Volume 14 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Lan Lu, Yuting Zhao, Mingxing Li, Xiaobo Wang, Jie Zhu, Li Liao, Jingya Wang. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100906. doi: 10.1016/j.jpha.2023.11.013
Citation: Lan Lu, Yuting Zhao, Mingxing Li, Xiaobo Wang, Jie Zhu, Li Liao, Jingya Wang. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100906. doi: 10.1016/j.jpha.2023.11.013

Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances

doi: 10.1016/j.jpha.2023.11.013
Funds:

This study was funded by the National Natural Science Foundation of China (Grant Nos.: 81803812 and 81803237).

  • Received Date: Aug. 04, 2023
  • Accepted Date: Nov. 26, 2023
  • Rev Recd Date: Nov. 08, 2023
  • Publish Date: Nov. 29, 2023
  • Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
  • loading
  • [1]
    J. Hurlow, K. Couch, K. Laforet, et al., Clinical biofilms: a challenging frontier in wound care, Adv. Wound Care 4 (2015) 295-301.
    [2]
    L. Lu, Y. Zhao, G. Yi, et al., Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa, Chin. Med. 16 (2021), 72.
    [3]
    W. Zhang, J. Zhang, K. Zhao, Application of bacterial tracking techniques in biofilms, Sheng Wu Gong Cheng Xue Bao 33 (2017) 1411-1432.
    [4]
    H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623-633.
    [5]
    H. Van Acker, P. Van Dijck, T. Coenye, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol. 22 (2014) 326-333.
    [6]
    S.S. Branda, A. Vik, L. Friedman, et al., Biofilms: the matrix revisited, Trends Microbiol. 13 (2005) 20-26.
    [7]
    M. Ganesan, E.J. Stewart, J. Szafranski, et al., Molar mass, entanglement, and associations of the biofilm polysaccharide of Staphylococcus epidermidis, Biomacromolecules 14 (2013) 1474-1481.
    [8]
    A. Dragos, A.T. Kovacs, The peculiar functions of the bacterial extracellular matrix, Trends Microbiol. 25 (2017) 257-266.
    [9]
    H. Koo, R.N. Allan, R.P. Howlin, et al., Targeting microbial biofilms: current and prospective therapeutic strategies, Nat. Rev. Microbiol. 15 (2017) 740-755.
    [10]
    L. Karygianni, Z. Ren, H. Koo, et al., Biofilm matrixome: extracellular components in structured microbial communities, Trends Microbiol. 28 (2020) 668-681.
    [11]
    H.C. Flemming, J. Wingender, U. Szewzyk, et al., Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol. 14 (2016) 563-575.
    [12]
    J.A. Bartell, L.M. Sommer, J.A.J. Haagensen, et al., Evolutionary highways to persistent bacterial infection, Nat. Commun. 10 (2019), 629.
    [13]
    B.H.A. Rehm, Bacterial polymers: biosynthesis, modifications and applications, Nat. Rev. Microbiol. 8 (2010) 578-592.
    [14]
    J. Schmid, V. Sieber, B. Rehm, Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies, Front. Microbiol. 6 (2015), 496.
    [15]
    H. Shen, D.P. Durkin, A. Aiello, et al., Photocatalytic graphitic carbon nitride-chitosan composites for pathogenic biofilm control under visible light irradiation, J. Hazard. Mater. 408 (2021), 124890.
    [16]
    J. Wingender, M. Strathmann, A. Rode, et al., Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa, Methods Enzymol. 336 (2001) 302-314.
    [17]
    P.M. Bales, E.M. Renke, S.L. May, et al., Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens, PLoS One 8 (2013), e67950.
    [18]
    D.H. Limoli, C.J. Jones, D.J. Wozniak, Bacterial extracellular polysaccharides in biofilm formation and function, Microbiol. Spectr. 3 (2015) 10.1128/microbiolspec.MB-10.1128/microbiolspec.MB-0011-2014.
    [19]
    C. Watters, D. Fleming, D. Bishop, et al., Host responses to biofilm, Prog. Mol. Biol. Transl. Sci. 142 (2016) 193-239.
    [20]
    Q. Wang, F. Kang, Y. Gao, et al., Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity, Sci. Rep. 6 (2016), 21379.
    [21]
    J.W. Lamppa, K.E. Griswold, Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy, Antimicrob. Agents Chemother. 57 (2013) 137-145.
