Citation: | Baixi Shan, Haoyan Zhou, Congying Guo, Xiaolu Liu, Mingyu Wu, Rao Zhai, Jun Chen. Tanshinone IIA ameliorates energy metabolism dysfunction of pulmonary fibrosis using 13C metabolic flux analysis[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 244-258. doi: 10.1016/j.jpha.2023.09.008 |
[1] |
R. Rajesh, R. Atallah, T. Barnthaler, Dysregulation of metabolic pathways in pulmonary fibrosis, Pharmacol. Ther. 246 (2023) 108436.
|
[2] |
H. Zhao, P.A. Dennery, H. Yao, Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis, Am. J. Physiol. Lung Cell Mol. Physiol. 314 (2018) L544-L554.
|
[3] |
T. Kinoshita, T. Goto, Molecular mechanisms of pulmonary fibrogenesis and its progression to lung cancer: a review, Int. J. Mol. Sci. 20 (2019) 1461.
|
[4] |
B. Selvarajah, I. Azuelos, D. Anastasiou, et al., Fibrometabolism-An emerging therapeutic frontier in pulmonary fibrosis, Sci. Signal. 14 (2021) eaay1027.
|
[5] |
S. Saito, A. Alkhatib, J.K. Kolls, et al., Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fibrosis (IPF), J. Thorac. Dis. 11 (2019) S1740-S1754.
|
[6] |
L.A.J. O'Neill, R.J. Kishton, J. Rathmell, A guide to immunometabolism for immunologists, Nat. Rev. Immunol. 16 (2016) 553-565.
|
[7] |
B. Selvarajah, I. Azuelos, M. Plate, et al., mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β1-induced collagen biosynthesis, Sci. Signal. 12 (2019) eaav3048.
|
[8] |
R.C. Chambers, P.F. Mercer, Mechanisms of alveolar epithelial injury, repair, and fibrosis, Ann. Am. Thorac. Soc. 12 (2015) S16-S20.
|
[9] |
C. Vancheri, Common pathways in idiopathic pulmonary fibrosis and cancer, Eur. Respir. Rev. 22 (2013) 265-272.
|
[10] |
N. Xie, Z. Tan, S. Banerjee, et al., Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis, Am. J. Respir. Crit. Care Med. 192 (2015) 1462-1474.
|
[11] |
M. Andrianifahanana, D.M. Hernandez, X. Yin, et al., Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways, Faseb. J. 30 (2016) 3733-3744.
|
[12] |
H. He, H. Tang, L. Gao, et al., Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis in rats, Mol. Med. Rep. 11 (2015) 4190-4196.
|
[13] |
F. Feng, N. Li, P. Cheng, et al., Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway, Biomed. Pharmacother. 121 (2020) 109586.
|
[14] |
L. An, L.Y. Peng, N.Y. Sun, et al., Tanshinone IIA activates nuclear factor-erythroid 2-related factor 2 to restrain pulmonary fibrosis via regulation of redox homeostasis and glutaminolysis, Antioxidants Redox Signal. 30 (2019) 1831-1848.
|
[15] |
Z. Wang, F. Zhang, W. Liu, et al., Impaired tricarboxylic acid cycle flux and mitochondrial aerobic respiration during isoproterenol induced myocardial ischemia is rescued by bilobalide, J. Pharm. Anal. 11 (2021) 764-775.
|
[16] |
M. Yuan, D.M. Kremer, H. Huang, et al., Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS, Nat. Protoc. 14 (2019) 313-330.
|
[17] |
Y. Toya, N. Kono, K. Arakawa, et al., Metabolic flux analysis and visualization, J. Proteome Res. 10 (2011) 3313-3323.
|
[18] |
M.R. Antoniewicz, A guide to 13C metabolic flux analysis for the cancer biologist, Exp. Mol. Med. 50 (2018) 1-13.
|
[19] |
C.P. Long, M.R. Antoniewicz, High-resolution 13C metabolic flux analysis, Nat. Protoc. 14 (2019) 2856-2877.
|
[20] |
Y. Li, Y.C. Li, X.T. Liu, et al., Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation, Cell Rep. 38 (2022) 110391.
|
[21] |
Y. Zhang, G. Yu, H. Chu, et al., Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis, Mol. Cell 71 (2018) 201-215.
|
[22] |
G.F. Zhang, M.V. Jensen, S.M. Gray, et al., Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion, Cell Metab. 33 (2021) 804-817.
|
[23] |
B. Shan, M. Wu, T. Chen, et al., Berberine attenuates hyperuricemia by regulating urate transporters and gut microbiota, Am. J. Chin. Med. 50 (2022) 2199-2221.
|
[24] |
B. Shan, Z. Ai, S. Zeng, et al., Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway, Psychoneuroendocrinology 117 (2020) 104699.
