Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Min Yang, Chun Zhang. The role of innate immunity in diabetic nephropathy and their therapeutic consequences[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 39-51. doi: 10.1016/j.jpha.2023.09.003
Citation: Min Yang, Chun Zhang. The role of innate immunity in diabetic nephropathy and their therapeutic consequences[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 39-51. doi: 10.1016/j.jpha.2023.09.003

The role of innate immunity in diabetic nephropathy and their therapeutic consequences

doi: 10.1016/j.jpha.2023.09.003
Funds:

This work was financially supported by the National Natural Science Foundation of China (Grant Nos.: 82100801, 81974096, 81770711, 81974097, and 81961138007).

  • Received Date: Feb. 26, 2023
  • Accepted Date: Sep. 05, 2023
  • Rev Recd Date: Jul. 12, 2023
  • Publish Date: Sep. 09, 2023
  • Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
  • loading
  • [1]
    C.S. Fox, K. Matsushita, M. Woodward, et al., Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis, Lancet 380 (2012) 1662-1673.
    [2]
    S. Hadjadj, B. Cariou, F. Fumeron, et al., Death, end-stage renal disease and renal function decline in patients with diabetic nephropathy in French cohorts of type 1 and type 2 diabetes, Diabetologia 59 (2016) 208-216.
    [3]
    N.M. Selby, M.W. Taal, An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines, Diabetes Obes. Metab. 22 (2020) 3-15.
    [4]
    A. Lim, Diabetic nephropathy-complications and treatment, Int. J. Nephrol. Renovascular Dis. 7 (2014) 361-381.
    [5]
    G. Hasegawa, K. Nakano, M. Sawada, et al., Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy, Kidney Int. 40 (1991) 1007-1012.
    [6]
    A.K.H. Lim, G.H. Tesch, Inflammation in diabetic nephropathy, Mediat. Inflamm. 2012 (2012) 1-12.
    [7]
    F.B. Hickey, F. Martin, Role of the immune system in diabetic kidney disease, Curr. Diabetes Rep. 18 (2018) 1-10.
    [8]
    S.C.W. Tang, J.C.K. Leung, L.Y.Y. Chan, et al., Activation of tubular epithelial cells in diabetic nephropathy and the role of the peroxisome proliferator-activated receptor-γ agonist, J. Am. Soc. Nephrol. 17 (2006) 1633-1643.
    [9]
    J.J. Navarro, F.F. Milena, C. Mora, et al., Tumor necrosis factor-α gene expression in diabetic nephropathy: Relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition, Kidney Int. 68 (2005) S98-S102.
    [10]
    S.C.W. Tang, L.Y.Y. Chan, J.C.K. Leung, et al., Additive renoprotective effects of B2-kinin receptor blocker and PPAR-γ agonist in uninephrectomized db/db mice, Lab. Investig. 91 (2011) 1351-1362.
    [11]
    F.Y. Chow, D.J. Nikolic-Paterson, E. Ozols, et al., Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice, J. Am. Soc. Nephrol. 16 (2005) 1711-1722.
    [12]
    S.C.W. Tang, L.Y.Y. Chan, J.C.K. Leung, et al., Bradykinin and high glucose promote renal tubular inflammation, Nephrol Dial Transplant 25 (2010) 698-710.
    [13]
    D. Nguyen, F. Ping, W. Mu, et al., Macrophage accumulation in human progressive diabetic nephropathy, Nephrology 11 (2006) 226-231.
    [14]
    T.H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defenses, Clin. Microbiol. Rev. 22 (2009) 240-273, TableofContents.
    [15]
    J.K. Dowling, L.A.J. O’Neill, Biochemical regulation of the inflammasome, Crit. Rev. Biochem. Mol. Biol. 47 (2012) 424-443.
    [16]
    W. Jun, H. Makino, Innate immunity in diabetes and diabetic nephropathy, Nat. Rev. Nephrol. 12 (2016) 13-26.
    [17]
    M. Lamkanfi, V.M. Dixit, Mechanisms and functions of inflammasomes, Cell 157 (2014) 1013-1022.
    [18]
    M. Lin, S.C.W. Tang, Toll-like receptors: Sensing and reacting to diabetic injury in the kidney, Nephrol Dial Transplant 29 (2014) 746-754.
    [19]
    K.L. Rock, E. Latz, F. Ontiveros, et al., The sterile inflammatory response, Annu. Rev. Immunol. 28 (2010) 321-342.
    [20]
    A.L. Blasius, B. Beutler, Intracellular toll-like receptors, Immunity 32 (2010) 305-315.
    [21]
    R. Medzhitov, Toll-like receptors and innate immunity, Nat. Rev. Immunol. 1 (2001) 135-145.
    [22]
    S. Uematsu, S. Akira, Toll-like receptors and innate immunity, J. Mol. Med. 84 (2006) 712-725.
    [23]
    Y. Xu, X. Tao, B. Shen, et al., Structural basis for signal transduction by the Toll/interleukin-1 receptor domains, Nature 408 (2000) 111-115.
