Volume 14 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
Karolina Żuchowska, Wojciech Filipiak. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100898. doi: 10.1016/j.jpha.2023.11.005
Citation: Karolina Żuchowska, Wojciech Filipiak. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art[J]. Journal of Pharmaceutical Analysis, 2024, 14(4): 100898. doi: 10.1016/j.jpha.2023.11.005

Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art

doi: 10.1016/j.jpha.2023.11.005
Funds:

This research was funded by the National Science Centre, Poland (Project No.: 2017/26/D/NZ6/00136).

  • Received Date: Jun. 27, 2023
  • Accepted Date: Nov. 15, 2023
  • Rev Recd Date: Oct. 03, 2023
  • Publish Date: Nov. 28, 2023
  • Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
  • loading
  • [1]
    S. Report, European Centre for Disease Prevention and Control, Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019, ECDC, Stockholm, 2020.
    [2]
    J. Gao, Y. Zou, Y. Wang, et al., Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients, J. Breath Res. 10 (2016), 027102.
    [3]
    J.E. Belizario, J. Faintuch, M.G. Malpartida, Breath biopsy and discovery of exclusive volatile organic compounds for diagnosis of infectious diseases, Front. Cell. Infect. Microbiol. 10 (2021), 564194.
    [4]
    I. Kviatkovski, S. Shushan, Y. Oron, et al., Smelling Pseudomonas aeruginosa infections using a whole-cell biosensor - An alternative for the gold-standard culturing assay, J. Biotechnol. 267 (2018) 45-49.
    [5]
    N.M. Zetola, C. Modongo, O. Matsiri, et al., Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples, J. Infect. 74 (2017) 367-376.
    [6]
    R. Coronel Teixeira, M. Rodriguez, N. Jimenez de Romero, et al., The potential of a portable, point-of-care electronic nose to diagnose tuberculosis J. Infect. 75 (2017) 441-447.
    [7]
    A. Roine, T. Saviauk, P. Kumpulainen, et al., Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: A proof-of-principle study, PLoS One 9 (2014), e114279.
    [8]
    E. Daulton, A. Wicaksono, J. Bechar, et al., The detection of wound infection by ion mobility chemical analysis Biosensors 10 (2020), 19.
    [9]
    L. Lacey, E. Daulton, A. Wicaksono, et al., Detection of Group B Streptococcus in pregnancy by vaginal volatile organic compound analysis: A prospective exploratory study Transl. Res. 216 (2020) 23-29.
    [10]
    A. Gomez-Mejia, K. Arnold, J. Bar, et al., Rapid detection of Staphylococcus aureus and Streptococcus pneumoniae by real-time analysis of volatile metabolites, iScience 25 (2022), 105080.
    [11]
    H. Li, J. Zhu, Differentiating antibiotic-resistant Staphylococcus aureus using secondary electrospray ionization tandem mass spectrometry, Anal. Chem. 90 (2018) 12108-12115.
    [12]
    K. Dryahina, K. Sovova, A. Nemec, et al., Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex, J. Breath Res. 10 (2016), 037102.
    [13]
    F.J. Gilchrist, J. Belcher, A.M. Jones, et al., Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis, ERJ Open Res. 1 (2015) 00044-02015.
    [14]
    N. Drabinska, K. Hewett, P. White, et al., Application of a solid-phase microextraction-gas chromatography-mass spectrometry/metal oxide sensor system for detection of antibiotic susceptibility in urinary tract infection-causing Escherichia coli - A proof of principle study, Adv. Med. Sci. 67 (2022) 1-9.
    [15]
    W. Filipiak, K. Zuchowska, M. Marszalek, et al., GC-MS profiling of volatile metabolites produced by Klebsiella pneumoniae, Front. Mol. Biosci. 9 (2022), 1019290.
    [16]
    S. Fitzgerald, L. Holland, A. Morrin, An investigation of stability and species and strain-level specificity in bacterial volatilomes, Front. Microbiol. 12 (2021), 693075.