    [22]
    D. Fleming, L. Chahin, K. Rumbaugh, Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds, Antimicrob. Agents Chemother. 61 (2017) e01998-e01916.
    [23]
    P. Baker, P.J. Hill, B.D. Snarr, et al., Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms, Sci. Adv. 2 (2016), e1501632.
    [24]
    E.A. Izano, M.A. Amarante, W.B. Kher, et al., Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms, Appl. Environ. Microbiol. 74 (2008) 470-476.
    [25]
    I. Liduma, T. Tracevska, U. Bers, et al., Phenotypic and genetic analysis of biofilm formation by Staphylococcus epidermidis, Medicina 48 (2012) 305-309.
    [26]
    K.M. Conlon, H. Humphreys, J.P. O'Gara, icaR encodes a transcriptional repressor involved in environmental regulation of Ica operon expression and biofilm formation in Staphylococcus epidermidis, J. Bacteriol. 184 (2002) 4400-4408.
    [27]
    Y. Mu, H. Zeng, W. Chen, Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis, Front. Microbiol. 12 (2021), 631058.
    [28]
    M.I. Klein, G. Hwang, P.H. Santos, et al., Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms, Front. Cell. Infect. Microbiol. 5 (2015), 10.
    [29]
    W.H. Bowen, H. Koo, Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms, Caries Res. 45 (2011) 69-86.
    [30]
    L. Guo, J.S. McLean, R. Lux, et al., The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans, Sci. Rep. 5 (2015), 18015.
    [31]
    W.L. Kuhnert, G. Zheng, R.C. Faustoferri, et al., The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH, J. Bacteriol. 186 (2004) 8524-8528.
    [32]
    Z. Ren, L. Chen, J. Li, et al., Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity, J. Oral Microbiol. 8 (2016), 31095.
    [33]
    G.R. Rocha, E.J. Florez Salamanca, A.L. de Barros, et al., Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans, BMC Complement. Altern. Med. 18 (2018), 61.
    [34]
    R.K. Upreti, M. Kumar, V. Shankar, Bacterial glycoproteins: functions, biosynthesis and applications, Proteomics 3 (2003) 363-379.
    [35]
    M.F. Moradali, B.H.A. Rehm, Bacterial biopolymers: from pathogenesis to advanced materials, Nat. Rev. Microbiol. 18 (2020) 195-210.
    [36]
    U.T. Nguyen, L.L. Burrows, DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms, Int. J. Food Microbiol. 187 (2014) 26-32.
    [37]
    S. Kumar Shukla, T.S. Rao, Dispersal of bap-mediated Staphylococcus aureus biofilm by proteinase K, J. Antibiot. 66 (2013) 55-60.
    [38]
    J.B. Kaplan, Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res. 89 (2010) 205-218.
    [39]
    X. Zhang, P.L. Bishop, Biodegradability of biofilm extracellular polymeric substances, Chemosphere 50 (2003) 63-69.
    [40]
    L. Hobley, C. Harkins, C.E. MacPhee, et al., Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes, FEMS Microbiol. Rev. 39 (2015) 649-669.
    [41]
    I. Lasa, J.R. Penades, Bap: a family of surface proteins involved in biofilm formation, Res. Microbiol. 157 (2006) 99-107.
    [42]
    L.P. Blanco, M.L. Evans, D.R. Smith, et al., Diversity, biogenesis and function of microbial amyloids, Trends Microbiol. 20 (2012) 66-73.
    [43]
    D.M. Fowler, A.V. Koulov, W.E. Balch, et al., Functional amyloid: from bacteria to humans, Trends Biochem. Sci. 32 (2007) 217-224.
    [44]
    D. Romero, E. Sanabria-Valentin, H. Vlamakis, et al., Biofilm inhibitors that target amyloid proteins, Chem. Biol. 20 (2013) 102-110.
    [45]
    L. Shaw, E. Golonka, J. Potempa, et al., The role and regulation of the extracellular proteases of Staphylococcus aureus, Microbiology 150 (2004) 217-228.
    [46]
    A.J. Loughran, D.N. Atwood, A.C. Anthony, et al., Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants, MicrobiologyOpen 3 (2014) 897-909.
    [47]
    M. Marti, M.P. Trotonda, M.A. Tormo-Mas, et al., Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus, Microbes Infect. 12 (2010) 55-64.
    [48]
    M. Gjermansen, M. Nilsson, L. Yang, et al., Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms, Mol. Microbiol. 75 (2010) 815-826.