    [24]
    T. Kawai, S. Akira, The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors, Nat. Immunol. 11 (2010) 373-384.
    [25]
    D. De Nardo, Toll-like receptors: Activation, signalling and transcriptional modulation, Cytokine 74 (2015) 181-189.
    [26]
    E.M.Y. Moresco, D. LaVine, B. Beutler, Toll-like receptors, Curr. Biol. 21 (2011) R488-R493.
    [27]
    S. Devaraj, M.R. Dasu, J. Rockwood, et al., Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state, J. Clin. Endocrinol. Metab. 93 (2008) 578-583.
    [28]
    M.R. Dasu, S. Devaraj, S. Park, et al., Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects, Diabetes Care 33 (2010) 861-868.
    [29]
    X.H. Xu, P.K. Shah, E. Faure, et al., Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL, Circulation 104 (2001) 3103-3108.
    [30]
    M. Koc, A. Toprak, H. Arikan, et al., Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: Relation with inflammation, Nephrol Dial Transplant 26 (2011) 955-963.
    [31]
    R. Perez-Morales, M. Del Pino, J. Valdivielso, et al., Inflammation in diabetic kidney disease, Nephron 143 (2019) 12-16.
    [32]
    H.J. Brown, H.R. Lock, T.G.A.M. Wolfs, et al., Toll-like receptor 4 ligation on intrinsic renal cells contributes to the induction of antibody-mediated glomerulonephritis via CXCL1 and CXCL2, J. Am. Soc. Nephrol. 18 (2007) 1732-1739.
    [33]
    B. Kruger, S. Krick, N. Dhillon, et al., Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 3390-3395.
    [34]
    H. Wu, G. Chen, K.R. Wyburn, et al., TLR4 activation mediates kidney ischemia/reperfusion injury, J. Clin. Invest. 117 (2007) 2847-2859.
    [35]
    J.C. Leemans, L. Kors, H.J. Anders, et al., Pattern recognition receptors and the inflammasome in kidney disease, Nat. Rev. Nephrol. 10 (2014) 398-414.
    [36]
    M. Lin, W.H. Yiu, H.J. Wu, et al., Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy, J. Am. Soc. Nephrol. 23 (2012) 86-102.
    [37]
    H. Mudaliar, C. Pollock, U. Panchapakesan, Role of toll-like receptors in diabetic nephropathy, Clin. Sci. 126 (2014) 685-694.
    [38]
    Y.J. Liang, J.H. Jian, Y. Liu, et al., Advanced glycation end products-induced apoptosis attenuated by PPARδ activation and epigallocatechin gallate through NF-κB pathway in human embryonic kidney cells and human mesangial cells, Diabetes/metabolism Res. Rev. 26 (2010) 406-416.
    [39]
    A. Kumar, K.S. Hawkins, M.A. Hannan, et al., Activation of PKC-βI in glomerular mesangial cells is associated with specific NF-κB subunit translocation, Am. J. Physiol. Ren. Physiol. 281 (2001) F613-F619.
    [40]
    F.T.H. Lee, Z. Cao, D.M. Long, et al., Interactions between angiotensin II and NF-κB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy, J. Am. Soc. Nephrol. 15 (2004) 2139-2151.
    [41]
    S. Pillarisetti, U. Saxena, Role of oxidative stress and inflammation in the origin of Type 2 diabetes - a paradigm shift, Expert Opin. Ther. Targets 8 (2004) 401-408.
    [42]
    H. Mudaliar, C. Pollock, J. Ma, et al., The role of TLR2 and 4-mediated inflammatory pathways in endothelial cells exposed to high glucose, PLoS One 9 (2014), e108844.
    [43]
    Y. Liu, Z. Xu, F. Ma, et al., Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway, Biomed. Pharmacother. 107 (2018) 1393-1401.
    [44]
    S. Devaraj, P. Tobias, I. Jialal, Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes, Cytokine 55 (2011) 441-445.
    [45]
    M.K. Mohammad, M. Morran, B. Slotterbeck, et al., Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse, Int Immunol. 18 (2006) 1101-1113.
    [46]
    P.P.C. Souza, U.H. Lerner, Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation, Front. Immunol. 10 (2019) 1663.
    [47]
    T.T. Braga, M. Correa-Costa, Y.F.S. Guise, et al., MyD88 signaling pathway is involved in renal fibrosis by favoring a T_H2 immune response and activating alternative M2 macrophages, Mol. Med. 18 (2012) 1231-1239.
    [48]
    T. Hosoi, S. Yokoyama, S. Matsuo, et al., Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice, PLoS One 5 (2010), e12537.
    [49]
    P.L. Bollyky, J.B. Bice, I.R. Sweet, et al., The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury, PLoS One 4 (2009), e5063.
    [50]
    U. Panchapakesan, C. Pollock, The role of toll-like receptors in diabetic kidney disease, Curr. Opin. Nephrol. Hypertens. 27 (2018) 30-34.
