Volume 14 Issue 5
May  2024
Turn off MathJax
Article Contents
Ting Gao, Yixuan Li, Xiaoyu Wang, Fazheng Ren. Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100911. doi: 10.1016/j.jpha.2023.12.001
Citation: Ting Gao, Yixuan Li, Xiaoyu Wang, Fazheng Ren. Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice[J]. Journal of Pharmaceutical Analysis, 2024, 14(5): 100911. doi: 10.1016/j.jpha.2023.12.001

Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice

doi: 10.1016/j.jpha.2023.12.001
  • Received Date: Jul. 07, 2023
  • Accepted Date: Dec. 04, 2023
  • Rev Recd Date: Nov. 21, 2023
  • Publish Date: May 30, 2024
  • The “gut-skin” axis has been proved and is considered as a novel therapy for the prevention of skin aging. The antioxidant efficacy of oligomannonic acid (MAOS) makes it an intriguing target for use to improve skin aging. The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice. The data indicated the skin aging phenotypes, oxidative stress, skin mitochondrial dysfunction, and intestinal dysbiosis (especially the butyrate and HIF-1α levels decreased) in aging mice. Similarly, fecal microbiota transplantation (FMT) from aging mice rebuild the aging-like phenotypes. Further, we demonstrated MAOS-mediated colonic butyrate-HIF-1α axis homeostasis promoted the entry of butyrate into the skin, upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1α/mitophagy loop in skin of mice. Overall, our study offered a better insights of the effectiveness of alginate oligosaccharides (AOS), promised to become a personalized targeted therapeutic agents, on gut-skin axis disorder inducing skin aging.
  • loading
  • [1]
    A. Jablońska-Trypuć, R. Krȩtowski, M. Kalinowska, et al., Possible mechanisms of the prevention of doxorubicin toxicity by cichoric acid-antioxidant nutrient, Nutrients, 10 (2018), 44.
    [2]
    E.A. Grice, J.A. Segre, The skin microbiome, Nat. Rev. Microbiol. 9 (2011) 244-253.
    [3]
    M. Boer, E. Duchnik, R. Maleszka, et al., Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function, Postepy Dermatol. Alergol. 33 (2016) 1-5.
    [4]
    P. Zhang, J. Liu, B. Xiong, et al., Microbiota from alginate oligosaccharide-dosed mice successfully mitigated small intestinal mucositis, Microbiome 8 (2020), 112.
    [5]
    D. Cheng, C. Jiang, J. Xu, et al., Characteristics and applications of alginate lyases: A review, Int. J. Biol. Macromol. 164 (2020) 1304-1320.
    [6]
    S. Lu, K. Na, J. Wei, et al., Alginate oligosaccharides: The structure-function relationships and the directional preparation for application, Carbohydr. Polym. 284 (2022), 119225.
    [7]
    S. Tajima, H. Inoue, A. Kawada, et al., Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro, Arch. Dermatol. Res. 291 (1999) 432-436.
    [8]
    G. Chen, Z. Chen, X. Fan, et al., Gut-brain-skin axis in psoriasis: A review, Dermatol. Ther. 11 (2021) 25-38.
    [9]
    M. Szanto, A. Dozsa, D. Antal, et al., Targeting the gut-skin axis - Probiotics as new tools for skin disorder management? Exp. Dermatol. 28 (2019) 1210-1218.
    [10]
    S. Lu, K. Na, J. Wei, et al., Alginate oligosaccharide structures differentially affect DSS-induced colitis in mice by modulating gut microbiota, Carbohydr. Polym. 312 (2023), 120806.
    [11]
    E.A. Kean, Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin, Biochim. Biophys. Acta 422 (1976) 8-14.
    [12]
    Y.K. Lieu, B.Y. Hsu, W.A. Price, et al., Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases, Am. J. Physiol. 272 (1997) E359-E366.
    [13]
    D. Harman, The biologic clock: The mitochondria? J. Am. Geriatr. Soc. 20 (1972) 145-147.
    [14]
    A.T. Slominski, R. Hardeland, M.A. Zmijewski, et al., Melatonin: A cutaneous perspective on its production, metabolism, and functions, J. Invest. Dermatol. 138 (2018) 490-499.
    [15]
    I. Rusanova, L. Martinez-Ruiz, J. Florido, et al., Protective effects of melatonin on the skin: Future perspectives, Int. J. Mol. Sci. 20 (2019), 4948.
