Volume 13 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
Shiyao Zhang, Nur Farah Meor Azlan, Sunday Solomon Josiah, Jing Zhou, Xiaoxia Zhou, Lingjun Jie, Yanhui Zhang, Cuilian Dai, Dong Liang, Peifeng Li, Zhengqiu Li, Zhen Wang, Yun Wang, Ke Ding, Yan Wang, Jinwei Zhang. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1471-1495. doi: 10.1016/j.jpha.2023.09.002
Citation: Shiyao Zhang, Nur Farah Meor Azlan, Sunday Solomon Josiah, Jing Zhou, Xiaoxia Zhou, Lingjun Jie, Yanhui Zhang, Cuilian Dai, Dong Liang, Peifeng Li, Zhengqiu Li, Zhen Wang, Yun Wang, Ke Ding, Yan Wang, Jinwei Zhang. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1471-1495. doi: 10.1016/j.jpha.2023.09.002

The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies

doi: 10.1016/j.jpha.2023.09.002
Funds:

We are very grateful for the financial support from the National Natural Science Foundation of China (Grant Nos.: 82170406, 81970238, and 32111530119), Shanghai Municipal Science and Technology Major Project, China (Grant No.: 2018SHZDZX01), The Royal Society UK (Grant No.: IEC\NSFC\201094), and the Commonwealth Scholarship Commission UK (Grant No.: NGCA-2020-43).

  • Received Date: Mar. 04, 2023
  • Accepted Date: Sep. 05, 2023
  • Rev Recd Date: Jun. 20, 2023
  • Publish Date: Sep. 09, 2023
  • The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
  • loading
  • [1]
    J.C. Venter, M.D. Adams, E.W. Myers, et al., The sequence of the human genome, Science 291 (2001) 1304-1351.
    [2]
    R. Santos, O. Ursu, A. Gaulton, et al., A comprehensive map of molecular drug targets, Nat. Rev. Drug Discov. 16 (2017) 19-34.
    [3]
    D.R. Alessi, J. Zhang, A. Khanna, et al., The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters, Sci. Signal. 7 (2014), re3.
    [4]
    A. Grozio, K.F. Mills, J. Yoshino, et al., Slc12a8 is a nicotinamide mononucleotide transporter, Nat. Metab. 1 (2019) 47-57.
    [5]
    N. Ito, A. Takatsu, H. Ito, et al., Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging, Cell Rep. 40 (2022), 111131.
    [6]
    L. Caron, F. Rousseau, E. Gagnon, et al., Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein, J. Biol. Chem. 275 (2000) 32027-32036.
    [7]
    T.A. Chew, B.J. Orlando, J. Zhang, et al., Structure and mechanism of the cation-chloride cotransporter NKCC1, Nature 572 (2019) 488-492.
    [8]
    C. Neumann, L.L. Rosenbaek, R.K. Flygaard, et al., Cryo-EM structure of the human NKCC1 transporter reveals mechanisms of ion coupling and specificity, EMBO J. 41 (2022), e110169.
    [9]
    M. Fan, J. Zhang, C.L. Lee, et al., Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter, Nature 614 (2023) 788-793.
    [10]
    J. Nan, Y. Yuan, X. Yang, et al., Cryo-EM structure of the human sodium-chloride cotransporter NCC, Sci. Adv. 8 (2022), eadd7176.
    [11]
    S. Liu, S. Chang, B. Han, et al., Cryo-EM structures of the human cation-chloride cotransporter KCC1, Science 366 (2019) 505-508.
    [12]
    X. Chi, X. Li, Y. Chen, et al., Cryo-EM structures of the full-length human KCC2 and KCC3 cation-chloride cotransporters, Cell Res. 31 (2021) 482-484.
    [13]
    Y. Xie, S. Chang, C. Zhao, et al., Structures and an activation mechanism of human potassium-chloride cotransporters, Sci. Adv. 6 (2020), eabc5883.
    [14]
    M.S. Reid, D.M. Kern, S.G. Brohawn, Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs, eLife 9 (2020), e52505.
    [15]
    K. Retterer, J. Juusola, M.T. Cho, et al., Clinical application of whole-exome sequencing across clinical indications, Genet. Med. 18 (2016) 696-704.