    [51]
    Y. Tong, J. Chuan, L. Bai, et al., The protective effect of shikonin on renal tubular epithelial cell injury induced by high glucose, Biomed. Pharmacother. 98 (2018) 701-708.
    [52]
    F. Li, N. Yang, L. Zhang, et al., Increased expression of toll-like receptor 2 in rat diabetic nephropathy, Am. J. Nephrol. 32 (2010) 179-186.
    [53]
    Q. Lu, W. Wang, M. Zhang, et al., ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy, Exp. Ther. Med. 17 (2019) 835-846.
    [54]
    I. Jialal, H. Kaur, The role of toll-like receptors in diabetes-induced inflammation: Implications for vascular complications, Curr. Diabetes Rep. 12 (2012) 172-179.
    [55]
    M.R. Dasu, S. Devaraj, L. Zhao, et al., High glucose induces toll-like receptor expression in human monocytes: Mechanism of activation, Diabetes 57 (2008) 3090-3098.
    [56]
    W.H. Yiu, M. Lin, S.C. Tang, Toll-like receptor activation: From renal inflammation to fibrosis, Kidney Int. Suppl. 4 (2014) 20-25.
    [57]
    A. Lartigue, N. Colliou, S. Calbo, et al., Critical role of TLR2 and TLR4 in autoantibody production and glomerulonephritis in lpr mutation-induced mouse lupus, J. Immunol. 183 (2009) 6207-6216.
    [58]
    M. Correa-Costa, T.T. Braga, P. Semedo, et al., Pivotal role of toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis, PLoS One 6 (2011), e29004.
    [59]
    M. Motojima, T. Matsusaka, V. Kon, et al., Fibrinogen that appears in Bowman’s space of proteinuric kidneys in vivo activates podocyte toll-like receptors 2 and 4 in vitro, Nephron Exp. Nephrol. 114 (2009) e39-e47.
    [60]
    M.C. Banas, B. Banas, K.L. Hudkins, et al., TLR4 links podocytes with the innate immune system to mediate glomerular injury, J. Am. Soc. Nephrol. 19 (2008) 704-713.
    [61]
    J. Reiser, G. von Gersdorff, M. Loos, et al., Induction of B7-1 in podocytes is associated with nephrotic syndrome, J. Clin. Invest. 113 (2004) 1390-1397.
    [62]
    D. Verzola, L. Cappuccino, E. D’Amato, et al., Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria, Kidney Int. 86 (2014) 1229-1243.
    [63]
    J.J. Cha, Y.Y. Hyun, M.H. Lee, et al., Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice, Endocrinology 154 (2013) 2144-2155.
    [64]
    K. Stadler, I.J. Goldberg, K. Susztak, The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease, Curr. Diab. Rep. 15 (2015), 40.
    [65]
    A. Cao, L. Wang, X. Chen, et al., Ursodeoxycholic acid ameliorated diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress, Biol. Pharm. Bull. 39 (2016) 1300-1308.
    [66]
    M. Wei, Z. Li, L. Xiao, et al., Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury, Mol. Immunol. 68 (2015) 261-271.
    [67]
    H. Kaur, A. Chien, I. Jialal, Hyperglycemia induces Toll like receptor 4 expression and activity in mouse mesangial cells: Relevance to diabetic nephropathy, Am. J. Physiol. Renal Physiol. 303 (2012) F1145-F1150.
    [68]
    S. Takata, Y. Sawa, T. Uchiyama, et al., Expression of toll-like receptor 4 in glomerular endothelial cells under diabetic conditions, Acta Histochem. Cytochem 46 (2013) 35-42.
    [69]
    I. Jialal, A.M. Major, S. Devaraj, Global toll-like receptor 4 knockout results in decreased renal inflammation, fibrosis and podocytopathy, J. Diabetes Complicat. 28 (2014) 755-761.
    [70]
    M. Lin, W.H. Yiu, R. Li, et al., The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy, Kidney Int. 83 (2013) 887-900.
    [71]
    J. Chen, P. Szodoray, M. Zeher, Toll-like receptor pathways in autoimmune diseases, Clin. Rev. Allergy Immunol. 50 (2016) 1-17.
    [72]
    Q. Chen, X. Guan, X. Zuo, et al., The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases, Acta Pharm. Sin. B 6 (2016) 183-188.
    [73]
    H. Shi, Y. Che, L. Bai, et al., High mobility group box 1 in diabetic nephropathy, Exp. Ther. Med. 14 (2017) 2431-2433.
    [74]
    H. Mudaliar, C. Pollock, M.G. Komala, et al., The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules, Am. J. Physiol. Ren. Physiol. 305 (2013) F143-F154.
    [75]
    Y. Chen, F. Qiao, Y. Zhao, et al., HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose, Int. J. Clin. Exp. Pathol. 8 (2015) 6683-6691.
    [76]
    B. Chen, Y. Li, Y. Liu, et al., circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells, J. Cell. Physiol. 234 (2019) 21249-21259.