    [17]
    M. Beccaria, F.A. Franchina, M. Nasir, et al., Investigating bacterial volatilome for the classification and identification of mycobacterial species by HS-SPME-GC-MS and machine learning, Molecules 26 (2021), 4600.
    [18]
    C.L. Jenkins, H.D. Bean, Influence of media on the differentiation of Staphylococcus spp. by volatile compounds, J. Breath Res. 14 (2019), 016007.
    [19]
    K. Hewett, N. Drabinska, P. White, et al., Towards the identification of antibiotic-resistant bacteria causing urinary tract infections using volatile organic compounds analysis - A pilot study, Antibiotics (Basel) 9 (2020), 797.
    [20]
    T. Koehler, I. Ackermann, D. Brecht, et al., Analysis of volatile metabolites from in vitro biofilms of Pseudomonas aeruginosa with thin-film microextraction by thermal desorption gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 412 (2020) 2881-2892.
    [21]
    S. Fitzgerald, E. Duffy, L. Holland, et al., Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria, Sci. Rep. 10 (2020), 17971.
    [22]
    C.L. Jenkins, H.D. Bean, Dependence of the staphylococcal volatilome composition on microbial nutrition, Metabolites 10 (2020), 347.
    [23]
    T.J. Davis, A.V. Karanjia, C.N. Bhebhe, et al., Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections, mSphere 5 (2020) e00843-20.
    [24]
    G. Purcaro, C.A. Rees, J.A. Melvin, et al., Volatile fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus infection in an in vitro cystic fibrosis co-infection model, J. Breath Res. 12 (2019), 046001.
    [25]
    Q. Zhong, F. Cheng, J. Liang, et al., Profiles of volatile indole emitted by Escherichia coli based on CDI-MS, Sci. Rep. 9 (2019), 13139.
    [26]
    C.A. Rees, A. Burklund, P.H. Stefanuto, et al., Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups, J. Breath Res. 12 (2018), 026001.
    [27]
    A. Smart, B. de Lacy Costello, P. White, et al., Sniffing out resistance - Rapid identification of urinary tract infection-causing bacteria and their antibiotic susceptibility using volatile metabolite profiles, J. Pharm. Biomed. Anal. 167 (2019) 59-65.
    [28]
    C. Drees, W. Vautz, S. Liedtke, et al., GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures, Appl. Microbiol. Biotechnol. 103 (2019) 9091-9101.
    [29]
    C.A. Rees, K.V. Nordick, F.A. Franchina, et al., Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions, Metabolomics 13 (2017), 18.
    [30]
    C.A. Rees, M. Nasir, A. Smolinska, et al., Detection of high-risk carbapenem-resistant Klebsiella pneumoniae and Enterobacter cloacae isolates using volatile molecular profiles, Sci. Rep. 8 (2018), 13297.
    [31]
    M. Ashrafi, L. Novak-Frazer, M. Bates, et al., Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures, Sci. Rep. 8 (2018), 9341.
    [32]
    M. Ashrafi, L. Novak-Frazer, J. Morris, et al., Electrical stimulation disrupts biofilms in a human wound model and reveals the potential for monitoring treatment response with volatile biomarkers, Wound Repair Regen. 27 (2019) 5-18.
    [33]
    O. Lawal, H. Knobel, H. Weda, et al., Volatile organic compound signature from co-culture of lung epithelial cell line with Pseudomonas aeruginosa, Analyst 143 (2018) 3148-3155.
    [34]
    O. Lawal, H. Knobel, H. Weda, et al., TD/GC-MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum, Metabolomics. 14 (2018), 66.
    [35]
    H. Devaraj, C. Pook, S. Swift, et al., Profiling of headspace volatiles from Escherichia coli cultures using silicone-based sorptive media and thermal desorption GC-MS, J. Sep. Sci. 41 (2018) 4133-4141.
    [36]
    A. Kuntzel, P. Oertel, S. Fischer, et al., Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species, PLoS One 13 (2018), e0194348.
    [37]
    C.M. Timm, E.P. Lloyd, A. Egan, et al., Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry, Front. Microbiol. 9 (2018), 491.
