Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Nguyen Quang Thu, Nguyen Tran Nam Tien, Nguyen Thi Hai Yen, Thuc-Huy Duong, Nguyen Phuoc Long, Huy Truong Nguyen. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 16-38. doi: 10.1016/j.jpha.2023.09.009
Citation: Nguyen Quang Thu, Nguyen Tran Nam Tien, Nguyen Thi Hai Yen, Thuc-Huy Duong, Nguyen Phuoc Long, Huy Truong Nguyen. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 16-38. doi: 10.1016/j.jpha.2023.09.009

Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management

doi: 10.1016/j.jpha.2023.09.009
Funds:

This study was sponsored by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (Grant No.: 2018R1A5A2021242).

  • Received Date: May 08, 2023
  • Accepted Date: Sep. 18, 2023
  • Rev Recd Date: Aug. 25, 2023
  • Publish Date: Sep. 22, 2023
  • The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
  • loading
  • [1]
    World Health Organization, Global Tuberculosis Report 2022. Editor, Serial Global Tuberculosis Report 2022, Geneva, Switzerland, 2022.
    [2]
    B. Barreto-Duarte, M. Araujo-Pereira, J.P. Miguez-Pinto, et al., Grand challenges in major tropical diseases, Front. Trop. Dis. 3 (2022), 1037913.
    [3]
    J. Nalunjogi, S. Mucching-Toscano, J.P. Sibomana, et al., Impact of COVID-19 on diagnosis of tuberculosis, multidrug-resistant tuberculosis, and on mortality in 11 countries in Europe, Northern America, and Australia. A global tuberculosis network study, Int. J. Infect. Dis. 130 (2023) S25-S29.
    [4]
    B.K. Panda, M. Bargaje, L. Sathiyanarayanan, A simple and reliable analytical method for simultaneous quantification of first line antitubercular drugs in human plasma by LCMS/MS, Anal. Methods 12 (2020) 3909-3917.
    [5]
    F. Lemaitre, Has the time come for systematic therapeutic drug monitoring of first-line and WHO group A antituberculosis drugs? Ther. Drug Monit. 44 (2022) 133-137.
    [6]
    M. AlMatar, H. AlMandeal, I. Var, et al., New drugs for the treatment of Mycobacterium tuberculosis infection, Biomed. Pharmacother. 91 (2017) 546-558.
    [7]
    H.T. Adane, R.C. Howe, L. Wassie, et al., Diabetes mellitus is associated with an increased risk of unsuccessful treatment outcomes among drug-susceptible tuberculosis patients in Ethiopia: A prospective health facility-based study, J. Clin. Tuberc. Other Mycobact. Dis. 31 (2023), 100368.
    [8]
    S. Antwi, H. Yang, A. Enimil, et al., Pharmacokinetics of the first-line antituberculosis drugs in Ghanaian children with tuberculosis with or without HIV coinfection, Antimicrob. Agents Chemother. 61 (2017) e01701-01716.
    [9]
    Q. Lei, Y. Zhao, H. Wang, et al., Simple and sensitive method for the analysis of 14 antituberculosis drugs using liquid chromatography/tandem mass spectrometry in human plasma, Rapid Commun. Mass Spectrom. 34 (2020), e8667.
    [10]
    S. Srivastava, J.G. Pasipanodya, C. Meek, et al., Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability, J. Infect. Dis. 204 (2011) 1951-1959.
    [11]
    J. Zhu, J. Liu, Z. Bao, et al., Acquired drug resistance during the turnaround time for drug susceptibility testing impacts outcome of tuberculosis, Tuberculosis 140 (2023), 102341.
    [12]
    M.G.G. Sturkenboom, A.-G. Martson, E.M. Svensson, et al., Population pharmacokinetics and Bayesian dose adjustment to advance TDM of anti-TB drugs, Clin. Pharmacokinet. 60 (2021) 685-710.
    [13]
    A.G. Martson, G. Burch, S. Ghimire, et al., Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems, Expert Opin. Drug Metab. Toxicol. 17 (2021) 23-39.
    [14]
    Y. Alkabab, J. Warkentin, J. Cummins, et al., Therapeutic drug monitoring and TB treatment outcomes in patients with diabetes mellitus, Int. J. Tuberc. Lung Dis. 27 (2023) 135-139.
    [15]
    D. Fage, G. Deprez, B. Fontaine, et al., Simultaneous determination of 8 beta-lactams and linezolid by an ultra-performance liquid chromatography method with UV detection and cross-validation with a commercial immunoassay for the quantification of linezolid, Talanta 221 (2021), 121641.
    [16]
    S.N. Thomas, D. French, P.J. Jannetto, et al., Liquid chromatography-tandem mass spectrometry for clinical diagnostics, Nat. Rev. Meth. Primers 2 (2022), 96.
    [17]
    E. Deschamps, V. Calabrese, I. Schmitz, et al., Advances in ultra-high-resolution mass spectrometry for pharmaceutical analysis, Molecules 28 (2023), 2061.
    [18]
    H.J. Kim, K.A. Seo, H.M. Kim, et al., Simple and accurate quantitative analysis of 20 anti-tuberculosis drugs in human plasma using liquid chromatography-electrospray ionization-tandem mass spectrometry, J. Pharm. Biomed. Anal. 102 (2015) 9-16.
