Citation: | Xue Bai, Rongzhan Fu, Yannan Liu, Jianjun Deng, Qiang Fei, Zhiguang Duan, Chenhui Zhu, Daidi Fan. Ginsenoside Rk3 modulates gut microbiota and regulates immune response of group 3 innate lymphoid cells to against colorectal tumorigenesis[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 259-275. doi: 10.1016/j.jpha.2023.09.010 |
[1] |
R.L. Siegel, K.D. Miller, N.S. Wagle, et al., Cancer statistics, 2023, CA Cancer J. Clin. 73 (2023) 17-48.
|
[2] |
C. Pan, H. Liu, E. Robins, et al., Next-generation immuno-oncology agents: Current momentum shifts in cancer immunotherapy, J. Hematol. Oncol. 13 (2020), 29.
|
[3] |
J. Weng, S. Li, Z. Zhu, et al., Exploring immunotherapy in colorectal cancer, J. Hematol. Oncol. 15 (2022), 95.
|
[4] |
M.C. Kordahi, I.B. Stanaway, M. Avril, et al., Genomic and functional characterization of a mucosal symbiont involved in early-stage colorectal cancer, Cell Host Microbe 29 (2021) 1589-1598.e6.
|
[5] |
S.L. Clay, D. Fonseca-Pereira, W.S. Garrett, Colorectal cancer: The facts in the case of the microbiota, J. Clin. Invest. 132 (2022), e155101.
|
[6] |
R. Gao, C. Wu, Y. Zhu, et al., Integrated analysis of colorectal cancer reveals cross-cohort gut microbial signatures and associated serum metabolites, Gastroenterology 163 (2022) 1024-1037.e9.
|
[7] |
T.M. Karpinski, M. Ozarowski, M. Stasiewicz, Carcinogenic microbiota and its role in colorectal cancer development, Semin. Cancer Biol. 86 (2022) 420-430.
|
[8] |
E. Cremonesi, V. Governa, J.F.G. Garzon, et al., Gut microbiota modulate T cell trafficking into human colorectal cancer, Gut 67 (2018) 1984-1994.
|
[9] |
J. Goc, M. Lv, N.J. Bessman, et al., Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer, Cell 184 (2021) 5015-5030.e16.
|
[10] |
Y. Cao, Z. Wang, Y. Yan, et al., Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p, Gastroenterology 161 (2021) 1552-1566.e12.
|
[11] |
N. Dalal, R. Jalandra, N. Bayal, et al., Gut microbiota-derived metabolites in CRC progression and causation, J. Cancer Res. Clin. Oncol. 147 (2021) 3141-3155.
|
[12] |
R. Jalandra, N. Dalal, A.K. Yadav, et al., Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer, Appl. Microbiol. Biotechnol. 105 (2021) 7651-7660.
|
[13] |
S.R. Sinha, Y. Haileselassie, L.P. Nguyen, et al., Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation, Cell Host Microbe 27 (2020) 659-670.e5.
|
[14] |
T. Pearson, J.G. Caporaso, M. Yellowhair, et al., Effects of ursodeoxycholic acid on the gut microbiome and colorectal adenoma development, Cancer Med. 8 (2019) 617-628.
|
[15] |
B. Zhang, Y. Xu, H. Lv, et al., Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota, Food Chem. 357 (2021), 129532.
|
[16] |
Z. Chen, Z. Zhang, J. Liu, et al., Gut microbiota: Therapeutic targets of ginseng against multiple disorders and ginsenoside transformation, Front. Cell. Infect. Microbiol. 12 (2022), 853981.
|
[17] |
D. Chrysostomou, L.A. Roberts, J.R. Marchesi, et al., Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy, Gastroenterology 164 (2023) 198-213.
|
[18] |
H. Chen, C. Ye, C. Wu, et al., Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine, Int. J. Biol. Sci. 19 (2023) 2097-2113.
|
[19] |
S. Dong, M. Zhu, K. Wang, et al., Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism, Pharmacol. Res. 171 (2021), 105767.
|
[20] |
M. Messaoudene, R. Pidgeon, C. Richard, et al., A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota, Cancer Discov. 12 (2022) 1070-1087.
|
[21] |
P. Chopra, H. Chhillar, Y.J. Kim, et al., Phytochemistry of ginsenosides: Recent advancements and emerging roles, Crit. Rev. Food Sci. Nutr. 63 (2023) 613-640.
|
[22] |
M. Hou, R. Wang, S. Zhao, et al., Ginsenosides in Panax genus and their biosynthesis, Acta Pharm. Sin. B 11 (2021) 1813-1834.
|
[23] |
L. Qu, Y. Liu, J. Deng, et al., Ginsenoside Rk3 is a novel PI3K/AKT-targeting therapeutics agent that regulates autophagy and apoptosis in hepatocellular carcinoma, J. Pharm. Anal. 13 (2023) 463-482.
|
[24] |
X. Bai, R. Fu, Z. Duan, et al., Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice, Food Res. Int. 146 (2021), 110465.