    [38]
    N. Karami, F. Mirzajani, H. Rezadoost, et al., Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry, F1000Res. 6 (2017), 1415.
    [39]
    H.D. Bean, C.A. Rees, J.E. Hill, Comparative analysis of the volatile metabolomes of Pseudomonas aeruginosa clinical isolates, J. Breath Res. 10 (2016), 047102.
    [40]
    Y. Zhou, E. Chen, X. Wu, et al., Rational lung tissue and animal models for rapid breath tests to determine pneumonia and pathogens, Am. J. Transl. Res. 9 (2017) 5116-5126.
    [41]
    N. Karami, A. Karimi, A. Aliahmadi, et al., Identification of bacteria using volatile organic compounds, Cell. Mol. Biol. (Noisy-le-grand) 63 (2) (2017) 112-121.
    [42]
    P. Oertel, A. Bergmann, S. Fischer, et al., Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures, Biomed. Chromatogr. 32 (2018), e4285.
    [43]
    T.R. Mellors, C.A. Rees, W.F. Wieland-Alter et al., The volatile molecule signature of four mycobacteria species J. Breath Res. 11 (2017), 031002.
    [44]
    J. Chen, J. Tang, H. Shi, et al., Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry, J. Basic Microbiol. 57 (2017) 228-237.
    [45]
    K.D. Nizio, K.A. Perrault, A.N. Troobnikoff, et al., In vitro volatile organic compound profiling using GC×GC-TOF-MS to differentiate bacteria associated with lung infections: A proof-of-concept study, J. Breath Res. 10 (2016), 026008.
    [46]
    C.A. Rees, A. Smolinska, J.E. Hill, The volatile metabolome of Klebsiella pneumoniae in human blood, J. Breath Res. 10 (2016), 027101.
    [47]
    R. Kramer, A. Sauer-Heilborn, T. Welte, et al., A rapid method for breath analysis in cystic fibrosis patients, Eur. J. Clin. Microbiol. Infect. Dis. 34 (2015) 745-751.
    [48]
    E. Tait, J.D. Perry, S.P. Stanforth, et al., Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS, J. Chromatogr. Sci. 52 (2014) 363-373.
    [49]
    A.W. Boots, A. Smolinska, J.J. van Berkel, et al., Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry, J. Breath Res. 8 (2014), 027106.
    [50]
    C. Zscheppank, H.L. Wiegand, C. Lenzen, et al., Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS, Anal. Bioanal. Chem. 406 (2014) 6617-6628.
    [51]
    B.J. Umber, H.-W. Shin, S. Meinardi, et al., Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood, Clin. Transl. Med. 2 (2013), 13.
    [52]
    M. Junger, W. Vautz, M. Kuhns, et al., Ion mobility spectrometry for microbial volatile organic compounds: A new identification tool for human pathogenic bacteria Appl. Microbiol. Biotechnol. 93 (2012) 2603-2614.
    [53]
    W. Filipiak, A. Sponring, M.M. Baur, et al., Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS, Microbiology (Reading) 158 (2012) 3044-3053.
    [54]
    T. Nawrath, G.F. Mgode, B. Weetjens, et al., The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria, Beilstein J. Org. Chem. 8 (2012) 290-299.
    [55]
    V. Shestivska, P. Spanel, K. Dryahina, et al., Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa, J. Appl. Microbiol. 113 (2012) 701-713.
    [56]
    M. O’Hara, C.A. Mayhew, A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer J. Breath Res. 3 (2009), 027001.
    [57]
    M. Bunge, N. Araghipour, T. Mikoviny, et al., On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry, Appl. Environ. Microbiol. 74 (2008) 2179-2186.
    [58]
    M. Lechner, M. Fille, J. Hausdorfer, et al., Diagnosis of bacteria in vitro by mass spectrometric fingerprinting: A pilot study, Curr. Microbiol. 51 (2005) 267-269.
    [59]
    G. Purcaro, M. Nasir, F.A. Franchina, et al., Breath metabolome of mice infected with Pseudomonas aeruginosa, Metabolomics 15 (2019), 10.