    [19]
    S.H. Song, S.H. Jun, K.U. Park, et al., Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratios by liquid chromatography/tandem mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 1331-1338.
    [20]
    D.H. Vu, R.A. Koster, M.S. Bolhuis, et al., Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS, Talanta 121 (2014) 9-17.
    [21]
    S. Wu, X. Fan, J. Jiang, et al., Validation of a universal and highly sensitive two-dimensional liquid chromatography-tandem mass spectrometry methodology for the quantification of pyrazinamide, ethambutol, protionamide, and clofazimine in different biological matrices, J. Chromatogr. B 1151 (2020), 122141.
    [22]
    R. Gerona, A. Wen, D. Aguilar, et al., Simultaneous analysis of 11 medications for drug resistant TB in small hair samples to quantify adherence and exposure using a validated LC-MS/MS panel, J. Chromatogr. B 1125 (2019), 121729.
    [23]
    J.W.C. Alffenaar, O.W. Akkerman, H.Y. Kim, et al., Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use? Int. J. Infect. Dis. 92 (2020) S5-S9.
    [24]
    I. Du Preez, N.P. Long, Editorial: Reviews in metabolomics: Personalized and predictive medicine of infectious diseases, Front. Mol. Biosci. 10 (2023), 1178115.
    [25]
    L.E. Martinez-Gomez, I. Ibarra-Gonzalez, C. Fernandez-Lainez, et al., Metabolic reprogramming in SARS-CoV-2 infection impacts the outcome of COVID-19 patients, Front. Immunol. 13 (2022), 936106.
    [26]
    J. Weiner, S.H.E. Kaufmann, High-throughput and computational approaches for diagnostic and prognostic host tuberculosis biomarkers, Int. J. Infect. Dis. 56 (2017) 258-262.
    [27]
    J. Cao, Y. Mi, C. Shi, et al., First-line anti-tuberculosis drugs induce hepatotoxicity: A novel mechanism based on a urinary metabolomics platform, Biochem. Biophys. Res. Commun. 497 (2018) 485-491.
    [28]
    N. Ky Anh, P. My Tung, M.J. Kim, et al., Quantitative analysis of isoniazid and its four primary metabolites in plasma of tuberculosis patients using LC-MS/MS, Molecules 27 (2022), 8607.
    [29]
    A. Alsultan, C.A. Peloquin, Therapeutic drug monitoring in the treatment of tuberculosis: An update, Drugs 74 (2014) 839-854.
    [30]
    A.M.I. Saktiawati, M. Harkema, A. Setyawan, et al., Optimal sampling strategies for therapeutic drug monitoring of first-line tuberculosis drugs in patients with tuberculosis, Clin. Pharmacokinet. 58 (2019) 1445-1454.
    [31]
    P.S. Rao, N. Modi, N.T.T. Nguyen, et al., Alternative methods for therapeutic drug monitoring and dose adjustment of tuberculosis treatment in clinical settings: A systematic review, Clin. Pharmacokinet. 62 (2023) 375-398.
    [32]
    V. Mave, A. Chandanwale, A. Kinikar, et al., Isoniazid hair concentrations in children with tuberculosis: A proof of concept study, Int. J. Tuberc. Lung Dis. 20 (2016) 844-847.
    [33]
    J. Kuhlin, M.G.G. Sturkenboom, S. Ghimire, et al., Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs, Clin. Mass Spectrom. 14 (2019) 34-45.
    [34]
    P.J. Heinsvig, C. Noble, P.W. Dalsgaard, et al., Forensic drug screening by liquid chromatography hyphenated with high-resolution mass spectrometry (LC-HRMS), Trac Trends Anal. Chem. 162 (2023), 117023.
    [35]
    K.H. Hee, J.J. Seo, L.S. Lee, Development and validation of liquid chromatography tandem mass spectrometry method for simultaneous quantification of first line tuberculosis drugs and metabolites in human plasma and its application in clinical study, J. Pharm. Biomed. Anal. 102 (2015) 253-260.
    [36]
    S. Rakusanova, O. Fiehn, T. Cajka, Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research, Trac Trends Anal. Chem. 158 (2023), 116825.
    [37]
    Y. Hirao, T. Koga, N. Koyama, et al., Liquid chromatography-tandem mass spectrometry methods for determination of delamanid in mouse plasma and lung, Am. J. Anal. Chem. 6 (2015) 98-105.
    [38]
    C. Polson, P. Sarkar, B. Incledon, et al., Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 785 (2003) 263-275.
    [39]
    Y. Xing, L. Yin, X. Le, et al., Simultaneous determination of first-line anti-tuberculosis drugs and one metabolite of isoniazid by liquid chromatography/tandem mass spectrometry in patients with human immunodeficiency virus-tuberculosis coinfection, Heliyon 7 (2021), e07532.
    [40]
    M. Han, S.H. Jun, J.H. Lee, et al., Method for simultaneous analysis of nine second-line anti-tuberculosis drugs using UPLC-MS/MS, J. Antimicrob. Chemother. 68 (2013) 2066-2073.
