. 111 (2022) 1421-1428.
    [182]
    D. Ziebarth, G. Scheunig, Effects of some inhibitors on the nitrosation of drugs in human gastric juice, IARC Sci. Publ. (1976) 279-290.
    [183]
    W.J. Mergens, Efficacy of vitamin E to prevent nitrosamine formation, Ann. N. Y. Acad. Sci. 393 (1982) 61-69.
    [184]
    J. Schlingemann, C. Boucley, S. Hickert, et al., Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite, Int. J. Pharm. 620 (2022), 121740.
    [185]
    G. Hao, R. Hu, X. Wang, et al., N-Nitrosodimethylamine formation in metformin hydrochloride sustained-release tablets: Effects of metformin and hypromellose used in drug product formulation, J. Pharm. Biomed. Anal. 222 (2023), 115066.
    [186]
    N. Golob, R. Grahek, M. Ross, et al., Nitrocellulose blister material as a source of N-nitrosamine contamination of pharmaceutical drug products, Int. J. Pharm. 618 (2022), 121687.
    [187]
    J.A. Wagner, J.C. Dinh, J.R. Lightdale, et al., Is this the end for ranitidine? NDMA presence continues to confound, Clin. Transl. Sci. 14 (2021) 1197-1200.
    [188]
    P. Harmon, Trace aldehydes in solid oral dosage forms as catalysts for nitrosating secondary amines, J. Pharm. Sci. 112 (2023) 1216-1219.
    [189]
    R. Boetzel, J. Schlingemann, S. Hickert, et al., A nitrite excipient database: A useful tool to support N-nitrosamine risk assessments for drug products, J. Pharm. Sci. 112 (2023) 1615-1624.
    [190]
    B. Boltres, Evaluating nitrosamines from elastomers in pharmaceutical primary packaging, PDA J. Pharm. Sci. Technol. 76 (2022) 136-150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (241) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return