    [16]
    T.N. Turner, A.B. Wilfert, T.E. Bakken, et al., Sex-based analysis of de novo variants in neurodevelopmental disorders, Am. J. Hum. Genet. 105 (2019) 1274-1285.
    [17]
    A. Daga, A.J. Majmundar, D.A. Braun, et al., Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis, Kidney Int. 93 (2018) 204-213.
    [18]
    G. Gamba, A. Miyanoshita, M. Lombardi, et al., Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney, J. Biol. Chem. 269 (1994) 17713-17722.
    [19]
    J.A. Payne, B. Forbush 3rd, Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 4544-4548.
    [20]
    A. McNeill, E. Iovino, L. Mansard, et al., SLC12A2 variants cause a neurodevelopmental disorder or cochleovestibular defect, Brain 143 (2020) 2380-2387.
    [21]
    M. Marchese, G. Valvo, F. Moro, et al., Targeted gene resequencing (astrochip) to explore the tripartite synapse in autism-epilepsy phenotype with macrocephaly, Neuromolecular Med. 18 (2016) 69-80.
    [22]
    F. Valentino, L.P. Bruno, G. Doddato, et al., Exome sequencing in 200 intellectual disability/autistic patients: new candidates and atypical presentations, Brain Sci. 11 (2021), 936.
    [23]
    N.D. Merner, A. Mercado, A.R. Khanna, et al., Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia, J. Psychiatr. Res. 77 (2016) 22-26.
    [24]
    Y. Morita, J.H. Callicott, L.R. Testa, et al., Characteristics of the cation cotransporter NKCC1 in human brain: alternate transcripts, expression in development, and potential relationships to brain function and schizophrenia, J. Neurosci. 34 (2014) 4929-4940.
    [25]
    S. Anazi, S. Maddirevula, V. Salpietro, et al., Expanding the genetic heterogeneity of intellectual disability, Hum. Genet. 136 (2017) 1419-1429.
    [26]
    E.F. Macnamara, A.E. Koehler, P. D'Souza, et al., Kilquist syndrome: a novel syndromic hearing loss disorder caused by homozygous deletion of SLC12A2, Hum. Mutat. 40 (2019) 532-538.
    [27]
    T. Stodberg, M. Magnusson, N. Lesko, et al., SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia, Neurol. Genet. 6 (2020), e478.
    [28]
    H. Mutai, K. Wasano, Y. Momozawa, et al., Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans, PLoS Genet. 16 (2020), e1008643.
    [29]
    R.L.P. Santos-Cortez, T.K.L. Yarza, T.C. Bootpetch, et al., Identification of novel candidate genes and variants for hearing loss and temporal bone anomalies, Genes 12 (2021), 566.
    [30]
    S.M. Adadey, I. Schrauwen, E.T. Aboagye, et al., Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment, J. Hum. Genet. 66 (2021) 1169-1175.
    [31]
    Y. Liu, X. Chang, J. Glessner, et al., Association of rare recurrent copy number variants with congenital heart defects based on next-generation sequencing data from family trios, Front. Genet. 10 (2019), 819.
    [32]
    E. Delpire, M.I. Rauchman, D.R. Beier, et al., Molecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells, J. Biol. Chem. 269 (1994) 25677-25683.
    [33]
    J.-C. Xu, C. Lytle, T.-T. Zhu, et al., Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 2201-2205.
    [34]
    Z. Huang, Y. Sun, Y. Fan, et al., Genetic evaluation of 114 Chinese short stature children in the next generation era: a single center study, Cell. Physiol. Biochem. 49 (2018) 295-305.
    [35]
    N. Tanaka, T. Babazono, S. Saito, et al., Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms, Diabetes 52 (2003) 2848-2853.
    [36]
    F.E. Dewey, M.F. Murray, J.D. Overton, et al., Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study, Science 354 (2016), aaf6814.
    [37]
    G. Gamba, S.N. Saltzberg, M. Lombardi, et al., Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 2749-2753.
    [38]
    I. Iossifov, B.J. O'Roak, S.J. Sanders, et al., The contribution of de novo coding mutations to autism spectrum disorder, Nature 515 (2014) 216-221.
    [39]
    E.T. Lim, M. Uddin, S. De Rubeis, et al., Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder, Nat. Neurosci. 20 (2017) 1217-1224.
