Citation: | Ding-Jun Hao, Yue Qin, Shi-Jie Zhou, Bu-Huai Dong, Jun-Song Yang, Peng Zou, Li-Ping Wang, Yuan-Ting Zhao. Hapln1 promotes dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 335-347. doi: 10.1016/j.jpha.2023.09.013 |
[1] |
Y. Zhu, V.D. Do, A.M. Richards, et al., What we know about cardiomyocyte dedifferentiation, J. Mol. Cell. Cardiol. 152 (2021) 80-91.[PubMed].
|
[2] |
W. Zhu, J. Sun, S.P. Bishop, et al., Turning back the clock:A concise viewpoint of cardiomyocyte cell cycle activation for myocardial regeneration and repair, J. Mol. Cell. Cardiol. 170 (2022) 15-21.[PubMed].
|
[3] |
A.S.T. Smith, J. Macadangdang, W. Leung, et al., Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening, Biotechnol. Adv. 35 (2017) 77-94.[PubMed].
|
[4] |
M. Kleinsorge, L. Cyganek, Subtype-directed differentiation of human iPSCs into atrial and ventricular cardiomyocytes, STAR Protoc. 1 (2020), 100026.[PubMed].
|
[5] |
Y. Guo, W.T. Pu, Cardiomyocyte maturation:New phase in development, Circ. Res. 126 (2020) 1086-1106.[PubMed].
|
[6] |
M. Zhao, S. Ye, J. Su, et al., Cardiomyocyte proliferation and maturation:Two sides of the same coin for heart regeneration, Front. Cell Dev. Biol. 8 (2020), 594226.[LinkOut].
|
[7] |
E. Bassat, Y.E. Mutlak, A. Genzelinakh, et al., The extracellular matrix protein agrin promotes heart regeneration in mice, Nature 547 (2017) 179-184.[PubMed].
|
[8] |
D.A. Swann, S. Powell, J. Broadhurst, et al., The formation of a stable complex between dissociated proteoglycan and hyaluronic acid in the absence of a link protein, Biochem. J. 157 (1976) 503-506.[LinkOut].
|
[9] |
J. Govindan, M.K. Iovine, Hapln1a is required for connexin43-dependent growth and patterning in the regenerating fin skeleton, PLoS One 9 (2014), e88574.[PubMed].
|
[10] |
E.E. Wirrig, B.S. Snarr, M.R. Chintalapudi, et al., Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development, Dev. Biol. 310 (2007) 291-303.[LinkOut].
|
[11] |
C.J. Derrick, J. Sanchez-Posada, F. Hussein, et al., Asymmetric Hapln1a drives regionalized cardiac ECM expansion and promotes heart morphogenesis in zebrafish development, Cardiovasc. Res. 118 (2022) 226-240.[PubMed].
|
[12] |
J.M. Gonzalez-Rosa, V. Martin, M. Peralta, et al., Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish, Development 138 (2011) 1663-1674.[LinkOut].
|
[13] |
J. Sun, E.A. Peterson, A.Z. Wang, et al., hapln1 defines an epicardial cell subpopulation required for cardiomyocyte expansion during heart morphogenesis and regeneration, Circulation 146 (2022) 48-63.[PubMed].
|
[14] |
X. Lian, J. Zhang, S.M. Azarin, et al., Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions, Nat. Protoc. 8 (2013) 162-175.[PubMed].
|
[15] |
F. Liu, Y. Fang, X. Hou, et al., Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways, Stem Cell Res. Ther. 11 (2020), 284.[PubMed].
|
[16] |
P. Ernst, P.A. Bidwell, M. Dora, et al., Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes:Implications for disease modeling and maturation, Front. Cell Dev. Biol. 10 (2023), 986107.[LinkOut].
|
[17] |
E.A. Schroder, M. Ono, S.R. Johnson, et al., The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology, J. Physiol. 600 (2022) 2037-2048.[LinkOut].