|
[25] |
H. Li, M. Wu, C. Guo, et al., Tanshinone IIA regulates Keap1/Nrf2 signal pathway by activating Sestrin2 to restrain pulmonary fibrosis, Am. J. Chin. Med. 50 (2022) 2125-2151.
|
[26] |
R. Nigdelioglu, R.B. Hamanaka, A.Y. Meliton, et al., Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production, J. Biol. Chem. 291 (2016) 27239-27251.
|
[27] |
D. DeWaal, V. Nogueira, A.R. Terry, et al., Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin, Nat. Commun. 9 (2018) 446.
|
[28] |
H. Liu, X. Zhang, Y. Shao, et al., Danshensu alleviates bleomycin-induced pulmonary fibrosis by inhibiting lung fibroblast-to-myofibroblast transition via the MEK/ERK signaling pathway, Bioengineered 12 (2021) 3113-3124.
|
[29] |
H. Liu, C. Liu, M. Wang, et al., Tanshinone IIA affects the malignant growth of Cholangiocarcinoma cells by inhibiting the PI3K-Akt-mTOR pathway, Sci. Rep. 11 (2021) 19268.
|
[30] |
T. Zhang, X. Zhu, H. Wu, et al., Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: combined administration of Polydatin and 2-Deoxy-d-glucose, J. Cell Mol. Med. 23 (2019) 3711-3723.
|
[31] |
A. Mamazhakypov, R.T. Schermuly, L. Schaefer, et al., Lipids - two sides of the same coin in lung fibrosis, Cell. Signal. 60 (2019) 65-80.
|
[32] |
P.K. Arnold, B.T. Jackson, K.I. Paras, et al., A non-canonical tricarboxylic acid cycle underlies cellular identity, Nature 603 (2022) 477-481.
|
[33] |
J. Li, X. Zhai, X. Sun, et al., Metabolic reprogramming of pulmonary fibrosis, Front. Pharmacol. 13 (2022) 1031890.
|
[34] |
F. Feng, P. Cheng, S. Xu, et al., Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling, Chem. Biol. Interact. 319 (2020) 109024.
|
[35] |
N. Wang, H. Liu, G. Liu, et al., Yeast β-D-glucan exerts antitumour activity in liver cancer through impairing autophagy and lysosomal function, promoting reactive oxygen species production and apoptosis, Redox Biol. 32 (2020) 101495.
|
[36] |
Z. Chen, M. Liu, L. Li, et al., Involvement of the Warburg effect in non-tumor diseases processes, J. Cell. Physiol. 233 (2018) 2839-2849.
|
[37] |
X. Zhao, P. Psarianos, L.S. Ghoraie, et al., Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis, Nat. Metab. 1 (2019) 147-157.
|
[38] |
K. Bernard, N.J. Logsdon, S. Ravi, et al., Metabolic reprogramming is required for myofibroblast contractility and differentiation, J. Biol. Chem. 290 (2015) 25427-25438.
|
[39] |
N. Zamboni, S.M. Fendt, M. Ruhl, et al., 13C-based metabolic flux analysis, Nat. Protoc. 4 (2009) 878-892.
|
[40] |
X. Yin, M. Choudhury, J.H. Kang, et al., Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β, Sci. Signal. 12 (2019) eaax4067.
|
[41] |
W. Qian, X. Cai, Q. Qian, et al., Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis, J. Cell Mol. Med. 22 (2018) 4354-4365.
|
[42] |
J. Wang, K. Hu, X. Cai, et al., Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis, Acta Pharm. Sin. B 12 (2022) 18-32.
|
[43] |
X. Hu, Q. Xu, H. Wan, et al., PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis, Lab. Invest. 100 (2020) 801-811.
|
[44] |
Q. Lou, M. Zhang, K. Zhang, et al., Arsenic exposure elevated ROS promotes energy metabolic reprogramming with enhanced AKT-dependent HK2 expression, Sci. Total Environ. 836 (2022) 155691.
|
[45] |
Y. Ji, Y.N. Dou, Q.W. Zhao, et al., Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway, Acta Pharmacol. Sin. 37 (2016) 794-804.
|
[46] |
H.S. Hsu, C.C. Liu, J.H. Lin, et al., Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis, Sci. Rep. 7 (2017) 14272.
|
[47] |
S. Wang, J.L. Fu, H.F. Hao, et al., Metabolic reprogramming by traditional Chinese medicine and its role in effective cancer therapy, Pharmacol. Res. 170 (2021) 105728.
|
[48] |
M. Imamura, J.S. Moon, K.P. Chung, et al., RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase, JCI Insight 3 (2018) e94979.
|
[49] |
G. Hatzivassiliou, F. Zhao, D.E. Bauer, et al., ATP citrate lyase inhibition can suppress tumor cell growth, Cancer Cell 8 (2005) 311-321.
|