Citation: | Ting Gao, Yixuan Li, Xiaoyu Wang, Fazheng Ren. Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100911. doi: 10.1016/j.jpha.2023.12.001 |
[1] |
A. Jablońska-Trypuć, R. Krȩtowski, M. Kalinowska, et al., Possible mechanisms of the prevention of doxorubicin toxicity by cichoric acid-antioxidant nutrient, Nutrients, 10 (2018), 44.
|
[2] |
E.A. Grice, J.A. Segre, The skin microbiome, Nat. Rev. Microbiol. 9 (2011) 244-253.
|
[3] |
M. Boer, E. Duchnik, R. Maleszka, et al., Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function, Postepy Dermatol. Alergol. 33 (2016) 1-5.
|
[4] |
P. Zhang, J. Liu, B. Xiong, et al., Microbiota from alginate oligosaccharide-dosed mice successfully mitigated small intestinal mucositis, Microbiome 8 (2020), 112.
|
[5] |
D. Cheng, C. Jiang, J. Xu, et al., Characteristics and applications of alginate lyases: A review, Int. J. Biol. Macromol. 164 (2020) 1304-1320.
|
[6] |
S. Lu, K. Na, J. Wei, et al., Alginate oligosaccharides: The structure-function relationships and the directional preparation for application, Carbohydr. Polym. 284 (2022), 119225.
|
[7] |
S. Tajima, H. Inoue, A. Kawada, et al., Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro, Arch. Dermatol. Res. 291 (1999) 432-436.
|
[8] |
G. Chen, Z. Chen, X. Fan, et al., Gut-brain-skin axis in psoriasis: A review, Dermatol. Ther. 11 (2021) 25-38.
|
[9] |
M. Szanto, A. Dozsa, D. Antal, et al., Targeting the gut-skin axis - Probiotics as new tools for skin disorder management? Exp. Dermatol. 28 (2019) 1210-1218.
|
[10] |
S. Lu, K. Na, J. Wei, et al., Alginate oligosaccharide structures differentially affect DSS-induced colitis in mice by modulating gut microbiota, Carbohydr. Polym. 312 (2023), 120806.
|
[11] |
E.A. Kean, Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin, Biochim. Biophys. Acta 422 (1976) 8-14.
|
[12] |
Y.K. Lieu, B.Y. Hsu, W.A. Price, et al., Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases, Am. J. Physiol. 272 (1997) E359-E366.
|
[13] |
D. Harman, The biologic clock: The mitochondria? J. Am. Geriatr. Soc. 20 (1972) 145-147.
|
[14] |
A.T. Slominski, R. Hardeland, M.A. Zmijewski, et al., Melatonin: A cutaneous perspective on its production, metabolism, and functions, J. Invest. Dermatol. 138 (2018) 490-499.
|
[15] |
I. Rusanova, L. Martinez-Ruiz, J. Florido, et al., Protective effects of melatonin on the skin: Future perspectives, Int. J. Mol. Sci. 20 (2019), 4948.
|
[16] |
J.W. Doyle, T.P. Roth, R.M. Smith, et al., Effects of calcium alginate on cellular wound healing processes modeled in vitro, J. Biomed. Mater. Res. 32 (1996) 561-568.
|
[17] |
A. Kawada, N. Hiura, M. Shiraiwa, et al., Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture, FEBS Lett. 408 (1997) 43-46.
|
[18] |
A. Sreedhar, L. Aguilera-Aguirre, K.K. Singh, Mitochondria in skin health, aging, and disease, Cell Death Dis. 11 (2020), 444.
|
[19] |
G. Lenaz, Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv. Exp. Med. Biol. 942 (2012) 93-136.
|
[20] |
H.R. Griffiths, D. Gao, C. Pararasa, Redox regulation in metabolic programming and inflammation, Redox Biol. 12 (2017) 50-57.
|
[21] |
M.Z. Springer, K.F. MacLeod, In Brief: Mitophagy: Mechanisms and role in human disease, J. Pathol. 240 (2016) 253-255.
|
[22] |
E. Lionaki, M. Markaki, K. Palikaras, et al., Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay, Biochim. Biophys. Acta 1847 (2015) 1412-1423.
|
[23] |
S. Von Stockum, A. Nardin, E. Schrepfer, et al., Mitochondrial dynamics and mitophagy in Parkinson’s disease: A fly point of view, Neurobiol. Dis. 90 (2016) 58-67.
|
[24] |
H.J. Kim, S.H. Lee, S.J. Hong, Antibiotics-induced dysbiosis of intestinal microbiota aggravates atopic dermatitis in mice by altered short-chain fatty acids, Allergy Asthma Immunol. Res. 12 (2020) 137-148.
|
[25] |
B. Polkowska-Pruszyńska, A. Gerkowicz, D. Krasowska, The gut microbiome alterations in allergic and inflammatory skin diseases - an update, J. Eur. Acad. Dermatol. Venereol. 34 (2020) 455-464.
|
[26] |
V.A. Poroyko, A. Carreras, A. Khalyfa, et al., Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice, Sci. Rep. 6 (2016), 35405.
|
[27] |
Y. Belkaid, J.A. Segre, Dialogue between skin microbiota and immunity, Science 346 (2014) 954-959.
|
[28] |
B. De Pessemier, L. Grine, M. Debaere, et al., Gut-skin axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions, Microorganisms 9 (2021), 353.
|
[29] |
L.F. Dawson, E.H. Donahue, S.T. Cartman, et al., The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains, BMC Microbiol. 11 (2011), 86.
|
[30] |
K. Miyazaki, N. Masuoka, M. Kano, et al., Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota, Benef. Microbes 5 (2014) 121-128.
|
[31] |
J.L. Boyajian, M. Ghebretatios, S. Schaly, et al., Microbiome and human aging: Probiotic and prebiotic potentials in longevity, skin health and cellular senescence, Nutrients 13 (2021), 4550.
|
[32] |
X. Ai, P. Yu, L. Luo, et al., Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway, J. Ethnopharmacol. 296 (2022), 115453.
|
[33] |
Q. Lin, S. Li, N. Jiang, et al., Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy, Autophagy 17 (2021) 2975-2990.
|
[34] |
N. Liu, H. Wang, Z. Yang, et al., The role of functional oligosaccharides as prebiotics in ulcerative colitis, Food Funct. 13 (2022) 6875-6893.
|
[35] |
J. Karhausen, V.H. Haase, S.P. Colgan, Inflammatory hypoxia: Role of hypoxia-inducible factor, Cell Cycle 4 (2005) 256-258.
|
[36] |
S. Konjar, M. Pavsic, M. Veldhoen, Regulation of oxygen homeostasis at the intestinal epithelial barrier site, Int. J. Mol. Sci. 22 (2021), 9170.
|
[37] |
R. Singhal, Y.M. Shah, Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine, J. Biol. Chem. 295 (2020) 10493-10505.
|
[38] |
J.L. Fachi, J. de Souza Felipe, L.P. Pral, et al., Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism, Cell Rep. 27 (2019) 750-761.e7.
|
[39] |
G. He, J. Nie, X. Liu, et al., Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, Bioact. Mater. 19 (2023) 690-702.
|
[40] |
C.J. Kelly, L. Zheng, E.L. Campbell, et al., Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function, Cell Host Microbe 17 (2015) 662-671.
|
[41] |
R.X. Wang, M.A. Henen, J.S. Lee, et al., Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor, Gut Microbes 13 (2021), 1938380.
|