Citation: | Rangrang Fan, Linrui Cai, Hao Liu, Hongxu Chen, Caili Chen, Gang Guo, Jianguo Xu. Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 321-334. doi: 10.1016/j.jpha.2023.09.015 |
[1] |
Y. Liu, J. Ge, Y. Chen, et al., Combined single-cell and spatial transcriptomics reveal the metabolic evolvement of breast cancer during early dissemination, Adv. Sci. (Weinh.) 10 (2023), e2205395.
|
[2] |
H. Zhao, Y. Li, H. Shi, et al., Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress, J. Control. Release 352 (2022) 909-919.
|
[3] |
X. Zhang, F. Luo, S. Luo, et al., Transcriptional repression of aerobic glycolysis by OVOL2 in breast cancer, Adv. Sci. (Weinh.) 9 (2022), e2200705.
|
[4] |
X. Meng, Z. Lu, Q. Lv, et al., Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy, Acta Biomater. 145 (2022) 222-234.
|
[5] |
M. Mascaraque-Checa, M. Gallego-Rentero, J. Nicolas-Morala, et al., Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy, Mol. Metab. 60 (2022), 101496.
|
[6] |
J. Wan, S. Xu, J. Li, et al., Facile synthesis of multifunctional pharmaceutical carbon dots for targeted bioimaging and chemotherapy of tumors, Nanoscale 14 (2022) 11359-11368.
|
[7] |
D. Tailor, C.C. Going, A. Resendez, et al., Novel Aza-podophyllotoxin derivative induces oxidative phosphorylation and cell death via AMPK activation in triple-negative breast cancer, Br. J. Cancer 124 (2021) 604-615.
|
[8] |
W. Feng, W. Shi, Z. Wang, et al., Enhancing tumor therapy of Fe(III)-shikonin supramolecular nanomedicine via triple ferroptosis amplification, ACS Appl. Mater. Interfaces 14 (2022) 37540-37552.
|
[9] |
C. Zhu, Q. Ma, L. Gong, et al., Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer, Acta Biomater. 141 (2022) 429-439.
|
[10] |
G. Zhou, M. Li, Near-infrared-II plasmonic trienzyme-integrated metal-organic frameworks with high-efficiency enzyme cascades for synergistic trimodal oncotherapy, Adv. Mater. 34 (2022), e2200871.
|
[11] |
H. Wen, Y. Fei, R. Cai, et al., Tumor-activatable biomineralized nanotherapeutics for integrative glucose starvation and sensitized metformin therapy, Biomaterials 278 (2021), 121165.
|
[12] |
J. Zhang, C. Liang, Z. Wei, et al., TME-triggered MnSiO3@Met@GOx nanosystem for ATP dual-inhibited starvation/chemodynamic synergistic therapy, Biomaterials 287 (2022), 121682.
|
[13] |
J. Gao, J. Wen, D. Hu, et al., Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion, Bioact. Mater. 16 (2022) 27-46.
|
[14] |
R. Fan, D. Chuan, H. Hou, et al., Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy, Nanoscale 11 (2019) 11285-11304.
|
[15] |
M. Mu, X. Liang, D. Chuan, et al., Chitosan coated pH-responsive metal-polyphenol delivery platform for melanoma chemotherapy, Carbohydr. Polym. 264 (2021), 118000.
|
[16] |
Q. Jin, W. Zhu, J. Zhu, et al., Nanoparticle-mediated delivery of inhaled immunotherapeutics for treating lung metastasis, Adv. Mater. 33 (2021), e2007557.
|
[17] |
B. Huang, M. Chen, J. Tian, et al., Oxygen-carrying and antibacterial fluorinated nano-hydroxyapatite incorporated hydrogels for enhanced bone regeneration, Adv. Healthc. Mater. 11 (2022), e2102540.
|
[18] |
E. Rosella, N. Jia, D. Mantovani, et al., A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures, J. Mater. Sci. Technol. 63 (2021) 54-61.
|
[19] |
O.U. Akakuru, C. Xu, C. Liu, et al., Metal-free organo-theranostic nanosystem with high nitroxide stability and loading for image-guided targeted tumor therapy, ACS Nano 15 (2021) 3079-3097.
|
[20] |
B.N. Kumara, R. Shambhu, A. Prabhu, et al., Novel chitosan-graphene quantum dots composite for therapeutic delivery and tracking through enzymatic stimuli response, Carbohydr. Polym. 289 (2022), 119426.
|
[21] |
S. Li, Y. Zhang, S.H. Ho, et al., Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour-targeted nanoparticles, Nat. Biomed. Eng. 4 (2020) 732-742.