    [77]
    D. Yao, S. Wang, M. Wang, et al., Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products-nuclear factor-κB signaling pathway, Mol. Med. Rep. (2018): 3625-3630.
    [78]
    J. Jin, J. Gong, L. Zhao, et al., Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux, J. Diabetes 11 (2019) 826-836.
    [79]
    H.F. Jheng, P.J. Tsai, Y. Chuang, et al., Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy, Dis. Model. Mech. 8 (2015) 1311-1321.
    [80]
    G. Garibotto, A. Carta, D. Picciotto, et al., Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy, J. Nephrol. 30 (2017) 719-727.
    [81]
    V.C. Biancardi, G.F. Bomfim, W.L. Reis, et al., The interplay between angiotensin II, TLR4 and hypertension, Pharmacol. Res. 120 (2017) 88-96.
    [82]
    P.C. Santos, J.E. Krieger, A.C. Pereira, Renin-angiotensin system, hypertension, and chronic kidney disease: Pharmacogenetic implications, J. Pharmacol. Sci. 120 (2012) 77-88.
    [83]
    B.S. van Thiel, I. van der Pluijm, L. te Riet, et al., The renin-angiotensin system and its involvement in vascular disease, Eur. J. Pharmacol. 763 (2015) 3-14.
    [84]
    M. Pacurari, R. Kafoury, P.B. Tchounwou, et al., The renin-angiotensin-aldosterone system in vascular inflammation and remodeling, Int. J. Inflamm. 2014 (2014) 1-13.
    [85]
    T. Bondeva, T. Roger, G. Wolf, Differential regulation of Toll-like receptor 4 gene expression in renal cells by angiotensin II: Dependency on AP1 and PU.1 transcriptional sites, Am. J. Nephrol. 27 (2007) 308-314.
    [86]
    J. Lv, Q. Chen, Y. Shao, et al., Cross-talk between angiotensin-II and toll-like receptor 4 triggers a synergetic inflammatory response in rat mesangial cells under high glucose conditions, Biochem. Biophys. Res. Commun. 459 (2015) 264-269.
    [87]
    Y. Wang, Q. Fang, Y. Jin, et al., Blockade of myeloid differentiation 2 attenuates diabetic nephropathy by reducing activation of the renin-angiotensin system in mouse kidneys, Br. J. Pharmacol. 176 (2019) 2642-2657.
    [88]
    E.J. Hennessy, A.E. Parker, L.A.J. O’Neill, Targeting toll-like receptors: Emerging therapeutics? Nat. Rev. Drug Discov. 9 (2010) 293-307.
    [89]
    Y.C. Chang, W. Kao, W. Wang, et al., Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses, FASEB J. 23 (2009) 3078-3088.
    [90]
    T.W. Rice, A.P. Wheeler, G.R. Bernard, et al., A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis, Crit. Care Med. 38 (2010) 1685-1694.
    [91]
    Z.M. Liu, H.Y. Zheng, L.H. Chen, et al., Low expression of miR-203 promoted diabetic nephropathy via increasing TLR4, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 5627-5634.
    [92]
    T. Ji, Y. Wang, Y. Zhu, et al., Long noncoding RNA Gm6135 functions as a competitive endogenous RNA to regulate toll-like receptor 4 expression by sponging miR-203-3p in diabetic nephropathy, J. Cell. Physiol. 234 (2019) 6633-6641.
    [93]
    H. Yang, H.S. Hreggvidsdottir, K. Palmblad, et al., A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 11942-11947.
    [94]
    H.J. Anders, D.A. Muruve, The inflammasomes in kidney disease, J. Am. Soc. Nephrol. 22 (2011) 1007-1018.
    [95]
    K. Schroder, J. Tschopp, The inflammasomes, Cell 140 (2010) 821-832.
    [96]
    S.K. Vanaja, V.A.K. Rathinam, K.A. Fitzgerald, Mechanisms of inflammasome activation: Recent advances and novel insights, Trends Cell Biol. 25 (2015) 308-315.
    [97]
    Y. Zhong, A. Kinio, M. Saleh, Functions of NOD-like receptors in human diseases, Front. Immunol. 4 (2013), 333.
    [98]
    J.P.Y. Ting, R.C. Lovering, E.S. Alnemri, et al., The NLR gene family: A standard nomenclature, Immunity 28 (2008) 285-287.
    [99]
    E. Meunier, P. Broz, Evolutionary convergence and divergence in NLR function and structure, Trends Immunol. 38 (2017) 744-757.
    [100]
    A.A. Shigeoka, A. Kambo, J.C. Mathison, et al., Nod1 and Nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury, J. Immunol. 184 (2010) 2297-2304.
    [101]
    L.H. Travassos, L.A.M. Carneiro, M. Ramjeet, et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nat. Immunol. 11 (2010) 55-62.
    [102]
    F. Martinon, K. Burns, J. Tschopp, The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell 10 (2002) 417-426.
    [103]
    W. Huang, F. Gou, Y. Long, et al., High glucose and lipopolysaccharide activate NOD1- RICK-NF-κB inflammatory signaling in mesangial cells, Exp. Clin. Endocrinol. Diabetes 124 (2016) 512-517.