    [41]
    Y. Fu, D. Barkley, W. Li, et al., Evaluation, identification and impact assessment of abnormalinternal standardresponse variability in regulated LC-MS bioanalysis, Bioanalysis 12 (2020) 545-559.
    [42]
    F. Han, W. Li, Y. Jin, et al., Rapid and sensitive LC-MS/MS method for simultaneous determination of three first-line oral antituberculosis drug in plasma, J Chromatogr Sci. 59 (2021) 432-438.
    [43]
    Z. Gong, Y. Basir, D. Chu, et al., A rapid and robust liquid chromatography/tandem mass spectrometry method for simultaneous analysis of anti-tuberculosis drugs-Ethambutol and pyrazinamide in human plasma, J. Chromatogr. B 877 (2009) 1698-1704.
    [44]
    A.J. Wilhelm, J.C.G. den Burger, E.L. Swart, Therapeutic drug monitoring by dried blood spot: Progress to date and future directions, Clin. Pharmacokinet. 53 (2014) 961-973.
    [45]
    X. Chen, B. Song, H. Jiang, et al., A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of isoniazid and ethambutol in human plasma, Rapid Commun. Mass Spectrom. 19 (2005) 2591-2596.
    [46]
    K. Govender, J.H. Adamson, P. Owira, The development and validation of a LC-MS/MS method for the quantitation of metformin, rifampicin and isoniazid in rat plasma using HILIC chromatography, J. Chromatogr. B 1095 (2018) 127-137.
    [47]
    J.B. Prahl, M. Lundqvist, J.M.C. Bahl, et al., Simultaneous quantification of isoniazid, rifampicin, ethambutol and pyrazinamide by liquid chromatography/tandem mass spectrometry, APMIS 124 (2016) 1004-1015.
    [48]
    R.C. Hartkoorn, S. Khoo, D.J. Back, et al., A rapid and sensitive HPLC-MS method for the detection of plasma and cellular rifampicin, J. Chromatogr. B 857 (2007) 76-82.
    [49]
    K. Lee, S.H. Jun, M.S. Choi, et al., Application of the isoniazid assay in dried blood spots using the ultra-performance liquid chromatography-tandem mass spectrometry, Clin. Biochem. 50 (2017) 882-885.
    [50]
    J. Sundell, E. Bienvenu, S. Birgersson, et al., Simultaneous quantification of four first line antitubercular drugs and metabolites in human plasma by hydrophilic interaction chromatography and tandem mass spectrometry, J. Chromatogr. B 1105 (2019) 129-135.
    [51]
    M. Ismail, C. Costa, K. Longman, et al., Potential to use fingerprints for monitoring therapeutic levels of isoniazid and treatment adherence, ACS Omega 7 (2022) 15167-15173.
    [52]
    L. Baietto, A. Calcagno, I. Motta, et al., A UPLC-MS-MS method for the simultaneous quantification of first-line antituberculars in plasma and in PBMCs, J. Antimicrob. Chemother. 70 (2015) 2572-2575.
    [53]
    M.G.G. Sturkenboom, H. van der Lijke, E.M. Jongedijk, et al., Quantification of isoniazid, pyrazinamide and ethambutol in serum using liquid chromatography-tandem mass spectrometry, J. Appl. Bioanal. 1 (2015) 89-98.
    [54]
    Y.S. Cho, T.W. Jang, H.J. Kim, et al., Isoniazid population pharmacokinetics and dose recommendation for Korean patients with tuberculosis based on target attainment analysis, J. Clin. Pharmacol. 61 (2021) 1567-1578.
    [55]
    S.H.J. van den Elsen, O.W. Akkerman, M. Wessels, et al., Dose optimisation of first-line tuberculosis drugs using therapeutic drug monitoring in saliva: Feasible for rifampicin, not for isoniazid, Eur. Respir. J. 56 (2020), 2000803.
    [56]
    L. Zhang, Y.H. Liu, J. Gao, et al., Interpretation of WHO consolidated guidelines on tuberculosis module 4: Drug resistant tuberculosis treatment, Zhonghua jiehe he huxi zazhi 44 4 (2021) 349-353.
    [57]
    I.M. Harmelink, J.W.C. Alffenaar, A.M. Wessels, et al., A rapid and simple liquid chromatography-tandem mass spectrometry method for the determination of linezolid in human serum, EJHP Science 14 (2008) 3-7.
    [58]
    D.H. Vu, M.S. Bolhuis, R.A. Koster, et al., Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis, Antimicrob. Agents Chemother. 56 (2012) 5758-5763.
    [59]
    A.D. Pranger, J.W.C. Alffenaar, A. Mireille, et al., Determination of moxifloxacin in human plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid chromatography-tandem mass spectrometry method, J. Anal Toxicol. 34 (2010) 135-141.
    [60]
    D.H. Vu, R.A. Koster, J.W.C. Alffenaar, et al., Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume, J. Chromatogr. B 879 (2011) 1063-1070.
    [61]
    J.W.C. Alffenaar, M. Bolhuis, K. van Hateren, et al., Determination of bedaquiline in human serum using liquid chromatography-tandem mass spectrometry, Antimicrob. Agents Chemother. 59 (2015) 5675-5680.