    [40]
    D.N. Subramanian, M. Zethoven, S. McInerny, et al., Exome sequencing of familial high-grade serous ovarian carcinoma reveals heterogeneity for rare candidate susceptibility genes, Nat. Commun. 11 (2020), 1640.
    [41]
    J.C. Ulirsch, S.K. Nandakumar, L. Wang, et al., Systematic functional dissection of common genetic variation affecting red blood cell traits, Cell 165 (2016) 1530-1545.
    [42]
    L. Southgate, M. Sukalo, A.S.V. Karountzos, et al., Haploinsufficiency of the NOTCH1 receptor as a cause of Adams-Oliver Syndrome with variable cardiac anomalies, Circ. Cardiovasc. Genet. 8 (2015) 572-581.
    [43]
    C.M. Gillen, S. Brill, J.A. Payne, et al., Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat, and human. A new member of the cation-chloride cotransporter family, J. Biol. Chem. 271 (1996) 16237-16244.
    [44]
    H. Saitsu, M. Watanabe, T. Akita, et al., Impaired neuronal KCC2 function by biallelic SLC12A5 mutations in migrating focal seizures and severe developmental delay, Sci. Rep. 6 (2016), 30072.
    [45]
    T. Stodberg, A. McTague, A.J. Ruiz, et al., Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures, Nat. Commun. 6 (2015), 8038.
    [46]
    K.T. Kahle, N.D. Merner, P. Friedel, et al., Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy, EMBO Rep. 15 (2014) 766-774.
    [47]
    M. Puskarjov, P. Seja, S.E. Heron, et al., A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation, EMBO Rep. 15 (2014) 723-729.
    [48]
    S.L. Campbell, S. Robel, V.A. Cuddapah, et al., GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy, Glia 63 (2015) 23-36.
    [49]
    J.A. Kosmicki, K.E. Samocha, D.P. Howrigan, et al., Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples, Nat. Genet. 49 (2017) 504-510.
    [50]
    N.D. Merner, M.R. Chandler, C. Bourassa, et al., Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia, Front. Cell. Neurosci. 9 (2015), 386.
    [51]
    J.A. Payne, T.J. Stevenson, L.F. Donaldson, Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform, J. Biol. Chem. 271 (1996) 16245-16252.
    [52]
    T. Antoniadi, C. Buxton, G. Dennis, et al., Application of targeted multi-gene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability, BMC Med. Genet. 16 (2015), 84.
    [53]
    G. Uyanik, N. Elcioglu, J. Penzien, et al., Novel truncating and missense mutations of the KCC3 gene associated with Andermann syndrome, Neurology 66 (2006) 1044-1048.
    [54]
    K.T. Kahle, B. Flores, D. Bharucha-Goebel, et al., Peripheral motor neuropathy is associated with defective kinase regulation of the KCC3 cotransporter, Sci. Signal. 9 (2016), ra77.
    [55]
    C.M. Lourenco, N. Dupre, J.B. Riviere, et al., Expanding the differential diagnosis of inherited neuropathies with non-uniform conduction: Andermann syndrome, J. Peripher. Nerv. Syst. 17 (2012) 123-127.
    [56]
    Y.-C. Hou, H.-C. Yu, R. Martin, et al., Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 3053-3062.
    [57]
    M. Shekarabi, R.X. Moldrich, S. Rasheed, et al., Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum, J. Neurosci. 32 (2012) 3865-3876.
    [58]
    K. Hiki, R.J. D'Andrea, J. Furze, et al., Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter, J. Biol. Chem. 274 (1999) 10661-10667.
    [59]
    J.E. Race, F.N. Makhlouf, P.J. Logue, et al., Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter, Am. J. Physiol. 277 (1999) C1210-C1219.
    [60]
    D.B. Mount, A. Mercado, L. Song, et al., Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family, J. Biol. Chem. 274 (1999) 16355-16362.
    [61]
    A. Takata, M. Nakashima, H. Saitsu, et al., Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy, Nat. Commun. 10 (2019), 2506.
    [62]
    S.C. Jin, C.G. Furey, X. Zeng, et al., SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus, Mol. Genet. Genom. Med. 7 (2019), e892.