    [60]
    P.M. van Oort, P. Brinkman, G. Slingers, et al., Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: A proof-of-concept study, Am. J. Physiol. Lung Cell. Mol. Physiol. 316 (2019) L751-L756.
    [61]
    F.A. Franchina, T.R. Mellors, M. Aliyeva, et al., Towards the use of breath for detecting mycobacterial infection: A case study in a murine model J. Breath Res. 12 (2018), 026008.
    [62]
    H.D. Bean, J. Zhu, J.C. Sengle, et al., Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS), J. Breath Res. 8 (2014), 041001.
    [63]
    J. Zhu, H.D. Bean, J. Jimenez-Diaz, et al., Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study, J. Appl. Physiol. (1985) 114(2013) 1544-1549.
    [64]
    L. Guo, Z. Qiu, Y. Wang, et al., Volatile organic compounds to identify infectious (bacteria/viruses) diseases of the central nervous system: A pilot study Eur. Neurol. 84 (2021) 325-332.
    [65]
    Z. Wen, M. Liu, D. Rui, et al., The metabolome of carbapenem-resistant Klebsiella pneumoniae infection in plasma, Dis. Markers 2021 (2021) 7155772.
    [66]
    M.E. Dolch, S. Janitza, A.L. Boulesteix, et al., Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis, J. Biol. Res. (Thessalon) 23 (2016), 3.
    [67]
    A.M. Kauppi, A. Edin, I. Ziegler, et al., Metabolites in blood for prediction of bacteremic sepsis in the emergency room, PLoS One 11 (2016), e0147670.
    [68]
    K. Chingin, J. Liang, Y. Hang, et al., Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood, RSC Adv. 5 (2015) 13952-13957.
    [69]
    M. Nasir, H.D. Bean, A. Smolinska, et al., Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients, Sci. Rep. 8 (2018), 826.
    [70]
    A.H. Neerincx, B.P. Geurts, J. van Loon, et al., Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles, J. Breath Res. 10 (2016), 046014.
    [71]
    F.J. Gilchrist, R.J. Bright-Thomas, A.M. Jones, et al., Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection, J. Breath Res. 7 (2013), 026010.
    [72]
    P.C. Goeminne, T. Vandendriessche, J. Van Eldere, et al., Detection of Pseudomonas aeruginosa in sputum headspace through volatile organic compound analysis, Respir. Res. 13 (2012), 87.
    [73]
    S.U. Savelev, J.D. Perry, S.J. Bourke, et al., Volatile biomarkers of Pseudomonas aeruginosa in cystic fibrosis and noncystic fibrosis bronchiectasis, Lett. Appl. Microbiol. 52 (2011) 610-613.
    [74]
    M. Beccaria, C. Bobak, B. Maitshotlo, et al., Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques, J. Breath Res. 13 (2018), 016005.
    [75]
    S.H. Lim, R. Martino, V. Anikst, et al., Rapid diagnosis of tuberculosis from analysis of urine volatile organic compounds, ACS Sens. 1 (2016) 852-856.
    [76]
    A.S. Sahota, R. Gowda, R.P. Arasaradnam, et al., A simple breath test for tuberculosis using ion mobility: A pilot study, Tuberculosis (Edinb.) 99 (2016) 143-146.
    [77]
    M.K. Nakhleh, R. Jeries, A. Gharra, et al., Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors, Eur. Respir. J. 43 (2014) 1522-1525.
    [78]
    P.M. van Oort, S. de Bruin, H. Weda, et al., Exhaled breath metabolomics for the diagnosis of pneumonia in intubated and mechanically-ventilated intensive care unit (ICU)-patients, Int. J. Mol. Sci. 18 (2017), 449.
    [79]
    W. Filipiak, R. Beer, A. Sponring, et al., Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: A prospective pilot study, J. Breath Res. 9 (2015), 016004.
    [80]
    R. Schnabel, R. Fijten, A. Smolinska, et al., Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia, Sci. Rep. 5 (2015), 17179.
    [81]
    S.J. Fowler, M. Basanta-Sanchez, Y. Xu, et al., Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: A case-control study Thorax 70 (2015) 320-325.