    [62]
    J. Metcalfe, R. Gerona, A. Wen, et al., An LC-MS/MS-based method to analyze the anti-tuberculosis drug bedaquiline in hair, Int. J. Tuberc. Lung Dis. 21 (2017) 1069-1070.
    [63]
    M.S. Bolhuis, R. van Altena, K. van Hateren, et al., Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis, Antimicrob. Agents Chemother. 57 (2013) 3676-3680.
    [64]
    F. de Velde, J.W.C. Alffenaar, A.M.A. Wessels, et al., Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry, J. Chromatogr. B 877 (2009) 1771-1777.
    [65]
    V. Trivedi, V. Upadhyay, G. Shah, et al., Ex vivo conversion of prodrug prothionamide to its metabolite prothionamide sulfoxide with different extraction techniques and their estimation in human plasma by LC-MS/MS, Bioanalysis 5 (2013) 185-200.
    [66]
    M. Meng, B. Smith, B. Johnston, et al., Simultaneous quantitation of delamanid (OPC-67683) and its eight metabolites in human plasma using UHPLC-MS/MS, J. Chromatogr. B 1002 (2015) 78-91.
    [67]
    E. Souza, J. Felton, R.L. Crass, et al., Development of a sensitive LC-MS/MS method for quantification of linezolid and its primary metabolites in human serum, J. Pharm. Biomed. Anal. 178 (2020), 112968.
    [68]
    V. Desfontaine, S. Guinchard, S. Marques, et al., Optimized LC-MS/MS quantification of tuberculosis drug candidate macozinone (PBTZ169), its dearomatized Meisenheimer Complex and other metabolites, in human plasma and urine, J. Chromatogr. B 1215 (2023), 123555.
    [69]
    W.A. Gray, B. Waldorf, M.G. Rao, et al., Development and validation of an LC-MS/MS method for the simultaneous determination of bedaquiline and rifabutin in human plasma, J. Pharm. Biomed. Anal. 176 (2019), 112775.
    [70]
    K. Lee, S.H. Jun, M. Han, et al., Multiplex assay of second-line anti-tuberculosis drugs in dried blood spots using ultra-performance liquid chromatography-tandem mass spectrometry, Ann. Lab. Med. 36 (2016) 489-493.
    [71]
    S. Ghimire, K. van Hateren, N. Vrubleuskaya, et al., Determination of levofloxacin in human serum using liquid chromatography tandem mass spectrometry, J. Appl. Bioanal. 4 (2018) 16-25.
    [72]
    C. Lau, D. Marriott, J. Bui, et al., LInezolid Monitoring to MInimise Toxicity (LIMMIT1): A multicentre retrospective review of patients receiving linezolid therapy and the impact of therapeutic drug monitoring, Int. J. Antimicrob. Agents 61 (2023), 106783.
    [73]
    G. Mishra, J.W. Alffenaar, R. Munje, et al., Adverse drug reactions due to linezolid in the programmatic management of drug-resistant tuberculosis in India: A retrospective multicenter study, Indian J. Tuberc. (2023). In Press.
    [74]
    J. Alffenaar, R. van Altena, H. Bokkerink, et al., Pharmacokinetics of moxifloxacin in cerebrospinal fluid and plasma in patients with tuberculous meningitis, Clin. Infect. Dis. 49 (2009) 1080-1082.
    [75]
    S. Ghimire, B. Maharjan, E.M. Jongedijk, et al., Evaluation of saliva as a potential alternative sampling matrix for therapeutic drug monitoring of levofloxacin in patients with multidrug-resistant tuberculosis, Antimicrob. Agents Chemother. 63 (2019) e02379-02318.
    [76]
    X. Zheng, E.M. Jongedijk, Y. Hu, et al., Development and validation of a simple LC-MS/MS method for simultaneous determination of moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol in human plasma, J. Chromatogr. B 1158 (2020), 122397.
    [77]
    R. Cazorla-Reyes, R. Romero-Gonzalez, A.G. Frenich, et al., Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry, J. Pharm. Biomed. Anal. 89 (2014) 203-212.
    [78]
    P. Seraissol, T. Lanot, S. Baklouti, et al., Evaluation of 4 quantification methods for monitoring 16 antibiotics and 1 beta-lactamase inhibitor in human serum by high-performance liquid chromatography with tandem mass spectrometry detection, J. Pharm. Biomed. Anal. 219 (2022), 114900.
    [79]
    R. Gerona, A. Wen, C. Koss, et al., A multi-analyte panel for non-invasive pharmacokinetic monitoring of second-line anti-tuberculosis drugs, Int. J. Tuberc. Lung Dis. 20 (2016) 991-992.
    [80]
    S. Gao, Z. Wang, X. Xie, et al., Rapid and sensitive method for simultaneous determination of first-line anti-tuberculosis drugs in human plasma by HPLC-MS/MS: Application to therapeutic drug monitoring, Tuberculosis 109 (2018) 28-34.
    [81]
    Z. Zhou, X. Wu, Q. Wei, et al., Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the simultaneous determination of five first-line antituberculosis drugs in plasma, Anal. Bioanal. Chem. 405 (2013) 6323-6335.