    [49]
    B.R. Boles, A.R. Horswill, Agr-mediated dispersal of Staphylococcus aureus biofilms, PLoS Pathog. 4 (2008), e1000052.
    [50]
    K.J. Lauderdale, B.R. Boles, A.L. Cheung, et al., Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation, Infect. Immun. 77 (2009) 1623-1635.
    [51]
    D.C. Nelson, J. Garbe, M. Collin, Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins, Biol. Chem. 392 (2011) 1077-1088.
    [52]
    K.L. Connolly, A.L. Roberts, R.C. Holder, et al., Dispersal of Group A streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model, PLoS One 6 (2011), e18984.[.
    [53]
    S.F. Lee, Y.H. Li, G.H. Bowden, Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity, Infect. Immun. 64 (1996) 1035-1038.
    [54]
    M. Banar, M. Emaneini, M. Satarzadeh, et al., Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections, PLoS One 11 (2016), e0164622.
    [55]
    S.A. Niazi, D. Clark, T. Do, et al., The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm, Int. Endod. J. 47 (2014) 756-768.
    [56]
    M. Okshevsky, R.L. Meyer, The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms, Crit. Rev. Microbiol. 41 (2015) 341-352.
    [57]
    M. Alhede, T. Bjarnsholt, M. Givskov, et al., Pseudomonas aeruginosa biofilms: mechanisms of immune evasion, Adv. Appl. Microbiol. 86 (2014) 1-40.
    [58]
    N.S. Jakubovics, R.C. Shields, N. Rajarajan, et al., Life after death: the critical role of extracellular DNA in microbial biofilms, Lett. Appl. Microbiol. 57 (2013) 467-475.
    [59]
    M. Allesen-Holm, K.B. Barken, L. Yang, et al., A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms, Mol. Microbiol. 59 (2006) 1114-1128.
    [60]
    L. Lu, M. Li, G. Yi, et al., Screening strategies for quorum sensing inhibitors in combating bacterial infections, J. Pharm. Anal. 12 (2022) 1-14.
    [61]
    J.S. Webb, L.S. Thompson, S. James, et al., Cell death in Pseudomonas aeruginosa biofilm development, J. Bacteriol. 185 (2003) 4585-4592.
    [62]
    L.K. Jennings, K.M. Storek, H.E. Ledvina, et al., Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 11353-11358.
    [63]
    M.F. Moradali, S. Ghods, B.H. Rehm, Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence, Front. Cell. Infect. Microbiol. 7 (2017), 39.
    [64]
    J. Fang, Y. Lin, P. Wang, et al., The droplet-size effect of squalene@cetylpyridinium chloride nanoemulsions on antimicrobial potency against planktonic and biofilm MRSA, Int. J. Nanomed. 14 (2019) 8133-8147.
    [65]
    M. Dubois, K. Gilles, J.K. Hamilton, et al., A colorimetric method for the determination of sugars, Nature 168 (1951), 167.
    [66]
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, et al., Protein measurement with the folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.
    [67]
    Z. Dische, A new specific color reaction of hexuronic acids, J. Biol. Chem. 167 (1947) 189-198.
    [68]
    J. Kang, L. Liu, Y. Liu, et al., Ferulic acid inactivates Shigella flexneri through cell membrane destruction, biofilm retardation, and altered gene expression, J. Agric. Food Chem. 68 (2020) 7121-7131.
    [69]
    A.T. Bernal-Mercado, M.M. Gutierrez-Pacheco, D. Encinas-Basurto, et al., Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces, J. Appl. Microbiol. 128 (2020) 387-400.
    [70]
    A. Minich, Z. Levarski, M. Mikulasova, et al., Complex analysis of vanillin and syringic acid as natural antimicrobial agents against Staphylococcus epidermidis biofilms, Int. J. Mol. Sci. 23 (2022), 1816.
    [71]
    F. Liu, P. Jin, H. Gong, et al., Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis, Poult. Sci. 99 (2020) 5127-5136.
    [72]
    D. Rubini, S.F. Banu, P. Nisha, et al., Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus, Microb. Pathog. 122 (2018) 162-173.
    [73]
    Y. Liu, Y. Xu, Q. Song, et al., Anti-biofilm activities from Bergenia crassifolia leaves against Streptococcus mutans, Front. Microbiol. 8 (2017), 1738.