    [82]
    L.D.J. Bos, P.J. Sterk, M.J. Schultz, Volatile metabolites of pathogens: A systematic review PLoS Pathog. 9 (2013), e1003311.
    [83]
    C.Y. Chen, W.-C. Lin, H.-Y. Yang, Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: Solutions to improve the application of machine learning in respiratory research, Respir. Res. 21 (2020), 45.
    [84]
    T. Rogosch, N. Herrmann, R.F. Maier, et al., Detection of bloodstream infections and prediction of bronchopulmonary dysplasia in preterm neonates with an electronic nose, J. Pediatr. 165 (2014) 622-624.
    [85]
    J.N. Dodds, E.S. Baker, Ion mobility spectrometry: Fundamental concepts, instrumentation, applications, and the road ahead, J. Am. Soc. Mass Spectrom. 30 (2019) 2185-2195.
    [86]
    I. Steppert, J. Schönfelder, C. Schultz, et al., Rapid in vitro differentiation of bacteria by ion mobility spectrometry, Appl. Microbiol. Biotechnol. 105 (2021) 4297-4307.
    [87]
    N. Kunze-Szikszay, M. Euler, M. Kuhns, et al., Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria, BMC Microbiol. 21 (2021), 69.
    [88]
    R.A. Allardyce, V.S. Langford, A.L. Hill, et al., Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS), J. Microbiol. Methods 65 (2006) 361-365.
    [89]
    T.W.E. Chippendale, F.J. Gilchrist, P. Spanel, et al., Quantification by SIFT-MS of volatile compounds emitted by Aspergillus fumigatus cultures and in co-culture with Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, Anal. Methods 6 (2014) 8154-8164.
    [90]
    V. Shestivska, K. Dryahina, J. Nunvar, et al., Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis, J. Breath Res. 9 (2015), 027104.
    [91]
    E.A. Slade, R.M.S. Thorn, A.M. Lovering, et al., In vitro discrimination of wound associated bacteria by volatile compound profiling using selected ion flow tube-mass spectrometry, J. Appl. Microbiol. 123 (2017) 233-245.
    [92]
    K. Segers, A. Slosse, J. Viaene, et al., Feasibility study on exhaled-breath analysis by untargeted Selected-Ion Flow-Tube Mass Spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques, Talanta 225 (2021), 122080.
    [93]
    K. Schwarz, W. Filipiak, A. Amann, Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS, J. Breath Res. 3 (2009), 027002.
    [94]
    K. Roslund, M. Lehto, P. Pussinen, et al., On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria, J. Breath Res. 14 (2019), 016010.
    [95]
    P. Martinez-Lozano Sinues, E. Criado, G. Vidal, Mechanistic study on the ionization of trace gases by an electrospray plume, Int. J. Mass Spectrom. 313 (2012) 21-29.
    [96]
    C. Ballabio, S. Cristoni, G. Puccio, et al., Rapid identification of bacteria in blood cultures by mass-spectrometric analysis of volatiles, J. Clin. Pathol. 67 (2014) 743-746.
    [97]
    J. Kaeslin, S. Micic, R. Weber, et al., Differentiation of cystic fibrosis-related pathogens by volatile organic compound analysis with secondary electrospray ionization mass spectrometry, Metabolites 11 (2021), 773.
    [98]
    J. Zhu, J.E. Hill, Detection of Escherichia coli via VOC profiling using secondary electrospray ionization-mass spectrometry (SESI-MS), Food Microbiol. 34 (2013) 412-417.
    [99]
    J. Zhu, J. Jimenez-Diaz, H.D. Bean, et al., Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: From initial infection to clearance, J. Breath Res. 7 (2013), 037106.
    [100]
    T. Gaisl, L. Bregy, N. Stebler, et al., Real-time exhaled breath analysis in patients with cystic fibrosis and controls, J. Breath Res. 12 (2018), 036013.
    [101]
    R. Weber, N. Perkins, T. Bruderer, et al., Identification of exhaled metabolites in children with cystic fibrosis, Metabolites 12 (2022), 980.