    [82]
    D. Fage, R. Brilleman, G. Deprez, et al., Development, validation and clinical use of a LC-MS/MS method for the simultaneous determination of the nine main antituberculosis drugs in human plasma, J. Pharm. Biomed. Anal. 215 (2022), 114776.
    [83]
    T. Mercier, V. Desfontaine, S. Cruchon, et al., A battery of tandem mass spectrometry assays with stable isotope-dilution for the quantification of 15 anti-tuberculosis drugs and two metabolites in patients with susceptible-, multidrug-resistant- and extensively drug-resistant tuberculosis, J. Chromatogr. B 1211 (2022), 123456.
    [84]
    S. Barco, A. Mesini, L. Barbagallo, et al., A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients, J. Pharm. Biomed. Anal. 186 (2020), 113273.
    [85]
    X. Wang, H. Zhang, Y. Han, et al., Rapid and simultaneous determination of ten anti-tuberculosis drugs in human plasma by UPLC-MS/MS with applications in therapeutic drug monitoring, J. Chromatogr. B 1152 (2020), 122246.
    [86]
    P. Zuma, A. Joubert, M. van der Merwe, et al., Validation and application of a quantitative LC-MS/MS assay for the analysis of first-line anti-tuberculosis drugs, rifabutin and their metabolites in human breast milk, J. Chromatogr. B 1211 (2022), 123489.
    [87]
    R.S. Carling, C. John, E.C. Emmett, et al., Automation of tacrolimus measurement on volumetric absorptive microsampling devices by tandem mass spectrometry, Bioanalysis 14 (2022) 1487-1496.
    [88]
    S.N. Rao Gajula, N.T. Navin, S. Talari, et al., Green bioanalysis: An innovative and eco-friendly approach for analyzing drugs in biological matrices, Bioanalysis 14 (2022) 881-909.
    [89]
    L.C. Martial, J. Kerkhoff, N. Martinez, et al., Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children, Int. J. Antimicrob. Agents 52 (2018) 109-113.
    [90]
    P. Nanthasurasak, H. See, M. Zhang, et al., In-transit electroextraction of small-molecule pharmaceuticals from blood, Angew. Chem. Int. Ed. 58 (2019) 3790-3794.
    [91]
    W. Zhou, S. Yang, P.G. Wang, Matrix effects and application of matrix effect factor, Bioanalysis 9 (2017) 1839-1844.
    [92]
    U.S. FDA, Bioanalytical Method Validation - Guidance for Industry. (Accessed 17 July, 2023).
    [93]
    EMA, Guidance on bioanalytical method validation. (Accessed 17 July, 2023).
    [94]
    J.W.C. Alffenaar, S.K. Heysell, S.G. Mpagama, Therapeutic drug monitoring: The need for practical guidance, Clin. Infect. Dis. 68 (2019) 1065-1066.
    [95]
    F. Mota, C.A. Ruiz-Bedoya, E.W. Tucker, et al., Dynamic 18F-Pretomanid PET imaging in animal models of TB meningitis and human studies, Nat. Commun. 13 (2022), 7974.
    [96]
    A.A. Ordonez, H. Wang, G. Magombedze, et al., Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions, Nat. Med. 26 (2020) 529-534.
    [97]
    E.W. Tucker, B. Guglieri-Lopez, A.A. Ordonez, et al., Noninvasive11C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis, Sci. Transl. Med. 10 (2018), eaau0965.
    [98]
    S. Mukherjee, S. Perveen, A. Negi, et al., Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics, Tuberculosis 140 (2023), 102340.
    [99]
    F. Rahimi, S. Chatzimichail, A. Saifuddin, et al., A review of portable high-performance liquid chromatography: The future of the field? Chromatographia 83 (2020) 1165-1195.
    [100]
    J.D. Otalvaro, A.M. Hernandez, C.A. Rodriguez, et al., Population pharmacokinetic models of antituberculosis drugs in patients: A systematic critical review, Ther. Drug Monit. 43 (2021) 108-115.
    [101]
    F. Gafar, R.E. Wasmann, H.M. McIlleron, et al., Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents: A systematic review and individual patient data meta-analysis, Eur Respir J., 62 (2022), 2201596.
    [102]
    S. Swaminathan, J.G. Pasipanodya, G. Ramachandran, et al., Drug concentration thresholds predictive of therapy failure and death in children with tuberculosis: Bread crumb trails in random forests, Clin. Infect. Dis. 63 (2016) S63-S74.
    [103]
    J. Metcalfe, P. Bacchetti, R. Gerona, et al., Association of anti-tuberculosis drug concentrations in hair and treatment outcomes in MDR- and XDR-TB, ERJ Open Res. 5 (2019) 46-2019.
    [104]
    N.B. Ngoc, H.V. Dinh, N.T. Thuy, et al., Active surveillance for adverse events in patients on longer treatment regimens for multidrug-resistant tuberculosis in Viet Nam, PLoS One 16 (2021), e0255357.
    [105]
    K.J. Wilby, S. Shabana, M.H.H. Ensom, et al., A critical review of the current evidence for measuring drug concentrations of first-line agents used to treat tuberculosis in children, Clin. Pharmacokinet. 55 (2016) 17-31.