    [74]
    J. Li, Q. Fan, M. Jin, et al., Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis, Virulence 12 (2021) 3062-3073.
    [75]
    H.S. Kim, H.D. Park, Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14, PLoS One 8 (2013), e76106.
    [76]
    V. Tiwari, D. Tiwari, V. Patel, et al., Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii, Microb. Pathog. 110 (2017) 345-351.
    [77]
    R. Srinivasan, S. Santhakumari, A.V. Ravi, In vitro antibiofilm efficacy of Piper betle against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi, Microb. Pathog. 110 (2017) 232-239.
    [78]
    M. Majumdar, A. Dubey, R. Goswami, et al., In vitro and in silico studies on the structural and biochemical insight of anti-biofilm activity of andrograpanin from Andrographis paniculata against Pseudomonas aeruginosa, World J. Microbiol. Biotechnol. 36 (2020), 143.
    [79]
    S. Xing, X. Sun, A.A. Taylor, et al., D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence, Biotechnol. Bioeng. 112 (2015) 696-704.
    [80]
    H. Xu, Y. Liu, Reduced microbial attachment by D-amino acid-inhibited AI-2 and EPS production, Water Res. 45 (2011) 5796-5804.
    [81]
    Y. Liu, Y. Jiang, J. Zhu, et al., Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa, Carbohydr. Polym. 206 (2019) 412-419.
    [82]
    R. Al Akeel, H.F. Hetta, S.N. Muslim, et al., Broad-spectrum bioactivity of chitosan N-acetylglucosaminohydrolase (chitosan NAGH) extracted from Bacillus ligniniphilus, J. AOAC Int. 102 (2019) 1221-1227.
    [83]
    M. Kalia, V.K. Yadav, P.K. Singh, et al., Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa, PLoS One 10 (2015), e0135495.
    [84]
    L. Lin, W. Jianhuit, Y. Jialini, et al., Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors, Pol. J. Microbiol. 62 (2013) 243-251.
    [85]
    J. Tao, S. Yan, C. Zhou, et al., Total flavonoids from Potentilla kleiniana Wight et Arn inhibits biofilm formation and virulence factors production in methicillin-resistant Staphylococcus aureus (MRSA), J. Ethnopharmacol. 279 (2021), 114383.
    [86]
    C. Yu, X. Li, N. Zhang, et al., Inhibition of biofilm formation by D-tyrosine: effect of bacterial type and D-tyrosine concentration, Water Res. 92 (2016) 173-179.
    [87]
    T.R. Neu, J.R. Lawrence, Lectin-binding analysis in biofilm systems, Methods Enzymol. 310 (1999) 145-152.
    [88]
    M. Strathmann, J. Wingender, H.C. Flemming, Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa, J. Microbiol. Methods 50 (2002) 237-248.
    [89]
    J.R. Lawrence, G.D.W. Swerhone, U. Kuhlicke, et al., In situ evidence for microdomains in the polymer matrix of bacterial microcolonies, Can. J. Microbiol. 53 (2007) 450-458.
    [90]
    R.Y. Zhang, T.R. Neu, S. Bellenberg, et al., Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms, Microb. Biotechnol. 8 (2015) 448-461.
    [91]
    R. Zhang, T.R. Neu, Y. Zhang, et al., Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus, Appl. Microbiol. Biotechnol. 99 (2015) 7343-7356.
    [92]
    K. Rebrosova, O. Samek, M. Kizovsky, et al., Raman spectroscopy - a novel method for identification and characterization of microbes on a single-cell level in clinical settings, Front. Cell. Infect. Microbiol. 12 (2022), 866463.
    [93]
    Y. Shang, M. Sun, C. Wang, et al., Research progress in distributed acoustic sensing techniques, Sensors 22 (2022), 6060.
    [94]
    K.V. Serebrennikova, A.N. Berlina, D.V. Sotnikov, et al., Raman scattering-based biosensing: new prospects and opportunities, Biosensors 11 (2021), 512.
    [95]
    A. Saletnik, B. Saletnik, C. Puchalski, Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues, Molecules 26 (2021), 1537.
    [96]
    B. Gieroba, M. Krysa, K. Wojtowicz, et al., The FT-IR and Raman spectroscopies as tools for biofilm characterization created by Cariogenic streptococci, Int. J. Mol. Sci. 21 (2020), 3811.
    [97]
    L. Tan, F. Zhao, Q. Han, et al., High correlation between structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus, Front. Microbiol. 9 (2018), 1881.