    [104]
    S.L. Rivers, A. Klip, A. Giacca, NOD1: An interface between innate immunity and insulin resistance, Endocrinology 160 (2019) 1021-1030.
    [105]
    P. Du, B. Fan, H. Han, et al., NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy, Kidney Int. 84 (2013) 265-276.
    [106]
    B. Haraldsson, J. Nystrom, W.M. Deen, Properties of the glomerular barrier and mechanisms of proteinuria, Physiol. Rev. 88 (2008) 451-487.
    [107]
    J. Shang, Y. Zhang, Y. Jiang, et al., NOD2 promotes endothelial-to-mesenchymal transition of glomerular endothelial cells via MEK/ERK signaling pathway in diabetic nephropathy, Biochem. Biophys. Res. Commun. 484 (2017) 435-441.
    [108]
    Y. Qiu, L. Tang, Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy, Pharmacol. Res. 114 (2016) 251-264.
    [109]
    T. Xu, Y. Du, X. Fang, et al., New insights into Nod-like receptors (NLRs) in liver diseases, Int. J. Physiol. Pathophysiol. Pharmacol. 10 (2018) 1-16.
    [110]
    C.R. Lupfer, P.K. Anand, X. Qi, et al., Editorial: Role of NOD-like receptors in infectious and immunological diseases, Front. Immunol. 11 (2020), 923.
    [111]
    C. Ram, A.K. Jha, A. Ghosh, et al., Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches, Eur. J. Pharmacol. 885 (2020), 173503.
    [112]
    H.J. Kim, D.W. Lee, K. Ravichandran, et al., NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury, J. Pharmacol. Exp. Ther. 346 (2013) 465-472.
    [113]
    N. Riteau, L. Baron, B. Villeret, et al., ATP release and purinergic signaling: A common pathway for particle-mediated inflammasome activation, Cell Death Dis. 3 (2012), e403.
    [114]
    G. Lorenz, M.N. Darisipudi, H.J. Anders, Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis, Nephrol. Dial. Transplant 29 (2014) 41-48.
    [115]
    K. Yamasaki, J. Muto, K.R. Taylor, et al., NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury, J. Biol. Chem. 284 (2009) 12762-12771.
    [116]
    N. Kayagaki, I.B. Stowe, B.L. Lee, et al., Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling, Nature 526 (2015) 666-671.
    [117]
    H. Yaribeygi, N. Katsiki, A.E. Butler, et al., Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys, Drug Discov. Today 24 (2019) 256-262.
    [118]
    R.C. Coll, A.A.B. Robertson, J.J. Chae, et al., A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases, Nat. Med. 21 (2015) 248-255.
    [119]
    K. Shahzad, F. Bock, W. Dong, et al., Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy, Kidney Int. 87 (2015) 74-84.
    [120]
    M. Wu, W. Han, S. Song, et al., NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice, Mol. Cell. Endocrinol. 478 (2018) 115-125.
    [121]
    P. Gao, X. Meng, H. Su, et al., Thioredoxin-interacting protein mediates NALP3 inflammasome activation in podocytes during diabetic nephropathy, Biochim. Biophys. Acta BBA Mol. Cell Res. 1843 (2014) 2448-2460.
    [122]
    M. Wu, Z. Yang, C. Zhang, et al., Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy, Metabolism 118 (2021), 154748.
    [123]
    H. Jiang, H. He, Y. Chen, et al., Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders, J. Exp. Med. 214 (2017) 3219-3238.
    [124]
    Y. Han, X. Xu, C. Tang, et al., Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis, Redox Biol. 16 (2018) 32-46.
    [125]
    N. Li, T. Zhao, Y. Cao, et al., Tangshen Formula Attenuates Diabetic Kidney Injury by Imparting Anti-pyroptotic Effects via the TXNIP-NLRP3-GSDMD Axis, Front Pharmacol. 11 (2020) 623489.
    [126]
    L. Zhou, W. Huang, Y. Xu, et al., Sweet taste receptors mediated ROS-NLRP3 inflammasome signaling activation: Implications for diabetic nephropathy, J. Diabetes Res. 2018 (2018) 1-15.
    [127]
    P. Gao, F. He, H. Tang, et al., NADPH oxidase-induced NALP3 inflammasome activation is driven by thioredoxin-interacting protein which contributes to podocyte injury in hyperglycemia, J. Diabetes Res. 2015 (2015), 504761.
    [128]
    H. Feng, J. Gu, F. Gou, et al., High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells, J. Diabetes Res. 2016 (2016) 1-11.
    [129]
    S. Wang, X. Zhao, S. Yang, et al., Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway, Chem. Biol. Interact. 278 (2017) 48-53.
    [130]
    C.Y.R. Tan, W. Qi, Z. Yuan, et al., Thioredoxin-interacting protein: A potential therapeutic target for treatment of progressive fibrosis in diabetic nephropathy, Nephron 129 (2015) 109-127.
