Volume 14 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Xue Bai, Rongzhan Fu, Yannan Liu, Jianjun Deng, Qiang Fei, Zhiguang Duan, Chenhui Zhu, Daidi Fan. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 259-275. doi: 10.1016/j.jpha.2023.09.010
Citation: Xue Bai, Rongzhan Fu, Yannan Liu, Jianjun Deng, Qiang Fei, Zhiguang Duan, Chenhui Zhu, Daidi Fan. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 259-275. doi: 10.1016/j.jpha.2023.09.010

Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis

doi: 10.1016/j.jpha.2023.09.010
Funds:

This work was supported by the National Key Research and Development Program, China (Grant Nos.: 2021YFC2101500 and 2021YFC2103900), the National Natural Science Foundation of China (Grant Nos.: 22278335 and 21978236), and the Natural Science Basic Research Program of Shaanxi, China (Grant No.: 2023-JC-JQ-17).

  • Received Date: May 16, 2023
  • Accepted Date: Sep. 18, 2023
  • Rev Recd Date: Aug. 25, 2023
  • Publish Date: Feb. 29, 2024
  • The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
  • loading
  • [1]
    R.L. Siegel, K.D. Miller, N.S. Wagle, et al., Cancer statistics, 2023, CA Cancer J. Clin. 73 (2023) 17-48.
    [2]
    C. Pan, H. Liu, E. Robins, et al., Next-generation immuno-oncology agents: Current momentum shifts in cancer immunotherapy, J. Hematol. Oncol. 13 (2020), 29.
    [3]
    J. Weng, S. Li, Z. Zhu, et al., Exploring immunotherapy in colorectal cancer, J. Hematol. Oncol. 15 (2022), 95.
    [4]
    M.C. Kordahi, I.B. Stanaway, M. Avril, et al., Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer, Cell Host Microbe 29 (2021) 1589-1598.e6.
    [5]
    S.L. Clay, D. Fonseca-Pereira, W.S. Garrett, Colorectal cancer: The facts in the case of the microbiota, J. Clin. Invest. 132 (2022), e155101.
    [6]
    R. Gao, C. Wu, Y. Zhu, et al., Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites, Gastroenterology 163 (2022) 1024-1037.e9.
    [7]
    T.M. Karpinski, M. Ozarowski, M. Stasiewicz, Carcinogenic microbiota and its role in colorectal cancer development, Semin. Cancer Biol. 86 (2022) 420-430.
    [8]
    E. Cremonesi, V. Governa, J.F.G. Garzon, et al., Gut microbiota modulate T cell trafficking into human colorectal cancer, Gut 67 (2018) 1984-1994.
    [9]
    J. Goc, M. Lv, N.J. Bessman, et al., Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer, Cell 184 (2021) 5015-5030.e16.
    [10]
    Y. Cao, Z. Wang, Y. Yan, et al., Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p, Gastroenterology 161 (2021) 1552-1566.e12.
    [11]
    N. Dalal, R. Jalandra, N. Bayal, et al., Gut microbiota-derived metabolites in CRC progression and causation, J. Cancer Res. Clin. Oncol. 147 (2021) 3141-3155.
    [12]
    R. Jalandra, N. Dalal, A.K. Yadav, et al., Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer, Appl. Microbiol. Biotechnol. 105 (2021) 7651-7660.
    [13]
    S.R. Sinha, Y. Haileselassie, L.P. Nguyen, et al., Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation, Cell Host Microbe 27 (2020) 659-670.e5.
    [14]
    T. Pearson, J.G. Caporaso, M. Yellowhair, et al., Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development, Cancer Med. 8 (2019) 617-628.
    [15]
    B. Zhang, Y. Xu, H. Lv, et al., Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota, Food Chem. 357 (2021), 129532.
    [16]
    Z. Chen, Z. Zhang, J. Liu, et al., Gut microbiota: Therapeutic targets of ginseng against multiple disorders and ginsenoside transformation, Front. Cell. Infect. Microbiol. 12 (2022), 853981.
    [17]
    D. Chrysostomou, L.A. Roberts, J.R. Marchesi, et al., Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy, Gastroenterology 164 (2023) 198-213.
    [18]
    H. Chen, C. Ye, C. Wu, et al., Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine, Int. J. Biol. Sci. 19 (2023) 2097-2113.
    [19]
    S. Dong, M. Zhu, K. Wang, et al., Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism, Pharmacol. Res. 171 (2021), 105767.
    [20]
    M. Messaoudene, R. Pidgeon, C. Richard, et al., A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota, Cancer Discov. 12 (2022) 1070-1087.
    [21]
    P. Chopra, H. Chhillar, Y.J. Kim, et al., Phytochemistry of ginsenosides: Recent advancements and emerging roles, Crit. Rev. Food Sci. Nutr. 63 (2023) 613-640.
    [22]
    M. Hou, R. Wang, S. Zhao, et al., Ginsenosides in Panax genus and their biosynthesis, Acta Pharm. Sin. B 11 (2021) 1813-1834.
    [23]
    L. Qu, Y. Liu, J. Deng, et al., Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma, J. Pharm. Anal. 13 (2023) 463-482.