    [98]
    L.M. Malard, L. Lafeta, R.S. Cunha, et al., Studying 2d materials with advanced Raman spectroscopy: CARS, SRS and TERS, Phys. Chem. Chem. Phys. 23 (2021) 23428-23444.
    [99]
    Y. Qiu, C. Kuang, X. Liu, et al., Single-molecule surface-enhanced Raman spectroscopy, Sensors 22 (2022), 4889.
    [100]
    H.X. Wang, Y.W. Zhao, Z. Li, et al., Development and application of aptamer-based surface-enhanced Raman spectroscopy sensors in quantitative analysis and biotherapy, Sensors 19 (2019), 3806.
    [101]
    N.P. Ivleva, M. Wagner, H. Horn, et al., Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms, J. Biophotonics 3 (2010) 548-556.
    [102]
    S.K. Pirutin, S. Jia, A.I. Yusipovich, et al., Vibrational spectroscopy as a tool for bioanalytical and biomonitoring studies, Int. J. Mol. Sci. 24 (2023), 6947.
    [103]
    S.N. Yang, Q.L. Zhang, H.Y. Yang, et al., Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure, Int. J. Biol. Macromol. 206 (2022) 175-187.
    [104]
    F.Q. Zhang, Q. Huang. Characterization of Z-DNA by infrared spectroscopy, Methods Mol. Biol. 2651 (2023) 53-58.
    [105]
    K. Kaczmarek, A. Leniart, B. Lapinska, et al., Selected spectroscopic techniques for surface analysis of dental materials: a narrative review, Materials 14 (2021), 2624.
    [106]
    Y. Alqaheem, A.A. Alomair, Microscopy and spectroscopy techniques for characterization of polymeric membranes, Membranes 10 (2020), 33.
    [107]
    F.S. Ghoreishi, R. Roghanian, G. Emtiazi, Inhibition of quorum sensing-controlled virulence factors with natural substances and novel protease, obtained from Halobacillus karajensis, Microb. Pathog. 149 (2020), 104555.
    [108]
    S. Felz, P. Vermeulen, M.C.M. van Loosdrecht, et al., Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS), Water Res. 157 (2019) 201-208.
    [109]
    M.S. Byrd, I. Sadovskaya, E. Vinogradov, et al., Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production, Mol. Microbiol. 73 (2009) 622-638.
    [110]
    Y. Cui, Y. Li, S. Jiang, et al., Isolation, purification, and structural characterization of polysaccharides from Atractylodis Macrocephalae Rhizoma and their immunostimulatory activity in RAW264.7 cells, Int. J. Biol. Macromol. 163 (2020) 270-278.
    [111]
    X. Gao, J. Qi, C.T. Ho, et al., Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Ganoderma leucocontextum fruiting bodies, Carbohydr. Polym. 249 (2020), 116874.
    [112]
    L. Shi, Bioactivities, isolation and purification methods of polysaccharides from natural products: a review, Int. J. Biol. Macromol. 92 (2016) 37-48.
    [113]
    V.P. Chakka, T. Zhou, Carboxymethylation of polysaccharides: synthesis and bioactivities, Int. J. Biol. Macromol. 165 (2020) 2425-2431.
    [114]
    M. Inagaki, R. Iwakuma, S. Kawakami, et al., Detecting and differentiating monosaccharide enantiomers by 1H NMR spectroscopy, J. Nat. Prod. 84 (2021) 1863-1869.
    [115]
    G. Nagy, N.L.B. Pohl. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers, Anal. Chem. 87 (2015) 4566-4571.
    [116]
    S.Y. Zhou, G.L. Huang, G.Y. Chen. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam, Food Chem. 361 (2021),130089.
    [117]
    F.Y. An, G.Y. Ren, J.R. Wu, et al., Extraction, purification, structural characterization, and antioxidant activity of a novel polysaccharide from Lonicera japonica Thunb, Front. Nutr. 9 (2022), 1035760.
    [118]
    T. Mori, T. Kumano, H. He, et al., C-glycoside metabolism in the gut and in nature: identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes, Nat. Commun. 12 (2021), 6294.
    [119]
    G. Liu, J. Ye, W. Li, et al., Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus, Int. J. Biol. Macromol. 162 (2020) 975-984.
    [120]
    B.A. Wallace, The role of circular dichroism spectroscopy in the era of integrative structural biology, Curr. Opin. Struct. Biol. 58 (2019) 191-196.
