Volume 14 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
Xiangye Yin, Yingjie Zhuang, Haiqin Song, Yujian Xu, Fan Zhang, Jianxin Cui, Lei Zhao, Yingjie Yu, Qixu Zhang, Jun Ye, Youbai Chen, Yan Han. Antibody-platinum (IV) prodrugs conjugates for targeted treatment of cutaneous squamous cell carcinoma[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 389-400. doi: 10.1016/j.jpha.2023.11.002
Citation: Xiangye Yin, Yingjie Zhuang, Haiqin Song, Yujian Xu, Fan Zhang, Jianxin Cui, Lei Zhao, Yingjie Yu, Qixu Zhang, Jun Ye, Youbai Chen, Yan Han. Antibody-platinum (IV) prodrugs conjugates for targeted treatment of cutaneous squamous cell carcinoma[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 389-400. doi: 10.1016/j.jpha.2023.11.002

Antibody-platinum (IV) prodrugs conjugates for targeted treatment of cutaneous squamous cell carcinoma

doi: 10.1016/j.jpha.2023.11.002
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 51803120).

  • Received Date: Aug. 05, 2023
  • Accepted Date: Nov. 01, 2023
  • Rev Recd Date: Oct. 07, 2023
  • Publish Date: Nov. 04, 2023
  • Antibody-drug conjugates (ADCs) are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells, thereby attracting considerable attention in precise oncology therapy. Cetuximab (Cet) is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma (cSCC); however, its anti-tumor activity is limited to a single use. Cisplatin (CisPt) shows good curative effects; however, its adverse effects and non-tumor-targeting ability are major drawbacks. In this study, we designed and developed a new ADC based on a new cytotoxic platinum (IV) prodrug (C8Pt(IV)) and Cet. The so-called antibody-platinum (IV) prodrugs conjugates, named Cet-C8Pt(IV), showed excellent tumor targeting in cSCC. Specifically, it accurately delivered C8Pt(IV) into tumor cells to exert the combined anti-tumor effect of Cet and CisPt. Herein, metabolomic analysis showed that Cet-C8Pt(IV) promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells, thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum (IV) prodrugs conjugates.
  • loading
  • [1]
    C.H. Chau, P.S. Steeg, W.D. Figg, Antibody-drug conjugates for cancer, Lancet 394 (2019) 793-804.
    [2]
    P. Tarantino, R. Carmagnani Pestana, C. Corti, et al., Antibody-drug conjugates:Smart chemotherapy delivery across tumor histologies, CA Cancer J. Clin. 72 (2022) 165-182.
    [3]
    A. Thomas, B.A. Teicher, R. Hassan, Antibody-drug conjugates for cancer therapy, Lancet Oncol. 17 (2016) e254-e262.
    [4]
    R.S. Schwartz, Paul Ehrlich's magic bullets, N. Engl. J. Med. 350 (2004) 1079-1080.
    [5]
    J.Z. Drago, S. Modi, S. Chandarlapaty, Unlocking the potential of antibody-drug conjugates for cancer therapy, Nat. Rev. Clin. Oncol. 18 (2021) 327-344.
    [6]
    C.M. Yamazaki, A. Yamaguchi, Y. Anami, et al., Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance, Nat. Commun. 12 (2021), 3528.
    [7]
    K. Tsuchikama, Z. An, Antibody-drug conjugates:Recent advances in conjugation and linker chemistries, Protein Cell 9 (2018) 33-46.
    [8]
    J.D. Bargh, A. Isidro-Llobet, J.S. Parker, et al., Cleavable linkers in antibody-drug conjugates, Chem. Soc. Rev. 48 (2019) 4361-4374.
    [9]
    E. Merkul, N.J. Sijbrandi, J.A. Muns, et al., First platinum(II)-based metal-organic linker technology (Lx®) for a plug-and-play development of antibody-drug conjugates (ADCs), Expert Opin. Drug Deliv. 16 (2019) 783-793.
    [10]
    A. Pryyma, S. Gunasekera, J. Lewin, et al., Rapid, high-yielding solid-phase synthesis of cathepsin-B cleavable linkers for targeted cancer therapeutics, Bioconjug. Chem. 31 (2020) 2685-2690.