    [63]
    D. Hewett, L. Samuelsson, J. Polding, et al., Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map, Genomics 79 (2002) 305-314.
    [64]
    J.J. Edwards, A.D. Rouillard, N.F. Fernandez, et al., Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart defects, JACC Basic Transl. Sci. 5 (2020) 376-386.
    [65]
    D.B. Mount, A. Baekgaard, A.E. Hall, et al., Isoforms of the Na-K-2Cl cotransporter in murine TAL I. Molecular characterization and intrarenal localization, Am. J. Physiol. 276 (1999) F347-F358.
    [66]
    D.B. Simon, F.E. Karet, J.M. Hamdan, et al., Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2, Nat. Genet. 13 (1996) 183-188.
    [67]
    S.M. Robert, B.C. Reeves, E. Kiziltug, et al., The choroid plexus links innate immunity to CSF dysregulation in hydrocephalus, Cell 186 (2023) 764-785.
    [68]
    J. Zhang, Gitelman Syndrome. N. Rezaei, Genetic Syndromes: A Comprehensive Reference Guide, first ed., Springer Nature, Cham, Switzerland AG, 2023, pp.1-4.
    [69]
    F.C. Brown, A.J. Conway, L. Cerruti, et al., Activation of the erythroid K-Cl cotransporter Kcc1 enhances sickle cell disease pathology in a humanized mouse model, Blood 126 (2015) 2863-2870.
    [70]
    T.Q. Vu, J.A. Payne, D.R. Copenhagen, Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina, J. Neurosci. 20 (2000) 1414-1423.
    [71]
    M. Heubl, J. Zhang, J.C. Pressey, et al., GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl(-)-sensitive WNK1 kinase, Nat. Commun. 8 (2017), 1776.
    [72]
    M. Watanabe, J. Zhang, M.S. Mansuri, et al., Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival, Sci. Signal. 12 (2019), eaaw9315.
    [73]
    S. Salihu, N. Meor Azlan, S. Josiah, et al., Role of the cation-chloride-cotransporters in the circadian system, Asian J. Pharm. Sci. 16 (2020) 589-597.
    [74]
    C. Shimizu-Okabe, S. Okada, S. Okamoto, et al., Specific expression of KCC2 in the alpha cells of normal and type 1 diabetes model mouse pancreatic islets, Acta Histochem. Cytochem. 55 (2022) 47-56.
    [75]
    S. Kursan, T.S. McMillen, P. Beesetty, et al., The neuronal K(+)Cl(-) co-transporter 2 (Slc12a5) modulates insulin secretion, Sci. Rep. 7 (2017), 1732.
    [76]
    H.C. Howard, D.B. Mount, D. Rochefort, et al., The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum, Nat. Genet. 32 (2002) 384-392.
    [77]
    R. Rius, A. Gonzalez-Del Angel, J.A. Velazquez-Aragon, et al., Identification of a novel SLC12A6 pathogenic variant associated with hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC) in a non-French-Canadian family, Neurol. India 66 (2018) 1162-1165.
    [78]
    T. Munoz, P. Krishnan, J. Vajsar, et al., Andermann Syndrome in a Pakistani family caused by a novel mutation in SLC12A6, J. Pediatr. Neurol. 15 (2017) 90-94.
    [79]
    T. Boettger, C.A. Hubner, H. Maier, et al., Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4, Nature 416 (2002) 874-878.
    [80]
    N.D. Daigle, G.A. Carpentier, R. Frenette-Cotton, et al., Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport, J. Cell. Physiol. 220 (2009) 680-689.
    [81]
    M. Wenz, A.M. Hartmann, E. Friauf, et al., CIP1 is an activator of the K+-Cl- cotransporter KCC2, Biochem. Biophys. Res. Commun. 381 (2009) 388-392.
    [82]
    C. Rivera, J. Voipio, J.A. Payne, et al., The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature 397 (1999) 251-255.
    [83]
    A. Bertoni, F. Schaller, R. Tyzio, et al., Oxytocin administration in neonates shapes hippocampal circuitry and restores social behavior in a mouse model of autism, Mol. Psychiatry 26 (2021) 7582-7595.
    [84]
    K.T. Kahle, J.F. Schmouth, V. Lavastre, et al., Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition, Sci. Signal. 9 (2016), ra32.