    [121]
    L. Lu, W. Hu, Z. Tian, et al., Developing natural products as potential anti-biofilm agents, Chin. Med. 14 (2019), 11.
    [122]
    S.A. Lakshmi, J.P. Bhaskar, V. Krishnan, et al., Inhibition of biofilm and biofilm-associated virulence factor production in methicillin-resistant Staphylococcus aureus by docosanol, J. Biotechnol. 317 (2020) 59-69.
    [123]
    H.M. Tran, H. Tran, M.A. Booth, et al., Nanomaterials for treating bacterial biofilms on implantable medical devices, Nanomaterials 10 (2020), 2253.
    [124]
    W. Xiu, S. Gan, Q. Wen, et al., Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections, Research 2020 (2020).
    [125]
    J.A. Kloepfer, R.E. Mielke, J.L. Nadeau, Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms, Appl. Environ. Microbiol. 71 (2005) 2548-2557.
    [126]
    J. Cao, Y. Zhao, Y. Liu, et al., Phosphorylcholine-based polymer encapsulated chitosan nanoparticles enhance the penetration of antimicrobials in a staphylococcal biofilm, ACS Macro Lett. 8 (2019) 651-657.
    [127]
    M. Altaf, S. Manoharadas, M.T. Zeyad, Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens, Microsc. Res. Tech. 84 (2021) 1638-1648.
    [128]
    K. Ali, B. Ahmed, M.S. Khan, et al., Differential surface contact killing of pristine and low EPS Pseudomonas aeruginosa with Aloe vera capped hematite (α-Fe2O3) nanoparticles, J. Photochem. Photobiol. B 188 (2018) 146-158.
    [129]
    P.C. Naha, Y. Liu, G. Hwang, et al., Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption, ACS Nano 13 (2019) 4960-4971.
    [130]
    S. Priyadarsini, S. Mukherjee, M. Mishra, Nanoparticles used in dentistry: a review, J. Oral Biol. Craniofac. Res. 8 (2018) 58-67.
    [131]
    M.A. Dos Santos Ramos, P. Da Silva, L. Sposito, et al., Nanotechnology-based drug delivery systems for control of microbial biofilms: a review, Int. J. Nanomed. 13 (2018) 1179-1213.
    [132]
    J. Rajkumari, S. Busi, A.C. Vasu, et al., Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1, Microb. Pathog. 107 (2017) 261-269.
    [133]
    B. Gayani, A. Dilhari, G.K. Wijesinghe, et al., Effect of natural curcuminoids-intercalated layered double hydroxide nanohybrid against Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis: abactericidal, antibiofilm, and mechanistic study, MicrobiologyOpen 8 (2019), e00723.
    [134]
    J. Cai, H. Huang, W. Song, et al., Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro, Int. J. Pharm. 495 (2015) 728-737.
    [135]
    A. Tucak, M. Sirbubalo, L. Hindija, et al., Microneedles: characteristics, materials, production methods and commercial development, Micromachines 11 (2020), 961.
    [136]
    N.N. Al-Rawi, M. Rawas-Qalaji, Dissolving microneedles with antibacterial functionalities: a systematic review of laboratory studies, Eur. J. Pharm. Sci. 174 (2022), 106202.
    [137]
    H. Shen, E.A. Lopez-Guerra, R. Zhu, et al., Visible-light-responsive photocatalyst of graphitic carbon nitride for pathogenic biofilm control, ACS Appl. Mater. Interfaces 11 (2019) 373-384.
    [138]
    S. Tian, L. Su, Y. Liu, et al., Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms - an intravital imaging study in mice, Sci. Adv. 6 (2020), eabb1112.
    [139]
    Y. Shi, J, Zhao, H. Li, et al., A drug-free, hair follicle cycling regulatable, separable, antibacterial microneedle patch for hair regeneration therapy, Adv. Healthc. Mater. 11 (2022), e2200908.
    [140]
    K.N. Mangang, P. Thakran, J. Halder, et al., PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances, J. Biomater. Sci. Polym. Ed. 34 (2023) 986-1017.
    [141]
    J. Fang, W. Chou, C.F. Lin, et al., Facile biofilm penetration of cationic liposomes loaded with DNase I/proteinase K to eradicate Cutibacterium acnes for treating cutaneous and catheter infections, Int. J. Nanomed. 16 (2021) 8121-8138.