    [11]
    J.T.W. Tong, P.W.R. Harris, M.A. Brimble, et al., An insight into FDA approved antibody-drug conjugates for cancer therapy, Molecules 26 (2021), 5847.
    [12]
    P.J. Kennedy, C. Oliveira, P.L. Granja, et al., Antibodies and associates:Partners in targeted drug delivery, Pharmacol. Ther. 177 (2017) 129-145.
    [13]
    T. Wu, M. Liu, H. Huang, et al., Clustered nanobody-drug conjugates for targeted cancer therapy, Chem. Commun. 56 (2020) 9344-9347.
    [14]
    L. Zhang, Y. Wang, J. Karges, et al., Tetrahedral DNA nanostructure with interferon stimulatory DNA delivers highly potent toxins and activates the cGAS-STING pathway for robust chemotherapy and immunotherapy, Adv. Mater. 35(2023), 2210267.
    [15]
    M.L. Gillison, A.M. Trotti, J. Harris, et al., Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016):A randomised, multicentre, non-inferiority trial, Lancet 393 (2019) 40-50.
    [16]
    A. Picard, F. Pedeutour, F. Peyrade, et al., Association of oncogenic mutations in patients with advanced cutaneous squamous cell carcinomas treated with cetuximab, JAMA Dermatol. 153 (2017) 291-298.
    [17]
    Q. Jin, S. Yan, H. Hu, et al., Enhanced chemodynamic therapy and chemotherapy via delivery of a dual threat ArtePt and iodo-click reaction mediated glutathione consumption, Small Meth. 5 (2021), 2101047.
    [18]
    H. Xiao, R. Qi, S. Liu, et al., Biodegradable polymer-cisplatin(IV) conjugate as a pro-drug of cisplatin(II), Biomaterials 32 (2011) 7732-7739.
    [19]
    X. Kang, Y. Wang, Z. Chen, et al., Imidazole modified Pt(iv) prodrug-loaded multi-stage pH responsive nanoparticles to overcome cisplatin resistance, Chem. Commun. 56 (2020) 11271-11274.
    [20]
    M. Ravera, E. Gabano, M.J. McGlinchey, et al., Pt(IV) antitumor prodrugs:Dogmas, paradigms, and realities, Dalton Trans. 51 (2022) 2121-2134.
    [21]
    H. Huang, Y. Dong, Y. Zhang, et al., GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer, Theranostics 9 (2019) 1047-1065.
    [22]
    X. Ling, X. Chen, I.A. Riddell, et al., Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance, Nano Lett. 18 (2018) 4618-4625.
    [23]
    L. Zhang, K. Shang, X. Li, et al., Reduction sensitive polymers delivering cationic platinum drugs as STING agonists for enhanced chemo-immunotherapy, Adv. Funct. Mater. 32 (2022), 2204589.
    [24]
    E. Wexselblatt, D. Gibson, What do we know about the reduction of Pt(IV) pro-drugs? J. Inorg. Biochem. 117 (2012) 220-229.
    [25]
    D. Gibson, Platinum(iv) anticancer prodrugs-hypotheses and facts, Dalton Trans. 45 (2016) 12983-12991.
    [26]
    Y. Yu, L. Zhang, Z. Qin, et al., Unraveling and overcoming platinum drug-resistant cancer tumors with DNA nanostructures, Adv. Funct. Mater. 33 (2023), 2208797.
    [27]
    G. Xiong, D. Huang, L. Lu, et al., Near-infrared-II light induced mild hyperthermia activate cisplatin-artemisinin nanoparticle for enhanced chemo/chemodynamic therapy and immunotherapy, Small Meth. 6 (2022), 2200379.
    [28]
    N. Heemskerk, M. Gruijs, A.R. Temming, et al., Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity, J. Clin. Invest. 131 (2021), 134680.
    [29]
    D.E. Gerber, H. Choy, Cetuximab in combination therapy:From bench to clinic, Cancer Metastasis Rev. 29 (2010) 171-180.
    [30]
    A. Stratigos, C. Garbe, C. Lebbe, et al., Diagnosis and treatment of invasive squamous cell carcinoma of the skin:European consensus-based interdisciplinary guideline, Eur. J. Cancer 51 (2015) 1989-2007.
