Citation: | Junfeng Wang, Qibing Liu, Yingbo Li, Yi Pang. An environmentally sensitive zinc-selective two-photon NIR fluorescent turn-on probe and zinc sensing in stroke[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100903. doi: 10.1016/j.jpha.2023.11.010 |
[1] |
N.C. Lim, H.C. Freake, C. Bruckner, Illuminating zinc in biological systems, Chemistry 11 (2004) 38-49.
|
[2] |
L.A. Finney, T.V. O’Halloran, Transition metal speciation in the cell: insights from the chemistry of metal ion receptors, Science 300 (2003) 931-936.
|
[3] |
C.E. Outten, T.V. O’Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis, Science 292 (2001) 2488-2492.
|
[4] |
J.M. Berg, Y. Shi, The galvanization of biology: A growing appreciation for the roles of zinc, Science 271 (1996) 1081-1085.
|
[5] |
C. Fischer Walker, R.E. Black, Zinc and the risk for infectious disease, Annu. Rev. Nutr. 24 (2004) 255-275.
|
[6] |
J.Y. Lee, T.B. Cole, R.D. Palmiter, et al., Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice, Proc. Natl. Acad. Sci. USA 99 (2002) 7705-7710.
|
[7] |
J.Y. Koh, S.W. Suh, B.J. Gwag, et al., The role of zinc in selective neuronal death after transient global cerebral ischemia, Science 272 (1996) 1013-1016.
|
[8] |
A.I. Bush, W.H. Pettingell, G. Multhaup, et al., Rapid induction of Alzheimer A beta amyloid formation by zinc, Science 265 (1994) 1464-1467.
|
[9] |
P. Zalewski, A. Truong-Tran, S. Lincoln, et al., Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media, Biotechniques 40 (2006) 509-520.
|
[10] |
T. Kambe, T. Tsuji, A. Hashimoto, et al., The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism, Physiol. Rev. 95 (2015) 749-784.
|
[11] |
J. Lu, A.J. Stewart, P.J. Sadler, et al., Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site, Biochem. Soc. Trans. 36 (2008) 1317-1321.
|
[12] |
D.C. Chilvers, J.B. Dawson, M.H. Bahreyni-Toosi, et al., Identification and determination of copper- and zinc-protein complexes in blood plasma after chromatographic separation on DEAE-Sepharose CL-6B, Analyst 109 (1984) 871-876.
|
[13] |
J.W. Foote, H.T. Delves, Distribution of zinc amongst human serum proteins determined by affinity chromatography and atomic-absorption spectrophotometry, Analyst 108 (1983) 492-504.
|
[14] |
B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73 (1993) 79-118.
|
[15] |
S. Kiran Gotru, J.P. van Geffen, M. Nagy, rt al., Defective Zn2+ homeostasis in mouse and human platelets with α- and δ-storage pool diseases, Sci. Rep. 9 (2019), 8333.
|
[16] |
G. Marx, G. Korner, X. Mou, et al., Packaging zinc, fibrinogen, and factor XIII in platelet alpha-granules, J. Cell. Physiol. 156 (1993) 437-442.
|
[17] |
D.B. Milne, N.V. Ralston, J.C. Wallwork, Zinc content of cellular components of blood: Methods for cell separation and analysis evaluated, Clin. Chem. 31 (1985) 65-69.
|
[18] |
D.S. Sim, G. Merrill-Skoloff, B.C. Furie, B. Furie, et al., Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels, Blood 103 (2004) 2127-2134.
|
[19] |
G. Apodaca, Modulation of membrane traffic by mechanical stimuli, Am. J. Physiol. Ren. Physiol. 282 (2002) F179-F190.
|
[20] |
P.P. Lemons, D. Chen, S.W. Whiteheart, Molecular mechanisms of platelet exocytosis: requirements for alpha-granule release, Biochem. Biophys. Res. Commun. 267 (2000) 875-880.
|
[21] |
A. du P. Heyns, A. Eldor, R. Yarom, et al., Zinc-induced platelet aggregation is mediated by the fibrinogen receptor and is not accompanied by release or by thromboxane synthesis, Blood 66 (1985) 213-219.
|
[22] |
Z. Guo, G.H. Kim, I. Shin, et al., A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms, Biomaterials 33 (2012) 7818-7827.
|
[23] |
H.N. Kim, Z. Guo, W. Zhu, et al., Recent progress on polymer-based fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40 (2011) 79-93.
|
[24] |
X. Chen, T. Pradhan, F. Wang, et al., Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.
|
[25] |
D.W. Domaille, E.L. Que, C.J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol. 4 (2008) 168-175.
|
[26] |
N. Boens, V. Leen, W. Dehaen, Fluorescent indicators based on BODIPY, Chem. Soc. Rev. 41 (2012) 1130-1172.
|
[27] |
Goncalves MS , Fluorescent labeling of biomolecules with organic probes, Chem. Rev. 109 (2009) 190-212.
|
[28] |
A. Loudet, K. Burgess, BODIPY dyes and their derivatives: Syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.
|
[29] |
J.W. Lichtman, J.-A. Conchello, Fluorescence microscopy, Nat. Methods 2 (2005) 910-919.
|
[30] |
Z. Xu, J. Yoon, D.R. Spring, Fluorescent chemosensors for Zn(2+), Chem. Soc. Rev. 39 (2010) 1996-2006.
|
[31] |
A.P. de Silva, H.Q. Gunaratne, T. Gunnlaugsson, et al., Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 97 (1997) 1515-1566.
|
[32] |
X. Peng, F. Song, E. Lu, et al, Heptamethine cyanine dyes with a large stokes shift and strong fluorescence: A paradigm for excited-state intramolecular charge transfer, J. Am. Chem. Soc. 127 (2005) 4170-4171.