    [142]
    L. Xu, C.A. Siedlecki, Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces, Biomed. Mater. 9 (2014), 035003.
    [143]
    G. Hwang, B. Koltisko, X. Jin, et al., Nonleachable imidazolium-incorporated composite for disruption of bacterial clustering, exopolysaccharide-matrix assembly, and enhanced biofilm removal, ACS Appl. Mater. Interfaces 9 (2017) 38270-38280.
    [144]
    K. Zhang, S. Wang, X. Zhou, et al., Effect of antibacterial dental adhesive on multispecies biofilms formation, J. Dent. Res. 94 (2015) 622-629.
    [145]
    B. Zhang, CRISPR/Cas gene therapy, J. Cell. Physiol. 236 (2021) 2459-2481.
    [146]
    G. Sharma, A.R. Sharma, M. Bhattacharya, et al., CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases, Mol. Ther. 29 (2021) 571-586.
    [147]
    G. Liu, Q. Lin, S. Jin, et al., The CRISPR-Cas toolbox and gene editing technologies, Mol. Cell 82 (2022) 333-347.
    [148]
    A. Mayorga-Ramos, J. Zuniga-Miranda, S.E. Carrera-Pacheco, et al., CRISPR-cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance, ACS Infect. Dis. 9 (2023) 1283-1302.
    [149]
    A. Zuberi, L. Misba, A.U. Khan, CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm, Front. Cell. Infect. Microbiol. 7 (2017), 214.
    [150]
    M.F. Noirot-Gros, S. Forrester, G. Malato, et al., CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens, Sci. Rep. 9 (2019), 15954.
    [151]
    T. Gong, B. Tang, X. Zhou, et al., Genome editing in Streptococcus mutans through self-targeting CRISPR arrays, Mol. Oral Microbiol. 33 (2018) 440-449.
    [152]
    J.N. Hennigan, M.D. Lynch, The past, present, and future of enzyme-based therapies, Drug Discov. Today 27 (2022) 117-133.
    [153]
    R. Ramakrishnan, A.K. Singh, S. Singh, et al., Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections, J. Biol. Chem. 298 (2022), 102352.
    [154]
    X. Lv, L. Wang, A. Mei, et al., Recent nanotechnologies to overcome the bacterial biofilm matrix barriers, Small Weinh. Bergstr. Ger. 19 (2023), e2206220.
    [155]
    H. Dong, W. Xiu, L. Wan, et al., Biofilm microenvironment response nanoplatform synergistically degrades biofilm structure and relieves hypoxia for efficient sonodynamic therapy, Chem. Eng. J. 453 (2023), 139839.
    [156]
    B. Wan, Y. Zhu, J. Tao, et al., Alginate lyase guided silver nanocomposites for eradicating Pseudomonas aeruginosa from lungs, ACS Appl. Mater. Interfaces 12 (2020) 9050-9061.
    [157]
    J.L. Lister, A.R. Horswill, Staphylococcus aureus biofilms: recent developments in biofilm dispersal, Front. Cell. Infect. Microbiol. 4 (2014), 178.
    [158]
    S.K. Saggu, G. Jha, P.C. Mishra, Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10, Front. Bioeng. Biotechnol. 7 (2019), 192.
    [159]
    D. Fleming, K.P. Rumbaugh, Approaches to dispersing medical biofilms, Microorganisms 5 (2017), 15.
    [160]
    K. Sharma, A.P. Singh, Antibiofilm effect of DNase against single and mixed species biofilm, Foods 7 (2018), 42.
    [161]
    L. Karygianni, T. Attin, T. Thurnheer, Combined DNase and proteinase treatment interferes with composition and structural integrity of multispecies oral biofilms, J. Clin. Med. 9 (2020), 983.
    [162]
    Y.H. Li, P.C. Lau, J.H. Lee, et al., Natural genetic transformation of Streptococcus mutans growing in biofilms, J. Bacteriol. 183 (2001) 897-908.
    [163]
    P. Taslimi, I. Gulcin, Antioxidant and anticholinergic properties of olivetol, J. Food Biochem. 42 (2018), e12516.
    [164]
    K. Cetin Cakmak, I. Gulcin, Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight, Toxicol Rep 6 (2019) 1273-1280.
    [165]
    I. Gulcin, Antioxidant activity of food constituents: an overview, Arch. Toxicol. 86 (2012) 345-391.
    [166]
    I. Gulcin, Antioxidants and antioxidant methods: an updated overview, Arch. Toxicol. 94 (2020) 651-715.
    [167]
    A.N. White, B.S. Learman, A.L. Brauer, et al., Catalase activity is critical for Proteus mirabilis biofilm development, extracellular polymeric substance composition, and dissemination during catheter-associated urinary tract infection, Infect. Immun. 89 (2021), e0017721.