    [31]
    S.K.T. Que, F.O. Zwald, C.D. Schmults, Cutaneous squamous cell carcinoma:Management of advanced and high-stage tumors, J. Am. Acad. Dermatol. 78 (2018) 249-261.
    [32]
    S.K.T. Que, F.O. Zwald, C.D. Schmults, Cutaneous squamous cell carcinoma:Incidence, risk factors, diagnosis, and staging, J. Am. Acad. Dermatol. 78 (2018) 237-247.
    [33]
    T. Tedeschini, B. Campara, A. Grigoletto, et al., Polyethylene glycol-based linkers as hydrophilicity reservoir for antibody-drug conjugates, J. Control. Release 337 (2021) 431-447.
    [34]
    Z. Ma, M. Kang, S. Meng, et al., Selective killing of shiga toxin-producing Escherichia coli with antibody-conjugated chitosan nanoparticles in the gastrointestinal tract, ACS Appl. Mater. Interfaces 12 (2020) 18332-18341.
    [35]
    W.-H. Chen, Q.-W. Chen, Q. Chen, et al., Biomedical polymers:Synthesis, properties, and applications, Sci. China Chem. 65 (2022) 1010-1075.
    [36]
    L. Galluzzi, I. Vitale, L. Senovilla, et al., Prognostic impact of vitamin B6 metabolism in lung cancer, Cell. Rep. 2 (2012) 257-269.
    [37]
    K. Fatima, N. Masood, Z. Ahmad Wani, et al., Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity, J. Adv. Res. 34 (2021) 93-107.
    [38]
    T.K. Nayak, C.A.S. Regino, K.J. Wong, et al., PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A''-DTPA-cetuximab, Eur. J. Nucl. Med. Mol. Imag. 37 (2010) 1368-1376.
    [39]
    A.M. Sochaj, K.W. Swiderska, J. Otlewski, Current methods for the synthesis of homogeneous antibody-drug conjugates, Biotechnol. Adv. 33 (2015) 775-784.
    [40]
    M.J. Birrer, K.N. Moore, I. Betella, et al., Antibody-drug conjugate-based therapeutics:State of the science, J. Natl. Cancer Inst. 111 (2019) 538-549.
    [41]
    Z. Dai, X. Zhang, Q. Cheng, et al., Site-specific antibody-drug conjugates with variable drug-to-antibody-ratios for AML therapy, J. Control. Release 336 (2021) 433-442.
    [42]
    C. Yu, C. Yang, X. Song, et al., Long non-coding RNA expression profile in broiler liver with cadmium-induced oxidative damage, Biol. Trace Elem. Res. 199 (2021) 3053-3061.
    [43]
    X. Huo, K.B. Dunbar, X. Zhang, et al., In Barrett's epithelial cells, weakly acidic bile salt solutions cause oxidative DNA damage with response and repair mediated by p38, Am. J. Physiol. Gastrointest. Liver Physiol. 318 (2020) G464-G478.
    [44]
    X. Feng, L. Ma, J. Lei, et al., Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomyelitis, ACS Nano 16 (2022) 2546-2557.
    [45]
    H. Xiao, R. Qi, T. Li, et al., Maximizing synergistic activity when combining RNAi and platinum-based anticancer agents, J. Am. Chem. Soc. 139 (2017) 3033-3044.
    [46]
    S. O'Grady, S.P. Finn, S. Cuffe, et al., The role of DNA repair pathways in cisplatin resistant lung cancer, Cancer Treat. Rev. 40 (2014) 1161-1170.
    [47]
    Y. Wang, Y. Jiang, D. Wei, et al., Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance, Nat. Biomed. Eng. 5 (2021) 1048-1058.
    [48]
    J. Ding, H. Xiao, X. Chen, Advanced biosafety materials for prevention and theranostics of biosafety issues, Biosaf. Health 4 (2022) 59-60.
    [49]
    Y. Zhang, Z. Li, J. Milon Essola, et al., Biosafety materials:Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system, Biosaf. Health 4 (2022) 70-78.
    [50]
    A. Beck, L. Goetsch, C. Dumontet, et al., Strategies and challenges for the next generation of antibody-drug conjugates, Nat. Rev. Drug Discov. 16 (2017) 315-337.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (355) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return