    [102]
    K.D. Singh, G. Tancev, F. Decrue, et al., Standardization procedures for real-time breath analysis by secondary electrospray ionization high-resolution mass spectrometry, Anal. Bioanal. Chem. 411 (2019) 4883-4898.
    [103]
    K. Dryahina, M. Polasek, D. Smith, et al., Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: ligand switching ion chemistry and the influence of ZsprayTM guiding electric fields, Rapid Commun. Mass Spectrom. 35 (2021), e9187.
    [104]
    W.M. Ahmed, P. Brinkman, H. Weda, et al., Methodological considerations for large-scale breath analysis studies: Lessons from the U-BIOPRED severe asthma project, J. Breath Res. 13 (2018), 016001.
    [105]
    W. Filipiak, B. Bojko, SPME in clinical, pharmaceutical, and biotechnological research - How far are we from daily practice? Trends Analyt. Chem. 115 (2019) 203-213.
    [106]
    A. Azzollini, L. Boggia, J. Boccard, et al., Dynamics of metabolite induction in fungal co-cultures by metabolomics at both volatile and non-volatile levels, Front. Microbiol. 9 (2018), 72.
    [107]
    J.E. Szulejko, K.H. Kim, Derivatization techniques for determination of carbonyls in air, Trends Analyt. Chem. 64 (2015) 29-41.
    [108]
    A. Pineiro-Garcia, G. Gonzalez-Alatorre, F. Tristan, et al., Simple preparation of reduced graphene oxide coatings for solid phase micro-extraction (SPME) of furfural to be detected by gas chromatography/mass spectrometry, Mater. Chem. Phys. 213 (2018) 556-561.
    [109]
    J. Li, H. Xu, A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines Talanta 167 (2017) 623-629.
    [110]
    M. Ma, Y. Wei, H. Wei, et al., High-efficiency solid-phase microextraction performance of polypyrrole enhanced titania nanoparticles for sensitive determination of polar chlorophenols and triclosan in environmental water samples, RSC Adv. 11 (2021) 28632-28642.
    [111]
    J.A. Koziel, M. Odziemkowski, J. Pawliszyn, Sampling and analysis of airborne particulate matter and aerosols using in-needle trap and SPME fiber devices, Anal. Chem. 73 (2001) 47-54.
    [112]
    W. Filipiak, A. Filipiak, C. Ager, et al., Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps, J. Breath Res. 6 (2012), 027107.
    [113]
    S. Zeinali, J. Pawliszyn, Needle-trap device containing a filter: A novel device for aerosol studies Anal. Chem. 93 (2021) 14401-14408.
    [114]
    S. Zeinali, C. Ghosh, J. Pawliszyn, Simultaneous determination of exhaled breath vapor and exhaled breath aerosol using filter-incorporated needle-trap devices: A comparison of gas-phase and droplet-bound components, Anal. Chim. Acta 1203 (2022), 339671.
    [115]
    Y. Li, J. Li, H. Xu, Graphene/polyaniline electrodeposited needle trap device for the determination of volatile organic compounds in human exhaled breath vapor and A549 cell, RSC Adv. 7 (2017) 11959-11968.
    [116]
    R. Rahimpoor, A. Firoozichahak, S. Alizadeh, et al., Application of a needle trap device packed with a MIP@MOF nano-composite for efficient sampling and determination of airborne diazinon pesticide, RSC Adv. 12 (2022) 16267-16276.
    [117]
    R. Rahimpoor, A. Firoozichahak, S. Alizadeh, et al., Urinary bio-monitoring of amphetamine derivatives by needle trap device packed with the zirconium-based metal-organic framework, Sci. Rep. 12 (2022), 13702.
    [118]
    A. Firoozichahak, A. Bahrami, F. Ghorbani Shahna, et al., Development of a needle trap device packed with titanium-based metal-organic framework sorbent for extraction of phenolic derivatives in air, J. Sep. Sci. 43 (2020) 1011-1018.