|
[18] |
M.C. Peters, R.G.C. Maas, I. van Adrichem, et al., Metabolic maturation increases susceptibility to hypoxia-induced damage in human iPSC-derived cardiomyocytes, Stem Cells Transl Med 11 (2022) 1040-1051.[LinkOut].
|
[19] |
J. Hirose, H. Kawashima, O. Yoshie, et al., Versican interacts with chemokines and modulates cellular responses, J. Biol. Chem. 276 (2001) 5228-5234.[LinkOut].
|
[20] |
H. Kawashima, M. Hirose, J. Hirose, et al., Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44, J. Biol. Chem. 275 (2000) 35448-35456.[LinkOut].
|
[21] |
N.G. Frangogiannis, Transforming growth factor-β in myocardial disease, Nat. Rev. Cardiol. 19 (2022) 435-455.[LinkOut].
|
[22] |
S. Li, J. Wu, TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment, Stem Cell Res. Ther. 11 (2020) 1-10.[LinkOut].
|
[23] |
Y. Peng, W. Wang, Y. Fang, et al., Inhibition of TGF-β/Smad3 signaling disrupts cardiomyocyte cell cycle progression and epithelial-mesenchymal transition-like response during ventricle regeneration, Front. Cell Dev. Biol. 9 (2021), 632372.[LinkOut].
|
[24] |
M. Gu, Y. Miao, X. Zhou, et al., Abstract 238:Single-cell transcriptomic analysis and patient-specific IPSCs reveal dysregulated cell cycle in coronary endothelial cell in hypoplastic left heart syndrome, Circ. Res. 127 (2020):▪-▪.[LinkOut].
|
[25] |
N.R. Tucker, M. Chaffin, S.J. Fleming, et al., Transcriptional and cellular diversity of the human heart, Circulation 142 (2020) 466-482.[PubMed].
|
[26] |
A. Simoni-Nieves, M. Gerardo-Ramirez, G. Pedraza-Vazquez, et al., GDF11 implications in cancer biology and metabolism. facts and controversies, Front. Oncol. 9 (2019), 1039.[LinkOut].
|
[27] |
A. Jamaiyar, W. Wan, D.M. Janota, et al., The versatility and paradox of GDF 11, Pharmacol. Ther. 175 (2017) 28-34.[LinkOut].
|
[28] |
X. Wang, Y. Lu, Y. Xie, et al., Emerging roles of proteoglycans in cardiac remodeling, Int. J. Cardiol. 278 (2019) 192-198.[LinkOut].
|
[29] |
L.A. Samsa, B. Yang, J. Liu, Embryonic cardiac chamber maturation:Trabeculation, conduction, and cardiomyocyte proliferation, Am. J. Med. Genet. C Semin. Med. Genet. 163C (2013) 157-168.[PubMed].
|
[30] |
C.K. Chan, M.W. Rolle, S. Potter-Perigo, et al., Differentiation of cardiomyocytes from human embryonic stem cells is accompanied by changes in the extracellular matrix production of versican and hyaluronan, J. Cell. Biochem. 111 (2010) 585-596.[PubMed].
|
[31] |
Y. Wu, D.P.L. Pierre, J. Wu, et al., The interaction of versican with its binding partners, Cell Res. 15 (2005) 483-494.[LinkOut].
|
[32] |
F. Chablais, A. Jazwinska, The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling, Development 139 (2012) 1921-1930.[LinkOut].
|
[33] |
H. Zhu, L. Zhang, M. Zhai, et al., GDF11 alleviates pathological myocardial remodeling in diabetic cardiomyopathy through SIRT1-dependent regulation of oxidative stress and apoptosis, Front. Cell Dev. Biol. 9 (2021), 686848.[LinkOut].
|
[34] |
Z. Li, H. Xu, X. Liu, et al., GDF11 inhibits cardiomyocyte pyroptosis and exerts cardioprotection in acute myocardial infarction mice by upregulation of transcription factor HOXA3, Cell Death Dis. 11 (2020), 917.[LinkOut].
|
[35] |
L. Chen, G. Luo, Y. Liu, et al., Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity, Cell Death Dis. 12 (2021), 665.[LinkOut].
|