    [131]
    K. Chen, J. Zhang, W. Zhang, et al., ATP-P2X4 signaling mediates NLRP3 inflammasome activation: A novel pathway of diabetic nephropathy, Int. J. Biochem. Cell Biol. 45 (2013) 932-943.
    [132]
    A. Solini, S. Menini, C. Rossi, et al., The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: Possible role of NLRP3 inflammasome activation, J. Pathol. 231 (2013) 342-353.
    [133]
    C. Gerard, B.J. Rollins, Chemokines and disease, Nat. Immunol. 2 (2001) 108-115.
    [134]
    A. Rot, U.H. von Andrian, Chemokines inInnate andAdaptiveHostDefense: Basic chemokinese grammar for immune cells, Annu. Rev. Immunol. 22 (2004) 891-928.
    [135]
    B.J. Rollins, Chemokines, Blood 90 (1997) 909-928.
    [136]
    B. Moser, P. Loetscher, Lymphocyte traffic control by chemokines, Nat. Immunol. 2 (2001) 123-128.
    [137]
    M.J. Stone, J.A. Hayward, C. Huang, et al., Mechanisms of Regulation of the Chemokine-Receptor Network, Int. J. Mol. Sci. 18 (2017).
    [138]
    E. Galliera, M. Corsi, R. Bonecchi, et al., Chemokines as pharmacological targets, Mini Rev. Med. Chem. 8 (2008) 638-646.
    [139]
    S. Segerer, P.J. Nelson, D.SCHLO[Combining Diaeresis]NDORFF, Chemokines, chemokine receptors, and renal disease, J. Am. Soc. Nephrol. 11 (2000) 152-176.
    [140]
    A.C.K. Chung, H.Y. Lan, Chemokines in renal injury, J. Am. Soc. Nephrol. 22 (2011) 802-809.
    [141]
    H. Li, Y. You, B. Shao, et al., Roles and crosstalks of macrophages in diabetic nephropathy, Front. Immunol. 13 (2022), 1015142.
    [142]
    C. Sassy-Prigent, D. Heudes, C. Mandet, et al., Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats, Diabetes 49 (2000) 466-475.
    [143]
    T. Chang, J.W. Chen, The role of chemokines and chemokine receptors in diabetic nephropathy, Int. J. Mol. Sci. 21 (2020), 3172.
    [144]
    Y. Shi, Y. Wang, Q. Li, et al., Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases, Nat. Rev. Nephrol. 14 (2018) 493-507.
    [145]
    D. Sanajou, A.G. Haghjo, H. Argani, et al., FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats, J. Physiol. Biochem. 74 (2018) 467-478.
    [146]
    S. Giunti, F. Barutta, P. Cavallo Perin, et al., Targeting the MCP-1/CCR2 system in diabetic kidney disease, Curr. Vasc. Pharmacol. 8 (2010) 849-860.
    [147]
    E.Y. Lee, C.H. Chung, C.C. Khoury, et al., The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability, Am. J. Physiol. Ren. Physiol. 297 (2009) F85-F94.
    [148]
    B. Satirapoj, Tubulointerstitial biomarkers for diabetic nephropathy, J. Diabetes Res. 2018 (2018) 1-6.
    [149]
    F.Y. Chow, D.J. Nikolic-Paterson, E. Ozols, et al., Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice, Kidney Int. 69 (2006) 73-80.
    [150]
    J. Park, D.R. Ryu, J. Li, et al., MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells, Am. J. Physiol. Ren. Physiol. 295 (2008) F749-F757.
    [151]
    C.K. Wong, A.W.Y. Ho, P.C.Y. Tong, et al., Aberrant expression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy, J. Clin. Immunol. 28 (2008) 36-43.
    [152]
    N. Nowak, J. Skupien, A.M. Smiles, et al., Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development, Kidney Int. 93 (2018) 1198-1206.
    [153]
    B. Satirapoj, R. Dispan, P. Radinahamed, et al., Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease, BMC Nephrol. 19 (2018) 1-10.
    [154]
    G.N. Nadkarni, V. Rao, F. Ismail-Beigi, et al., Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: The ACCORD trial, Clin. J. Am. Soc. Nephrol. 11 (2016) 1343-1352.
    [155]
    F. Chow, E. Ozols, D.J. Nikolic-Paterson, et al., Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury, Kidney Int. 65 (2004) 116-128.
    [156]
    K.F. Hilgers, A. Hartner, M. Porst, et al., Monocyte chemoattractant protein-1 and macrophage infiltration in hypertensive kidney injury, Kidney Int. 58 (2000) 2408-2419.
    [157]
    S. Mezzano, A. Droguett, M.E. Burgos, et al., Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy, Kidney Int. 64 (2003) S64-S70.
    [158]
    Z. Yang, Z. Guo, J. Dong, et al., miR-374a regulates inflammatory response in diabetic nephropathy by targeting MCP-1 expression, Front. Pharmacol. 9 (2018), 900.