    [119]
    I. Bruheim, X. Liu, J. Pawliszyn, Thin-film microextraction, Anal. Chem. 75 (2003) 1002-1010.
    [120]
    J.J. Grandy, E. Boyaci, J. Pawliszyn, Development of a carbon mesh supported thin film microextraction membrane as a means to lower the detection limits of benchtop and portable GC/MS instrumentation, Anal. Chem. 88 (2016) 1760-1767.
    [121]
    R.V. Emmons, R. Tajali, E. Gionfriddo, Development, optimization and applications of thin film solid phase microextraction (TF-SPME) devices for thermal desorption: A comprehensive review Separations 6 (2019), 39.
    [122]
    W. Filipiak, K. Jaroch, P. Szeliska, et al., Application of thin-film microextraction to analyze volatile metabolites in A549 cancer cells, Metabolites 11 (2021), 704.
    [123]
    M.S. Mulani, E.E. Kamble, S.N. Kumkar, et al., Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review, Front. Microbiol. 10 (2019), 539.
    [124]
    M.S. Pepe, R. Etzioni, Z. Feng, et al., Phases of biomarker development for early detection of cancer, J. Natl. Cancer Inst. 93 (2001) 1054-1061.
    [125]
    W. Filipiak, A. Sponring, M.M. Baur, et al., Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa, BMC Microbiol. 12 (2012), 113.
    [126]
    Z. Chen, H. Sun, J. Huang, et al., Metabolic engineering of Klebsiella pneumoniae for the production of 2-butanone from glucose, PLoS One 10 (2015), e0140508.
    [127]
    M. Kai, M. Haustein, F. Molina, et al., Bacterial volatiles and their action potential, Appl. Microbiol. Biotechnol. 81 (2009) 1001-1012.
    [128]
    W. Filipiak, V. Ruzsanyi, P. Mochalski, et al., Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants, J. Breath Res. 6 (2012), 036008.
    [129]
    L. Weisskopf, S. Schulz, P. Garbeva, Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions, Nat. Rev. Microbiol. 19 (2021) 391-404.
    [130]
    X.N. Zeng, J.J. Leyden, H.J. Lawley, et al., Analysis of characteristic odors from human male axillae, J. Chem. Ecol. 17 (1991) 1469-1492.
    [131]
    M.C. Lemfack, S.R. Ravella, N. Lorenz, et al., Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria, Syst. Appl. Microbiol. 39 (2016) 503-515.
    [132]
    S.L. Forbes, L. Rust, K. Trebilcock, et al., Effect of age and storage conditions on the volatile organic compound profile of blood, Forensic Sci. Med. Pathol. 10 (2014) 570-582.
    [133]
    L.M. Filkins, J.A. Graber, D.G. Olson, et al., Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model, J. Bacteriol. 197 (2015) 2252-2264.
    [134]
    W. Filipiak, A. Sponring, A. Filipiak, et al., TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro, Cancer Epidemiol. Biomarkers Prev. 19 (2010) 182-195.
    [135]
    M.R. Hendricks, L.P. Lashua, D.K. Fischer, et al., Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity, Proc. Natl. Acad. Sci. U S A 113 (2016) 1642-1647.
    [136]
    W.G.D. Fernando, R. Ramarathnam, A.S. Krishnamoorthy, et al., Identification and use of potential bacterial organic antifungal volatiles in biocontrol, Soil Biol. Biochem. 37 (2005) 955-964.
    [137]
    N. Mirtalaei, A. Farazi, M. Ebrahimi Monfared, et al., Efficacy of antibiotic prophylaxis against ventilator-associated pneumonia, J. Hosp. Infect. 101 (2019) 272-275.
    [138]
    T.R. Sterling, G. Njie, D. Zenner, et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020, Recomm. Reports. 69 (2020) 1-11.
    [139]
    D. Smith, P. Spanel, F.J. Gilchrist, et al., Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection, J. Breath Res. 7 (2013), 044001.
    [140]
    SepNet Critical Care Trials Group, Incidence of severe sepsis and septic shock in German intensive care units: The prospective, multicentre INSEP study Intensive Care Med. 42 (2016) 1980-1989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (108) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return