    [106]
    J.W.C. Alffenaar, T. Gumbo, K.E. Dooley, et al., Integrating pharmacokinetics and pharmacodynamics in operational research to end tuberculosis, Clin. Infect. Dis. 70 (2020) 1774-1780.
    [107]
    H. McIlleron, S. Abdel-Rahman, J.A. Dave, et al., Special populations and pharmacogenetic issues in tuberculosis drug development and clinical research, J. Infect. Dis. 211 (2015) S115-S125.
    [108]
    J.J. Wilkins, E.M. Svensson, J.P. Ernest, et al., Pharmacometrics in tuberculosis: Progress and opportunities, Int. J. Antimicrob. Agents 60 (2022), 106620.
    [109]
    C. Szipszky, D. Van Aartsen, S. Criddle, et al., Determination of rifampin concentrations by urine colorimetry and mobile phone readout for personalized dosing in tuberculosis treatment, J. Pediatr. Infect. Dis. Soc. 10 (2021) 104-111.
    [110]
    S.M. LaCourse, D. Leon, N. Panpradist, et al., Urine biomarker assessment of infant adherence to isoniazid prophylaxis, Pediatr. Infect. Dis. J. 40 (2020) e43-e45.
    [111]
    S. Valencia, M. Leon, I. Losada, et al., How do we measure adherence to anti-tuberculosis treatment? Expert Rev. Anti Infect. Ther. 15 (2017) 157-165.
    [112]
    K. Mehta, H.P. Spaink, T.H.M. Ottenhoff, et al., Host-directed therapies for tuberculosis: Quantitative systems pharmacology approaches, Trends Pharmacol. Sci. 43 (2022) 293-304.
    [113]
    N. Ndjeka, J. Furin, Balancing adjunctive therapy for tuberculosis treatment, Lancet Infect. Dis. 23 (2023) 771-772.
    [114]
    R. Cao, G. Teskey, H. Islamoglu, et al., Characterizing the effects of glutathione as an immunoadjuvant in the treatment of tuberculosis, Antimicrob. Agents Chemother. 62 (2018) e01132-01118.
    [115]
    M. Rao, G. Ippolito, S. Mfinanga, et al., Improving treatment outcomes for MDR-TB-Novel host-directed therapies and personalised medicine of the future, Int. J. Infect. Dis. 80 (2019) S62-S67.
    [116]
    S.P. Proper, N.P. Azouz, T.B. Mersha, Achieving precision medicine in allergic disease: Progress and challenges, Front. Immunol. 12 (2021), 720746.
    [117]
    A.R. DiNardo, T. Gandhi, J. Heyckendorf, et al., Gene expression signatures identify biologically and clinically distinct tuberculosis endotypes, Eur Respir J., 60, 2022, 2102263.
    [118]
    F.A. Castelli, G. Rosati, C. Moguet, et al., Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests, Anal. Bioanal. Chem. 414 (2022) 759-789.
    [119]
    Y. Yu, X. Jiang, J. Li, Biomarker discovery for tuberculosis using metabolomics, Front. Mol. Biosci. 10 (2023), 1099654.
    [120]
    N. Liu, J. Liu, B. Zheng, et al., Gut microbiota affects sensitivity to immune-mediated isoniazid-induced liver injury, Biomed. Pharmacother. 160 (2023), 114400.
    [121]
    P. Bruinenberg, J. Nedelman, T.J. Yang, et al., Single ascending-dose study to evaluate the safety, tolerability, and pharmacokinetics of sutezolid in healthy adult subjects, Antimicrob. Agents Chemother. 66 (2022) e02108-02121.
    [122]
    J.S. McCune, S.L. Navarro, K.S. Baker, et al., Prediction of busulfan clearance by predose plasma metabolomic profiling, Clin. Pharmacol. Ther. 113 (2023) 370-379.
    [123]
    N.K. Anh, N.K. Phat, N.T.H. Yen, et al., Comprehensive lipid profiles investigation reveals host metabolic and immune alterations during anti-tuberculosis treatment: Implications for therapeutic monitoring, Biomed. Pharmacother. 158 (2023), 114187.
    [124]
    N.P. Long, N.K. Phat, N.T.H. Yen, et al., A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction, Tuberculosis 131 (2021), 102138.
    [125]
    N.P. Long, N.K. Anh, N.T.H. Yen, et al., Comprehensive lipid and lipid-related gene investigations of host immune responses to characterize metabolism-centric biomarkers for pulmonary tuberculosis, Sci. Rep. 12 (2022), 13395.
    [126]
    N. Phuoc Long, D.Y. Heo, S. Park, et al., Molecular perturbations in pulmonary tuberculosis patients identified by pathway-level analysis of plasma metabolic features, PLoS One 17 (2022), e0262545.
    [127]
    N.T.H. Yen, N.K. Anh, R.P. Jayanti, et al., Multimodal plasma metabolomics and lipidomics in elucidating metabolic perturbations in tuberculosis patients with concurrent type 2 diabetes, Biochimie 211 (2023) 153-163.
    [128]
    M.-G. Wang, S.-Q. Wu, M.-M. Zhang, et al., Plasma metabolomic and lipidomic alterations associated with anti-tuberculosis drug-induced liver injury, Front. Pharmacol. 13 (2022).