    [159]
    X. Xu, X. Qi, Y. Shao, et al., High glucose induced-macrophage activation through TGF-β-activated kinase 1 signaling pathway, Inflamm. Res. 65 (2016) 655-664.
    [160]
    X. Chen, W. Liu, Y. Wang, et al., Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways, J. Diabetes Complicat. 30 (2016) 760-769.
    [161]
    C. Tanifuji, Y. Suzuki, W.M. Geot, et al., Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP- expression of proximal tubular cells, Antioxid. Redox Signal. 7 (2005) 1261-1268.
    [162]
    H. Zhang, Z. Jiang, J. Chang, et al., Role of NAD(P)H oxidase in transforming growth factor-β1-induced monocyte chemoattractant protein-1 and interleukin-6 expression in rat renal tubular epithelial cells, Nephrology 14 (2009) 302-310.
    [163]
    T. Matsui, S.I. Yamagishi, M. Takeuchi, et al., Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation, Biochem. Biophys. Res. Commun. 385 (2009) 269-272.
    [164]
    T. Matsui, S. Yamagishi, S. Ueda, et al., Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end-product (AGE)-induced monocyte chemoattractant protein-1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator-activated receptor-γ activation, J. Int. Med. Res. 35 (2007) 482-489.
    [165]
    J. Cheng, M.M. Diaz Encarnacion, G.M. Warner, et al., TGF-beta1 stimulates monocyte chemoattractant protein-1 expression in mesangial cells through a phosphodiesterase isoenzyme 4-dependent process, Am J Physiol Cell Physiol. 289 (2005) C959-970.
    [166]
    G. Wolf, T. Jocks, G. Zahner, et al., Existence of a regulatory loop between MCP-1 and TGF-β in glomerular immune injury, Am. J. Physiol. Ren. Physiol. 283 (2002) F1075-F1084.
    [167]
    S. Wu, C. Lu, L. Dong, et al., Signal transduction involved in CTGF-induced production of chemokines in mesangial cells, Growth Factors 26 (2008) 192-200.
    [168]
    S. Kato, V.A. Luyckx, M. Ots, et al., Renin-angiotensin blockade lowers MCP-1 expression in diabetic rats, Kidney Int. 56 (1999) 1037-1048.
    [169]
    B. Amann, R. Tinzmann, B. Angelkort, ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1, Diabetes Care. 26 (2003) 2421-2425.
    [170]
    J.A. Moreno, C. Gomez-Guerrero, S. Mas, et al., Targeting inflammation in diabetic nephropathy: A tale of hope, Expert Opin. Investig. Drugs 27 (2018) 917-930.
    [171]
    K.R. Tuttle, F.C. Brosius, S.G. Adler, et al., JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial, Nephrol Dial Transplant 33 (2018) 1950-1959.
    [172]
    S.J. Seok, E.S. Lee, G.T. Kim, et al., Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice, Nephrol Dial Transplant 28 (2013) 1700-1710.
    [173]
    Y.S. Kang, M.H. Lee, H.K. Song, et al., CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice, Kidney Int. 78 (2010) 883-894.
    [174]
    T. Sullivan, Z. Miao, D.J. Dairaghi, et al., CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice, Am. J. Physiol. Ren. Physiol. 305 (2013) F1288-F1297.
    [175]
    K. Budge, S. Dellepiane, S.M.W. Yu, et al., Complement, a therapeutic target in diabetic kidney disease, Front. Med. 7 (2021), 599236.
    [176]
    J.M. Thurman, Complement in kidney disease: Core curriculum 2015, Am. J. Kidney Dis. 65 (2015) 156-168.
    [177]
    T. Wada, M. Nangaku, Novel roles of complement in renal diseases and their therapeutic consequences, Kidney Int. 84 (2013) 441-450.
    [178]
    A. Flyvbjerg, The role of the complement system in diabetic nephropathy, Nat. Rev. Nephrol. 13 (2017) 311-318.
    [179]
    C. Mason, A. Tarr, Human lectins and their roles in viral infections, Molecules 20 (2015) 2229-2271.
    [180]
    M.W. Turner, The role of mannose-binding lectin in health and disease, Mol. Immunol. 40 (2003) 423-429.
    [181]
    S. Thiel, T. Vorup-Jensen, C.M. Stover, et al., A second serine protease associated with mannan-binding lectin that activates complement, Nature 386 (1997) 506-510.
    [182]
    A. Flyvbjerg, Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily, Nat. Rev. Endocrinol. 6 (2010) 94-101.
    [183]
    D. Ricklin, G. Hajishengallis, K. Yang, et al., Complement: A key system for immune surveillance and homeostasis, Nat. Immunol. 11 (2010) 785-797.
    [184]
    D.R. Mathern, P.S. Heeger, Molecules great and small, Clin. J. Am. Soc. Nephrol. 10 (2015) 1636-1650.