    [168]
    J. Wen, Z. Wang, X. Du, et al., Antibioflm effects of extracellular matrix degradative agents on the biofilm of different strains of multi-drug resistant Corynebacterium striatum, Ann. Clin. Microbiol. Antimicrob. 21 (2022), 53.
    [169]
    Y. Li, R. Dong, L. Ma, et al., Combined anti-biofilm enzymes strengthen the eradicate effect of Vibrio parahaemolyticus biofilm: mechanism on cpsA-j expression and application on different carriers, Foods 11 (2022), 1305.
    [170]
    M. Ding, W. Zhao, X. Zhang, et al., Charge-switchable MOF nano complex for enhanced biofilm penetration and eradication, J. Hazard. Mater. 439 (2022), 129594.
    [171]
    P.J. Weldrick, M.J. Hardman, V.N. Paunov, Enhanced clearing of wound-related pathogenic bacterial biofilms using protease-functionalized antibiotic nanocarriers, ACS Appl. Mater. Interfaces 11 (2019) 43902-43919.
    [172]
    W. Hussain, X. Yang, M. Ullah, et al., Genetic engineering of bacteriophages: key concepts, strategies, and applications, Biotechnol. Adv. 64 (2023), 108116.
    [173]
    S. Liu, H. Lu, S. Zhang, et al., Phages against pathogenic bacterial biofilms and biofilm-based infections: a review, Pharmaceutics 14 (2022), 427.
    [174]
    R. Abdulrahman Ashy, S. Agusti, Low host abundance and high temperature determine switching from lytic to lysogenic cycles in planktonic microbial communities in a tropical sea (red sea), Viruses 12 (2020), 761.
    [175]
    Q. Wang, Z. Guan, K. Pei, et al., Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision, Nat. Microbiol. 3 (2018) 1266-1273.
    [176]
    Y. Elahi, J. Nowroozi, R.M.N. Fard, Isolation and characterization of bacteriophages from wastewater sources on Enterococcus spp. isolated from clinical samples, Iran. J. Microbiol. 13 (2021) 671-677.
    [177]
    Z. Chegini, A. Khoshbayan, M.T. Moghadam, et al., Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review, Ann. Clin. Microbiol. Antimicrob. 19 (2020), 45.
    [178]
    J.M. Loeffler, V.A. Fischetti, Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and-resistant Streptococcus pneumoniae strains, Antimicrob. Agents Chemother. 47 (2003) 375-377.
    [179]
    K. Markoishvili, G. Tsitlanadze, R. Katsarava, et al., A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds, Int. J. Dermatol. 41 (2002) 453-458.
    [180]
    G. Vukotic, M. Obradovic, K. Novovic, et al., Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii, Front. Med. 7 (2020), 426.
    [181]
    O.D. Wiguna, D.E. Waturangi, Yogiara, Bacteriophage DW-EC with the capability to destruct and inhibit biofilm formed by several pathogenic bacteria, Sci. Rep. 12 (2022), 18539.
    [182]
    T. Tkhilaishvili, L. Lombardi, A.B. Klatt, et al., Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus, Int. J. Antimicrob. Agents 52 (2018) 842-853.
    [183]
    S.C. Park, M.Y. Lee, J.Y. Kim, et al., Anti-biofilm effects of synthetic antimicrobial peptides against drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus planktonic cells and biofilm, Molecules 24 (2019), 4560.
    [184]
    Y. Shao, C. Yin, F. Lv, et al., The Sigma factor AlgU regulates exopolysaccharide production and nitrogen-fixing biofilm formation by directly activating the transcription of pslA in Pseudomonas stutzeri A1501, Genes 13 (2022), 867.
    [185]
    J.M. Dow, L. Crossman, K. Findlay, et al., Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10995-11000.
    [186]
    B.R. Boles, M. Thoendel, P.K. Singh, Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms, Mol. Microbiol. 57 (2005) 1210-1223.
    [187]
    G.A. Quinn, A.P. Maloy, M.M. Banat, et al., A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms, Curr. Microbiol. 67 (2013) 614-623.
    [188]
    M.A. De Rienzo, P.J. Martin, Effect of mono and di-rhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006, Curr. Microbiol. 73 (2016) 183-189.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (57) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return