    [24]
    X. Bai, R. Fu, Z. Duan, et al., Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice, Food Res. Int. 146 (2021), 110465.
    [25]
    H. Chen, H. Yang, J. Deng, et al., Ginsenoside Rk3 ameliorates obesity-induced colitis by regulating of intestinal flora and the TLR4/NF-κB signaling pathway in C57BL/6 mice, J. Agric. Food Chem. 69 (2021) 3082-3093.
    [26]
    A.P. Rogers, S.J. Mileto, D. Lyras, Impact of enteric bacterial infections at and beyond the epithelial barrier, Nat. Rev. Microbiol. 21 (2023) 260-274.
    [27]
    M.A. Odenwald, J.R. Turner, The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 9-21.
    [28]
    P. Goncalves, J.P. Di Santo, An intestinal inflammasome - the ILC3-cytokine tango, Trends Mol. Med. 22 (2016) 269-271.
    [29]
    E. Chun, S. Lavoie, D. Fonseca-Pereira, et al., Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity, Immunity 51 (2019) 871-884.e6.
    [30]
    M. Saeed, A. Shoaib, R. Kandimalla, et al., Microbe-based therapies for colorectal cancer: Advantages and limitations, Semin. Cancer Biol. 86 (2022) 652-665.
    [31]
    L. Fan, C. Xu, Q. Ge, et al., A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs, Cancer Immunol. Res. 9 (2021) 1111-1124.
    [32]
    Y. Jiang, Y. Xu, C. Zheng, et al., Acetyltransferase from Akkermansia muciniphila blunts colorectal tumourigenesis by reprogramming tumour microenvironment, Gut 72 (2023) 1308-1318.
    [33]
    R. Daillere, M. Vetizou, N. Waldschmitt, et al., Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects, Immunity 45 (2016) 931-943.
    [34]
    X. Liu, X. Tong, Y. Zou, et al., Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome, Nat. Genet. 54 (2022) 52-61.
    [35]
    A.R. Moschen, R.R. Gerner, J. Wang, et al., Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations, Cell Host Microbe 19 (2016) 455-469.
    [36]
    J. Yang, H. Wei, Y. Zhou, et al., High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites, Gastroenterology 162 (2022) 135-149.e2.
    [37]
    K.A. Krautkramer, J. Fan, F. Backhed, Gut microbial metabolites as multi-kingdom intermediates, Nat. Rev. Microbiol. 19 (2021) 77-94.
    [38]
    M.B. Ishak Gabra, Y. Yang, H. Li, et al., Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth, Nat. Commun. 11 (2020), 3326.
    [39]
    J. Cai, L. Sun, F.J. Gonzalez, Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis, Cell Host Microbe 30 (2022) 289-300.
    [40]
    J. Xu, S. Xie, S. Chi, et al., Protective effects of taurocholic acid on excessive hepatic lipid accumulation via regulation of bile acid metabolism in grouper, Food Funct. 13 (2022) 3050-3062.
    [41]
    H.L.P. Tytgat, F.L. Nobrega, J. van der Oost, et al., Bowel biofilms: Tipping points between a healthy and compromised gut? Trends Microbiol. 27 (2019) 17-25.
    [42]
    M. Candelli, L. Franza, G. Pignataro, et al., Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases, Int. J. Mol. Sci. 22 (2021), 6242.
    [43]
    A.E. Vilgelm, A. Richmond, Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy, Front. Immunol. 10 (2019), 333.
    [44]
    M. Bruchard, M. Geindreau, A. Perrichet, et al., Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses, Nat. Immunol. 23 (2022) 262-274.
    [45]
    Innate lymphoid cells influence gut microbiota and colorectal cancer, Cancer Discov. 11 (2021), 2367.
    [46]
    T. Sano, W. Huang, J.A. Hall, et al., An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses, Cell 163 (2015) 381-393.
    [47]
    L. Shen, Y. Ye, H. Sun, et al., ILC3 plasticity in microbiome-mediated tumor progression and immunotherapy, Cancer Cell 39 (2021) 1308-1310.
    [48]
    N. Serafini, A. Jarade, L. Surace, et al., Trained ILC3 responses promote intestinal defense, Science 375 (2022) 859-863.
    [49]
    X. Zheng, T. Chen, R. Jiang, et al., Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism, Cell Metab. 33 (2021) 791-803.e7.
    [50]
    J.G. Castellanos, R.S. Longman, Innate lymphoid cells link gut microbes with mucosal T cell immunity, Gut Microbes 11 (2020) 231-236.
    [51]
    M.R. Hepworth, L.A. Monticelli, T.C. Fung, et al., Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature 498 (2013) 113-117.
    [52]
    M.R. Hepworth, T.C. Fung, S.H. Masur, et al., Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells, Science 348 (2015) 1031-1035.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (200) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return