|
[25] |
H. Chen, H. Yang, J. Deng, et al., Ginsenoside Rk3 ameliorates obesity-induced colitis by regulating of intestinal flora and the TLR4/NF-κB signaling pathway in C57BL/6 mice, J. Agric. Food Chem. 69 (2021) 3082-3093.
|
[26] |
A.P. Rogers, S.J. Mileto, D. Lyras, Impact of enteric bacterial infections at and beyond the epithelial barrier, Nat. Rev. Microbiol. 21 (2023) 260-274.
|
[27] |
M.A. Odenwald, J.R. Turner, The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 9-21.
|
[28] |
P. Goncalves, J.P. Di Santo, An intestinal inflammasome - the ILC3-cytokine tango, Trends Mol. Med. 22 (2016) 269-271.
|
[29] |
E. Chun, S. Lavoie, D. Fonseca-Pereira, et al., Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity, Immunity 51 (2019) 871-884.e6.
|
[30] |
M. Saeed, A. Shoaib, R. Kandimalla, et al., Microbe-based therapies for colorectal cancer: Advantages and limitations, Semin. Cancer Biol. 86 (2022) 652-665.
|
[31] |
L. Fan, C. Xu, Q. Ge, et al., A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs, Cancer Immunol. Res. 9 (2021) 1111-1124.
|
[32] |
Y. Jiang, Y. Xu, C. Zheng, et al., Acetyltransferase from Akkermansia muciniphila blunts colorectal tumourigenesis by reprogramming tumour microenvironment, Gut 72 (2023) 1308-1318.
|
[33] |
R. Daillere, M. Vetizou, N. Waldschmitt, et al., Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects, Immunity 45 (2016) 931-943.
|
[34] |
X. Liu, X. Tong, Y. Zou, et al., Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome, Nat. Genet. 54 (2022) 52-61.
|
[35] |
A.R. Moschen, R.R. Gerner, J. Wang, et al., Lipocalin 2 protects from inflammation and tumorigenesis associated with gut microbiota alterations, Cell Host Microbe 19 (2016) 455-469.
|
[36] |
J. Yang, H. Wei, Y. Zhou, et al., High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites, Gastroenterology 162 (2022) 135-149.e2.
|
[37] |
K.A. Krautkramer, J. Fan, F. Backhed, Gut microbial metabolites as multi-kingdom intermediates, Nat. Rev. Microbiol. 19 (2021) 77-94.
|
[38] |
M.B. Ishak Gabra, Y. Yang, H. Li, et al., Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth, Nat. Commun. 11 (2020), 3326.
|
[39] |
J. Cai, L. Sun, F.J. Gonzalez, Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis, Cell Host Microbe 30 (2022) 289-300.
|
[40] |
J. Xu, S. Xie, S. Chi, et al., Protective effects of taurocholic acid on excessive hepatic lipid accumulation via regulation of bile acid metabolism in grouper, Food Funct. 13 (2022) 3050-3062.
|
[41] |
H.L.P. Tytgat, F.L. Nobrega, J. van der Oost, et al., Bowel biofilms: Tipping points between a healthy and compromised gut? Trends Microbiol. 27 (2019) 17-25.
|
[42] |
M. Candelli, L. Franza, G. Pignataro, et al., Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases, Int. J. Mol. Sci. 22 (2021), 6242.
|
[43] |
A.E. Vilgelm, A. Richmond, Chemokines modulate immune surveillance in tumorigenesis, metastasis, and response to immunotherapy, Front. Immunol. 10 (2019), 333.
|
[44] |
M. Bruchard, M. Geindreau, A. Perrichet, et al., Recruitment and activation of type 3 innate lymphoid cells promote antitumor immune responses, Nat. Immunol. 23 (2022) 262-274.
|
[45] |
Innate lymphoid cells influence gut microbiota and colorectal cancer, Cancer Discov. 11 (2021), 2367.
|
[46] |
T. Sano, W. Huang, J.A. Hall, et al., An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses, Cell 163 (2015) 381-393.
|
[47] |
L. Shen, Y. Ye, H. Sun, et al., ILC3 plasticity in microbiome-mediated tumor progression and immunotherapy, Cancer Cell 39 (2021) 1308-1310.
|
[48] |
N. Serafini, A. Jarade, L. Surace, et al., Trained ILC3 responses promote intestinal defense, Science 375 (2022) 859-863.
|
[49] |
X. Zheng, T. Chen, R. Jiang, et al., Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism, Cell Metab. 33 (2021) 791-803.e7.
|
[50] |
J.G. Castellanos, R.S. Longman, Innate lymphoid cells link gut microbes with mucosal T cell immunity, Gut Microbes 11 (2020) 231-236.
|
[51] |
M.R. Hepworth, L.A. Monticelli, T.C. Fung, et al., Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature 498 (2013) 113-117.
|
[52] |
M.R. Hepworth, T.C. Fung, S.H. Masur, et al., Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells, Science 348 (2015) 1031-1035.
|