|
[33] |
Z. Zhang, S. Achilefu, Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes, Org. Lett. 6 (2004) 2067-2070.
|
[34] |
H. Kobayashi, M. Ogawa, R. Alford, et al., New strategies for fluorescent probe design in medical diagnostic imaging, Chem. Rev. 110 (2010) 2620-2640.
|
[35] |
D.J. Hawrysz, E.M. Sevick-Muraca, Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents, Neoplasia 2 (2000) 388-417.
|
[36] |
L. Yuan, W. Lin, S. Zhao, et al, A unique approach to development of near-infrared fluorescent sensors for in vivo imaging, J. Am. Chem. Soc. 134 (2012) 13510-13523.
|
[37] |
N. Karton-Lifshin, E. Segal, L. Omer, et al, A unique paradigm for a Turn-ON near-infrared cyanine-based probe: Noninvasive intravital optical imaging of hydrogen peroxide, J. Am. Chem. Soc. 133 (2011) 10960-10965.
|
[38] |
D. Oushiki, H. Kojima, T. Terai, et al, Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes, J. Am. Chem. Soc. 132 (2010) 2795-2801.
|
[39] |
S.A. Hilderbrand, R. Weissleder, Near-infrared fluorescence: Application to in vivo molecular imaging, Curr. Opin. Chem. Biol. 14 (2010) 71-79.
|
[40] |
J. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol. 7 (2003) 626-634.
|
[41] |
R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol. 19 (2001) 316-317.
|
[42] |
K. Kikuchi, K. Komatsu, T. Nagano, Zinc sensing for cellular application, Curr. Opin. Chem. Biol. 8 (2004) 182-191.
|
[43] |
E.M. Nolan, S.J. Lippard, Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry, Acc. Chem. Res. 42 (2009) 193-203.
|
[44] |
P. Jiang, Z. Guo, Fluorescent detection of zinc in biological systems: Recent development on the design of chemosensors and biosensors, Coord. Chem. Rev. 248 (2004) 205-229.
|
[45] |
T. Wu, M. Kumar, J. Zhang, et al, A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn2+, Sci. Adv. 9 (2023), eadd2058.
|
[46] |
K.H. Alharbi, A review on organic colorimetric and fluorescent chemosensors for the detection of Zn(II) Ions, Crit. Rev. Anal. Chem. 53 (2023) 1472-1488.
|
[47] |
Y. You, S. Lee, T. Kim, et al., Phosphorescent sensor for biological mobile zinc, J. Am. Chem. Soc. 133 (2011) 18328-18342.
|
[48] |
X. Zhang, K.S. Lovejoy, A. Jasanoff, et al., Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Proc. Natl. Acad. Sci. USA 104 (2007) 10780-10785.
|
[49] |
K. Kiyose, H. Kojima, Y. Urano, et al., Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore, J. Am. Chem. Soc. 128 (2006) 6548-6549.
|
[50] |
S. Hillebrand, M. Segala, T. Buckup, et al., First hyperpolarizability in proton-transfer benzoxazoles: Computer-aided design, synthesis and study of a new model compound, Chem. Phys. 273 (2001) 1-10.
|
[51] |
P. Chou, M.L. Martinez, J.H. Clements, Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds, J. Phys. Chem. 97 (1993) 2618-2622.
|
[52] |
A.S. Klymchenko, A.P. Demchenko, Electrochromic modulation of excited-state intramolecular proton transfer: The new principle in design of fluorescence sensors, J. Am. Chem. Soc. 124 (2002) 12372-12379.
|
[53] |
J. Seo, S. Kim, S. Park et al., Tailoring the excited-state intramolecular proton transfer (ESIPT) fluorescence of 2-(2’-hydroxyphenyl) benzoxazole derivatives, Bull. Korean Chem. Soc. 26 (2005), 1706-1710.
|
[54] |
J. Wang, Y. Li, E. Duah, et al., A selective NIR-emitting zinc sensor by using Schiff base binding to turn-on excited-state intramolecular proton transfer, J. Mater. Chem. B 2 (2014) 2008-2012.
|
[55] |
Y. Xu, Y. Pang, Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative, Chem. Commun. 46 (2010) 4070-4072.
|
[56] |
Y. Xu, Q. Liu, B. Dou, et al., Zn(2+) binding-enabled excited state intramolecular proton transfer: A step toward new near-infrared fluorescent probes for imaging applications, Adv. Healthc. Mater. 1 (2012) 485-492.
|
[57] |
S. Mizukami, S. Watanabe, Y. Akimoto, et al., No-wash protein labeling with designed fluorogenic probes and application to real-time pulse-chase analysis, J. Am. Chem. Soc. 134 (2012) 1623-1629.
|
[58] |
J. Wang, H. Baumann, X. Bi, et al., Efficient synthesis of NIR emitting bis[2-(2’-hydroxylphenyl) benzoxazole] derivative and its potential for imaging applications, Bioorg. Chem. 96 (2020), 103585.
|
[59] |
S.J. Henderson, J. Xia, H. Wu, et al., Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure, Thromb. Haemost. 115 (2016) 533-542.
|
[60] |
T.T. Vu, J.C. Fredenburgh, J.I. Weitz, Zinc: An important cofactor in haemostasis and thrombosis, Thromb. Haemost. 109 (2013) 421-430.
|
[61] |
M. Boyko, R. Kuts, B.F. Gruenbaum, et al., An alternative model of laser-induced stroke in the motor cortex of rats, Biol. Proced. Online. 21 (2019), 9.
|
[62] |
Y. Li, J. Zhang, Animal models of stroke, Animal Model. Exp. Med. 4 (2021) 204-219.
|