    [16]
    J.W. Doyle, T.P. Roth, R.M. Smith, et al., Effects of calcium alginate on cellular wound healing processes modeled in vitro, J. Biomed. Mater. Res. 32 (1996) 561-568.
    [17]
    A. Kawada, N. Hiura, M. Shiraiwa, et al., Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture, FEBS Lett. 408 (1997) 43-46.
    [18]
    A. Sreedhar, L. Aguilera-Aguirre, K.K. Singh, Mitochondria in skin health, aging, and disease, Cell Death Dis. 11 (2020), 444.
    [19]
    G. Lenaz, Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv. Exp. Med. Biol. 942 (2012) 93-136.
    [20]
    H.R. Griffiths, D. Gao, C. Pararasa, Redox regulation in metabolic programming and inflammation, Redox Biol. 12 (2017) 50-57.
    [21]
    M.Z. Springer, K.F. MacLeod, In Brief: Mitophagy: Mechanisms and role in human disease, J. Pathol. 240 (2016) 253-255.
    [22]
    E. Lionaki, M. Markaki, K. Palikaras, et al., Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay, Biochim. Biophys. Acta 1847 (2015) 1412-1423.
    [23]
    S. Von Stockum, A. Nardin, E. Schrepfer, et al., Mitochondrial dynamics and mitophagy in Parkinson’s disease: A fly point of view, Neurobiol. Dis. 90 (2016) 58-67.
    [24]
    H.J. Kim, S.H. Lee, S.J. Hong, Antibiotics-induced dysbiosis of intestinal microbiota aggravates atopic dermatitis in mice by altered short-chain fatty acids, Allergy Asthma Immunol. Res. 12 (2020) 137-148.
    [25]
    B. Polkowska-Pruszyńska, A. Gerkowicz, D. Krasowska, The gut microbiome alterations in allergic and inflammatory skin diseases - an update, J. Eur. Acad. Dermatol. Venereol. 34 (2020) 455-464.
    [26]
    V.A. Poroyko, A. Carreras, A. Khalyfa, et al., Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice, Sci. Rep. 6 (2016), 35405.
    [27]
    Y. Belkaid, J.A. Segre, Dialogue between skin microbiota and immunity, Science 346 (2014) 954-959.
    [28]
    B. De Pessemier, L. Grine, M. Debaere, et al., Gut-skin axis: Current knowledge of the interrelationship between microbial dysbiosis and skin conditions, Microorganisms 9 (2021), 353.
    [29]
    L.F. Dawson, E.H. Donahue, S.T. Cartman, et al., The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains, BMC Microbiol. 11 (2011), 86.
    [30]
    K. Miyazaki, N. Masuoka, M. Kano, et al., Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota, Benef. Microbes 5 (2014) 121-128.
    [31]
    J.L. Boyajian, M. Ghebretatios, S. Schaly, et al., Microbiome and human aging: Probiotic and prebiotic potentials in longevity, skin health and cellular senescence, Nutrients 13 (2021), 4550.
    [32]
    X. Ai, P. Yu, L. Luo, et al., Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/DLL-4/Notch-1 pathway, J. Ethnopharmacol. 296 (2022), 115453.
    [33]
    Q. Lin, S. Li, N. Jiang, et al., Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy, Autophagy 17 (2021) 2975-2990.
    [34]
    N. Liu, H. Wang, Z. Yang, et al., The role of functional oligosaccharides as prebiotics in ulcerative colitis, Food Funct. 13 (2022) 6875-6893.
    [35]
    J. Karhausen, V.H. Haase, S.P. Colgan, Inflammatory hypoxia: Role of hypoxia-inducible factor, Cell Cycle 4 (2005) 256-258.
    [36]
    S. Konjar, M. Pavsic, M. Veldhoen, Regulation of oxygen homeostasis at the intestinal epithelial barrier site, Int. J. Mol. Sci. 22 (2021), 9170.
    [37]
    R. Singhal, Y.M. Shah, Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine, J. Biol. Chem. 295 (2020) 10493-10505.
    [38]
    J.L. Fachi, J. de Souza Felipe, L.P. Pral, et al., Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism, Cell Rep. 27 (2019) 750-761.e7.
    [39]
    G. He, J. Nie, X. Liu, et al., Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, Bioact. Mater. 19 (2023) 690-702.
    [40]
    C.J. Kelly, L. Zheng, E.L. Campbell, et al., Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function, Cell Host Microbe 17 (2015) 662-671.
    [41]
    R.X. Wang, M.A. Henen, J.S. Lee, et al., Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor, Gut Microbes 13 (2021), 1938380.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (115) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return