|
[22] |
Y. Liang, Z. Li, Y. Huang, et al., Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing, ACS Nano 15 (2021) 7078-7093.
|
[23] |
N.K. Verma, A.K. Kar, A. Singh, et al., Control release of adenosine potentiate osteogenic differentiation within a bone integrative EGCG-g-NOCC/collagen composite scaffold toward guided bone regeneration in a critical-sized calvarial defect, Biomacromolecules 22 (2021) 3069-3083.
|
[24] |
J. Zhao, A. Blayney, X. Liu, et al., EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction, Nat. Commun. 12 (2021), 986.
|
[25] |
Z. Zhou, K. Li, L. Shi, et al., Self-assembled integrative nutrient carrier platform containing green tea catechin for short bowel syndrome treatment, Adv. Healthc. Mater. 12 (2023), e2201933.
|
[26] |
B. Zhang, R. Yao, C. Hu, et al., Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release, Biomaterials 269 (2021), 120418.
|
[27] |
C. Cieuta-Walti, A. Cuenca-Royo, K. Langohr, et al., Safety and preliminary efficacy on cognitive performance and adaptive functionality of epigallocatechin gallate (EGCG) in children with Down syndrome. A randomized phase Ib clinical trial (PERSEUS study), Genet. Med. 24 (2022) 2004-2013.
|
[28] |
L. Bu, C. Bi, Z. Shi, et al., Significant enhancement on ferrous/persulfate oxidation with epigallocatechin-3-gallate:Simultaneous chelating and reducing, Chem. Eng. J. 321 (2017) 642-650.
|
[29] |
H. Shi, R. Wang, H. Cao, et al., A metal-polyphenol-based oxygen economizer and Fenton reaction amplifier for self-enhanced synergistic photothermal/chemodynamic/chemotherapy, Adv. Healthc. Mater. 12 (2023), e2300054.
|
[30] |
F. Lei, X. Wang, C. Liang, et al., Preparation and functional evaluation of chitosan-EGCG conjugates, J. Appl. Polym. Sci. 131 (2014), 39732.
|
[31] |
J. Moellmann, S. Grimme, DFT-D3 study of some molecular crystals, J. Phys. Chem. C 118 (2014) 7615-7621.
|
[32] |
R. Fan, C. Chen, J. Hu, et al., Multifunctional gold nanorods in low-temperature photothermal interactions for combined tumor starvation and RNA interference therapy, Acta Biomater. 159 (2023) 324-337.
|
[33] |
L. Zhang, S. Wan, C. Li, et al., An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(III)/Fe(II) conversion, Nano Lett. 18 (2018) 7609-7618.
|
[34] |
M. Mu, H. Chen, R. Fan, et al., A tumor-specific ferric-coordinated epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy, J. Adv. Res. 34 (2021) 29-41.
|
[35] |
M. Wu, Q. Wang, S. Chen, et al., Metabolic intervention liposome for targeting glutamine-addiction of breast cancer, J. Control. Release 350 (2022) 1-10.
|
[36] |
Z. Mo, X. Pan, X. Pan, et al., MOF(Fe)-derived composites as a unique nanoplatform for chemo-photodynamic tumor therapy, J. Mater. Chem. B 10 (2022) 8760-8770.
|
[37] |
Q. Zheng, Y. Fang, L. Zeng, et al., Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization, J. Mater. Chem. B 7 (2019) 6759-6769.
|
[38] |
R. Fan, C. Chen, H. Hou, et al., Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy, Adv. Funct. Mater. 31 (2021), 2009733.
|
[39] |
M. Miao, L. Mu, S. Cao, et al., Dual-functional CDs@ZIF-8/chitosan luminescent film sensors for simultaneous detection and adsorption of tetracycline, Carbohydr. Polym. 291 (2022), 119587.
|
[40] |
W. Ni, J. Wu, Y. Feng, et al., Metformin reprograms tumor microenvironment and boosts chemoimmunotherapy in colorectal cancer, Biomater. Sci. 10 (2022) 5596-5607.
|
[41] |
W. Zhou, X. Tang, J. Huang, et al., Dual-imaging magnetic nanocatalysis based on Fenton-like reaction for tumor therapy, J. Mater. Chem. B 10 (2022) 3462-3473.
|
[42] |
Y. Zhang, S. Jiang, J. Lin, et al., Antineoplastic enzyme as drug carrier with activatable catalytic activity for efficient combined therapy, Angew. Chem. Int. Ed. 61 (2022), e202208583.
|
[43] |
N. Hashemifard, A. Mohsenifar, B. Ranjbar, et al., Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate, Anal. Chim. Acta 675 (2010) 181-184.