    [129]
    V. Kantae, E.H.J. Krekels, M.J.V. Esdonk, et al., Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: Towards personalized drug therapy, Metabolomics 13 (2017), 9.
    [130]
    J.R. Everett, From metabonomics to pharmacometabonomics: The role of metabolic profiling in personalized medicine, Front. Pharmacol. 7 (2016), 297.
    [131]
    G. Ragia, V.G. Manolopoulos, The revolution of pharmaco-omics: Ready to open new avenues in materializing precision medicine? Pharmacogenomics 23 (2022) 869-872.
    [132]
    P. Phapale, Pharmaco-metabolomics opportunities in drug development and clinical research, Anal. Sci. Adv. 2 (2021) 611-616.
    [133]
    A. Matteelli, S. Lovatti, A. Sforza, et al., Programmatic management of tuberculosis preventive therapy: Past, present, future, Int. J. Infect. Dis. 130 (2023) S43-S46.
    [134]
    R.P. Jayanti, N.P. Long, N.K. Phat, et al., Semi-automated therapeutic drug monitoring as a pillar toward personalized medicine for tuberculosis management, Pharmaceutics 14 (2022), 990.
    [135]
    V.T.A. Thu, L. Da Dat, R.P. Jayanti, et al., Advancing personalized medicine for tuberculosis through the application of immune profiling, Front. Cell. Infect. Microbiol. 13 (2023), 1108155.
    [136]
    J.C. Alarcon-Barrera, S. Kostidis, A. Ondo-Mendez, et al., Recent advances in metabolomics analysis for early drug development, Drug Discov. Today 27 (2022) 1763-1773.
    [137]
    M. Gajdacs, The concept of an ideal antibiotic: Implications for drug design, Molecules 24 (2019), 892.
    [138]
    Y. Ding, H. Zhu, L. Fu, et al., Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis, Antimicrob. Agents Chemother. 66 (2022) e00658-00622.
    [139]
    S. Li, P.J. Converse, F. Betoudji, et al., Next-generation diarylquinolines improve sterilizing activity of regimens with pretomanid and the novel oxazolidinone TBI-223 in a mouse tuberculosis model, Antimicrob. Agents Chemother. 67 (2023) e00035-00023.
    [140]
    S.M. Hoy, Contezolid: First approval, Drugs 81 (2021) 1587-1591.
    [141]
    M. Imran, S.A. Khan, S.M.B. Asdaq, et al., An insight into the discovery, clinical studies, compositions, and patents of macozinone: A drug targeting the DprE1 enzyme of Mycobacterium tuberculosis, J. Infect. Public Heath. 15 (2022) 1097-1107.
    [142]
    E. Eckhardt, Y. Li, S. Mamerow, et al., Pharmacokinetics and efficacy of the benzothiazinone BTZ-043 against tuberculous mycobacteria inside granulomas in the guinea pig model, Antimicrob. Agents Chemother. 67 (2023) e01438-01422.
    [143]
    N. Hariguchi, X. Chen, Y. Hayashi, et al., OPC-167832, a novel carbostyril derivative with potent antituberculosis activity as a DprE1 inhibitor, Antimicrob. Agents Chemother. 64 (2020) e02020-02019.
    [144]
    B. Lee, K. Pethe, Telacebec: An investigational antibacterial for the treatment of tuberculosis (TB), Expert Opin. Investig. Drugs 31 (2022) 139-144.
    [145]
    C.S.S. Teixeira, N.M.F.S.A. Cerqueira, S.F. Sousa, Multifunctional enzymes as targets for the treatment of tuberculosis: Paving the way for new anti-TB drugs, Curr. Med. Chem. 28 (2021) 5847-5882.
    [146]
    D. Buonsenso, G. Autore, F. Cusenza, et al., Multidrug-resistant tuberculosis in children: Are the same therapy options available worldwide? Int. J. Infect. Dis. 130 (2023) S16-S19.
    [147]
    I. Frost, H. Sati, P. Garcia-Vello, et al., The role of bacterial vaccines in the fight against antimicrobial resistance: An analysis of the preclinical and clinical development pipeline, The Lancet Microbe 4 (2023) e113-e125.
    [148]
    L.K. Schrager, J. Vekemens, N. Drager, et al., The status of tuberculosis vaccine development, Lancet Infect. Dis. 20 (2020) e28-e37.
    [149]
    S.E. Larsen, S.L. Baldwin, R.N. Coler, Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? Int. J. Infect. Dis. 130 (2023) S47-S51.
    [150]
    Y. Xu, B. Liang, C. Kong, et al., Traditional medicinal plants as a source of antituberculosis drugs: A system review, BioMed Res. Int. 2021 (2021) 1-36.
    [151]
    S. Zhang, J. Fu, X. Guo, et al., Improvement cues of lesion absorption using the adjuvant therapy of traditional Chinese medicine Qinbudan Tablet for retreatment pulmonary tuberculosis with standard anti-tuberculosis regimen, Infect. Dis. Poverty 9 (2020), 50.
    [152]
    M.A. Jimenez-Arellanes, G.A. Gutierrez-Rebolledo, M. Meckes-Fischer, et al., Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review, Asian Pac. J. Trop. Med. 9 (2016) 1141-1149.