    [185]
    W. Zhou, J.E. Marsh, S.H. Sacks, Intrarenal synthesis of complement, Kidney Int. 59 (2001) 1227-1235.
    [186]
    J. Fortpied, D. Vertommen, E. Van Schaftingen, Binding of mannose-binding lectin to fructosamines: A potential link between hyperglycaemia and complement activation in diabetes, Diabetes/metabolism Res. Rev. 26 (2010) 254-260.
    [187]
    X. Qin, A. Goldfine, N. Krumrei, et al., Glycation inactivation of the complement regulatory protein CD59, Diabetes 53 (2004) 2653-2661.
    [188]
    A.A. Satoskar, J.P. Shapiro, C.N. Bott, et al., Characterization of glomerular diseases using proteomic analysis of laser capture microdissected glomeruli, Mod. Pathol. 25 (2012) 709-721.
    [189]
    X.Q. Li, D.Y. Chang, M. Chen, et al., Complement activation in patients with diabetic nephropathy, Diabetes Metab. 45 (2019) 248-253.
    [190]
    Y. Huang, J. Xu, X. Wu, et al., High expression of complement components in the kidneys of type 2 diabetic rats with diabetic nephropathy, Front. Endocrinol. 10 (2019), 459.
    [191]
    T.K. Hansen, L. Tarnow, S. Thiel, et al., Association between mannose-binding lectin and vascular complications in type 1 diabetes, Diabetes 53 (2004) 1570-1576.
    [192]
    P. Hovind, T.K. Hansen, L. Tarnow, et al., Mannose-binding lectin as a predictor of microalbuminuria in type 1 diabetes, Diabetes 54 (2005) 1523-1527.
    [193]
    T.K. Hansen, S. Thiel, S.T. Knudsen, et al., Elevated levels of mannan-binding lectin in patients with type 1 diabetes, J. Clin. Endocrinol. Metab. 88 (2003) 4857-4861.
    [194]
    J.A. Ostergaard, S. Thiel, M. Lajer, et al., Increased all-cause mortality in patients with type 1 diabetes and high-expression mannan-binding lectin genotypes: a 12-year follow-up study, Diabetes Care. 38 (2015) 1898-1903.
    [195]
    J. OEstergaard, S. Thiel, M. Gadjeva, et al., Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice, Diabetologia 50 (2007) 1541-1549.
    [196]
    J.A. OEstergaard, M.M. Ruseva, T.H. Malik, et al., Increased autoreactivity of the complement-activating molecule mannan-binding lectin in a type 1 diabetes model, J. Diabetes Res. 2016 (2016) 1-7.
    [197]
    J.A. OEstergaard, M. Bjerre, F. Dagnaes-Hansen, et al., Diabetes-induced changes in mannan-binding lectin levels and complement activation in a mouse model of type 1 diabetes, Scand. J. Immunol. 77 (2013) 187-194.
    [198]
    K.I. Woroniecka, A.S. Park, D. Mohtat, et al., Transcriptome analysis of human diabetic kidney disease, Diabetes. 60 (2011) 2354-2369.
    [199]
    T. Fujita, S. Hemmi, M. Kajiwara, et al., Complement-mediated chronic inflammation is associated with diabetic microvascular complication, Diabetes Metab. Res. Rev. 29 (2013) 220-226.
    [200]
    X. Xiao, B. Ma, B. Dong, et al., Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice, J. Autoimmun. 32 (2009) 85-93.
    [201]
    L. Yang, S. Brozovic, J. Xu, et al., Inflammatory gene expression in OVE26 diabetic kidney during the development of nephropathy, Nephron Exp. Nephrol. 119 (2011) e8-e20.
    [202]
    M. Morigi, M. Galbusera, S. Gastoldi, et al., Alternative pathway activation of complement by shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis, J. Immunol. 187 (2011) 172-180.
    [203]
    S.M. Tan, M. Ziemann, V. Thallas-Bonke, et al., Complement C5a induces renal injury in diabetic kidney disease by disrupting mitochondrial metabolic agility, Diabetes 69 (2020) 83-98.
    [204]
    Z. Wang, Z. Wang, Z. Zhou, et al., Crucial genes associated with diabetic nephropathy explored by microarray analysis, BMC Nephrol. 17 (2016) 1-7.
    [205]
    T. Vaisar, B. Durbin-Johnson, K. Whitlock, et al., Erratum. urine complement proteins and the risk of kidney disease progression and mortality in type 2 diabetes. diabetes care 2018;41: 2361-2369, Diabetes Care 42 (2019) 1155.2-1155.
    [206]
    M. Morigi, L. Perico, D. Corna, et al., C3a receptor blockade protects podocytes from injury in diabetic nephropathy, JCI Insight 5 (2020).
    [207]
    L. Li, L. Chen, J. Zang, et al., C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease, Metabolism 64 (2015) 597-610.
    [208]
    T. Fujita, H. Ohi, K. Komatsu, et al., Complement activation accelerates glomerular injury in diabetic rats, Nephron 81 (1999) 208-214.
    [209]
    W.H. Yiu, R. Li, D.W.L. Wong, et al., Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy, Nephrol. Dial. Transplant. 33 (2018) 1323-1332.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (244) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return