|
[44] |
X. Li, Q. Zhou, A.A.W M.M. Japir, et al., Protein-delivering nano complexes with Fenton reaction-triggered cargo release to boost cancer immunotherapy, ACS Nano 16 (2022) 14982-14999.
|
[45] |
T. Lu, Q. Chen, Independent gradient model based on Hirshfeld partition:A new method for visual study of interactions in chemical systems, J. Comput. Chem. 43 (2022) 539-555.
|
[46] |
T. Lu, F. Chen, Multiwfn:A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592.
|
[47] |
W. Humphrey, A. Dalke, K. Schulten, VMD:Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38.
|
[48] |
L. Tan, J. Peng, Q. Zhao, et al., A novel MPEG-PDLLA-PLL copolymer for docetaxel delivery in breast cancer therapy, Theranostics 7 (2017) 2652-2672.
|
[49] |
E. Kirbas Cilingir, E.S. Seven, Y. Zhou, et al., Metformin derived carbon dots:Highly biocompatible fluorescent nanomaterials as mitochondrial targeting and blood-brain barrier penetrating biomarkers, J. Colloid Interface Sci. 592 (2021) 485-497.
|
[50] |
Z. Fan, T. Ren, Y. Wang, et al., Aβ-responsive metformin-based supramolecular synergistic nanodrugs for Alzheimer's disease via enhancing microglial Aβ clearance, Biomaterials 283 (2022), 121452.
|
[51] |
J. Ren, L. Zhang, J. Zhang, et al., Light-activated oxygen self-supplied starving therapy in near-infrared (NIR) window and adjuvant hyperthermia-induced tumor ablation with an augmented sensitivity, Biomaterials 234 (2020), 119771.
|
[52] |
X. Meng, L. Chen, R. Lv, et al., A metal-phenolic network-based multifunctional nanocomposite with pH-responsive ROS generation and drug release for synergistic chemodynamic/photothermal/chemo-therapy, J. Mater. Chem. B 8 (2020) 2177-2188.
|
[53] |
M. Qian, Z. Cheng, G. Luo, et al., Molybdenum diphosphide nanorods with laser-potentiated peroxidase catalytic/mild-photothermal therapy of oral cancer, Adv. Sci. (Weinh.) 9 (2022), 2101527.
|
[54] |
Z. Liu, S. Liu, B. Liu, et al., Fe(III)-naphthazarin metal-phenolic networks for glutathione-depleting enhanced ferroptosis-apoptosis combined cancer therapy, Small 19 (2023), e2207825.
|
[55] |
D. Chuan, H. Hou, Y. Wang, et al., Multifunctional metal-polyphenol nanocomposite for melanoma targeted photo/chemodynamic synergistic therapy, J. Mater. Sci. Technol. 152 (2023) 159-168.
|
[56] |
R. Jaquish, A.K. Reilly, B.P. Lawson, et al., Immobilized glucose oxidase on magnetic silica and alumina:Beyond magnetic separation, Int. J. Biol. Macromol. 120 (2018) 896-905.
|
[57] |
Y. Zeng, H. Zhou, J. Ding, et al., Cell membrane inspired nano-shell enabling long-acting glucose oxidase for melanoma starvation therapy via microneedles-based percutaneous delivery, Theranostics 11 (2021) 8270-8282.
|
[58] |
N. Bertrand, J. Wu, X. Xu, et al., Cancer nanotechnology:The impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv. Rev. 66 (2014) 2-25.
|
[59] |
X. Ding, M. Liu, Q. Cheng, et al., Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy, Biomaterials 281 (2022), 121369.
|
[60] |
L. Dai, M. Yao, Z. Fu, et al., Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy, Nat. Commun. 13 (2022), 2688.
|
[61] |
X. Xu, Y. Ran, C. Huang, et al., Glucose and H2O2 dual-responsive nano complex grafted with insulin prodrug for blood glucose regulation, Biomacromolecules 23 (2022) 1765-1776.
|
[62] |
M. Mascaraque, P. Delgado-Wicke, C. Nuevo-Tapioles, et al., Metformin as an adjuvant to photodynamic therapy in resistant basal cell carcinoma cells, Cancers 12 (2020), 668.
|
[63] |
Y. Jiang, Y. Tan, K. Xiao, et al., pH-regulating nanoplatform for the "double channel chase" of tumor cells by the synergistic cascade between chlorine treatment and methionine-depletion starvation therapy, ACS Appl. Mater. Interfaces 13 (2021) 54690-54705.
|
[64] |
Q. Mu, G. Lin, Z.R. Stephen, et al., In vivo serum enabled production of ultrafine nanotherapeutics for cancer treatment, Mater. Today (Kidlington) 38 (2020) 10-23.
|