    [153]
    F. Wu, J. Zhang, F. Song, et al., Chrysomycin A derivatives for the treatment of multi-drug-resistant tuberculosis, ACS Cent. Sci. 6 (2020) 928-938.
    [154]
    M. Maiolini, S. Gause, J. Taylor, et al., The war against tuberculosis: A review of natural compounds and their derivatives, Molecules 25 (2020), 3011.
    [155]
    S. Kazemzadeh, J. Yu, S. Jamshy, et al., Deep learning detection of active pulmonary tuberculosis at chest radiography matched the clinical performance of radiologists, Radiology 306 (2023) 124-137.
    [156]
    O. Hrizi, K. Gasmi, I. Ben Ltaifa, et al., Tuberculosis disease diagnosis based on an optimized machine learning model, J. Healthc. Eng. 2022 (2022) 1-13.
    [157]
    J. Naidoo, S.C. Shelmerdine, C.F. Ugas-Charcape, et al., Artificial intelligence in paediatric tuberculosis, Pediatr. Radiol. (2023) 1-13.
    [158]
    Y. Zhan, Y. Wang, W. Zhang, et al., Diagnostic accuracy of the artificial intelligence methods in medical imaging for pulmonary tuberculosis: A systematic review and meta-analysis, J. Clin. Med. 12 (2022), 303.
    [159]
    S. Jamal, M. Khubaib, R. Gangwar, et al., Artificial Intelligence and Machine learning based prediction of resistant and susceptible mutations in Mycobacterium tuberculosis, Sci. Rep. 10 (2020), 5487.
    [160]
    S.A. Munro, S.A. Lewin, H.J. Smith, et al., Patient adherence to tuberculosis treatment: A systematic review of qualitative research, PLoS Med. 4 (2007), e238.
    [161]
    A. Bohr, K. Memarzadeh, The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare. Amsterdam: Elsevier, (2020) 25-60.
    [162]
    N. Brasier, M. Osthoff, F. De Ieso, et al., Next-generation digital biomarkers for tuberculosis and antibiotic stewardship: Perspective on novel molecular digital biomarkers in sweat, saliva, and exhaled breath, J. Med. Internet Res. 23 (2021), e25907.
    [163]
    S. Ghimire, D. Iskandar, R. van der Borg-Boekhout, et al., Combining digital adherence technology and therapeutic drug monitoring for personalised tuberculosis care, Eur. Respir. J. 60 (2022), 2201690.
    [164]
    R. Ratchakit-Nedsuwan, S. Nedsuwan, V. Sawadna, et al., Ensuring tuberculosis treatment adherence with a mobile-based CARE-call system in Thailand: A pilot study, Infect. Dis. 52 (2020) 121-129.
    [165]
    S.H. Browne, A. Umlauf, A.J. Tucker, et al., Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: A randomized controlled trial, PLoS Med. 16 (2019), e1002891.
    [166]
    A.A. Romanyukha, A.S. Karkach, S.E. Borisov, et al., Identification of growing tuberculosis incidence clusters in a region with a decrease in tuberculosis prevalence in Moscow (2000-2019), J. Glob. Heath. 13 (2023), 04052.
    [167]
    M. Asad, A. Mahmood, M. Usman, A machine learning-based framework for Predicting Treatment Failure in tuberculosis: A case study of six countries, Tuberculosis 123 (2020), 101944.
    [168]
    C. Lange, I. Abubakar, J.W.C. Alffenaar, et al., Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: A TBNET consensus statement, Eur. Respir. J. 44 (2014) 23-63.
    [169]
    L. Gosce, G.J. Abou Jaoude, D.J. Kedziora, et al., Optima TB: A tool to help optimally allocate tuberculosis spending, PLoS Comput. Biol. 17 (2021), e1009255.
    [170]
    D. Deshpande, J.G. Pasipanodya, S.G. Mpagama, et al., Levofloxacin pharmacokinetics/pharmacodynamics, dosing, susceptibility breakpoints, and artificial intelligence in the treatment of multidrug-resistant tuberculosis, Clin. Infect. Dis. 67 (2018) S293-S302.
    [171]
    H. Yu, B. Low, Z. Zhang, et al., Quantitative challenges and their bioinformatic solutions in mass spectrometry-based metabolomics, Trac Trends Anal. Chem. 161 (2023), 117009.
    [172]
    C.J. Haug, J.M. Drazen, Artificial intelligence and machine learning in clinical medicine, 2023, N Engl J. Med. 388 (2023) 1201-1208.
    [173]
    M. Moor, O. Banerjee, Z.S.H. Abad, et al., Foundation models for generalist medical artificial intelligence, Nature 616 (2023) 259-265.
    [174]
    K. Kvarnstrom, A. Westerholm, M. Airaksinen, et al., Factors contributing to medication adherence in patients with a chronic condition: A scoping review of qualitative research, Pharmaceutics 13 (2021), 1100.
    [175]
    V.L. Nguyen, S. Ahn, P.Q. Hoa, et al., Center for personalized precision medicine for tuberculosis: Smart research and development workstation, Healthc. Inform. Res. 28 (2022) 176-180.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (354) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return