    [85]
    Y. Belaidouni, D. Diabira, J. Zhang, et al., The chloride homeostasis of CA3 hippocampal neurons is not altered in fully symptomatic Mepc2-null mice, Front. Cell. Neurosci. 15 (2021), 724976.
    [86]
    F. Galeffi, R. Sah, B.B. Pond, et al., Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam, J. Neurosci. 24 (2004) 4478-4488.
    [87]
    E. Papp, C. Rivera, K. Kaila, et al., Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia, Neuroscience 154 (2008) 677-689.
    [88]
    F. Wang, X. Wang, L.A. Shapiro, et al., NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility, Brain Struct. Funct. 222 (2017) 1543-1556.
    [89]
    C. Brandt, M. Nozadze, N. Heuchert, et al., Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy, J. Neurosci. 30 (2010) 8602-8612.
    [90]
    Y. Gong, M. Wu, J. Shen, et al., Inhibition of the NKCC1/NF-kappaB signaling pathway decreases inflammation and improves brain edema and nerve cell apoptosis in an SBI rat model, Front. Mol. Neurosci. 14 (2021), 641993.
    [91]
    J. Wang, R. Liu, M.N. Hasan, et al., Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke, J. Neuroinflammation 19 (2022), 91.
    [92]
    J.K. Karimy, J. Zhang, D.B. Kurland, et al., Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus, Nat. Med. 23 (2017) 997-1003.
    [93]
    J. Zhang, H. Pu, H. Zhang, et al., Inhibition of Na(+)-K(+)-2Cl(-) cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury, Neurochem. Int. 111 (2017) 23-31.
    [94]
    S.-R. Chen, L. Zhu, H. Chen, et al., Increased spinal cord Na(+)-K(+)-2Cl(-) cotransporter-1 (NKCC1) activity contributes to impairment of synaptic inhibition in paclitaxel-induced neuropathic pain, J. Biol. Chem. 289 (2014) 31111-31120.
    [95]
    Y. Wu, F. Wang, Inhibition of NKCC1 in spinal dorsal horn and dorsal root ganglion results in alleviation of neuropathic pain in rats with spinal cord contusion, Mol. Pain (2023), 17448069231159855.
    [96]
    L. Michea, V. Irribarra, I.A. Goecke, et al., Reduced Na-K pump but increased Na-K-2Cl cotransporter in aorta of streptozotocin-induced diabetic rat, Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H851-H858.
    [97]
    M. Ji, S. In Lee, S.A. Lee, et al., Enhanced activity by NKCC1 and Slc26a6 mediates acidic pH and Cl- movement after cardioplegia-induced arrest of db/db diabetic heart, Mediat. Inflamm. 2019 (2019), 7583760.
    [98]
    S.V. Koltsova, S.V. Kotelevtsev, J. Tremblay, et al., Excitation-contraction coupling in resistance mesenteric arteries: evidence for NKCC1-mediated pathway, Biochem. Biophys. Res. Commun. 379 (2009) 1080-1083.
    [99]
    M. Di Fulvio, T.M. Lincoln, P.K. Lauf, et al., Protein kinase G regulates potassium chloride cotransporter-4 [corrected] expression in primary cultures of rat vascular smooth muscle cells, J. Biol. Chem. 276 (2001) 21046-21052.
    [100]
    A.P. Garneau, A.A. Marcoux, M. Noel, et al., Ablation of potassium-chloride cotransporter type 3 (Kcc3) in mouse causes multiple cardiovascular defects and isosmotic polyuria, PLoS One 11 (2016), e0154398.
    [101]
    M. Di Fulvio, P.K. Lauf, S. Shah, et al., NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol. 284 (2003) H1686-H1692.
    [102]
    J. Zhang, P.K. Lauf, N.C. Adragna, Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells, Am. J. Physiol. Cell Physiol. 284 (2003) C674-C680.
    [103]
    F.H. Wilson, S. Disse-Nicodeme, K.A. Choate, et al., Human hypertension caused by mutations in WNK kinases, Science 293 (2001) 1107-1112.
    [104]
    L.M. Boyden, M. Choi, K.A. Choate, et al., Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities, Nature 482 (2012) 98-102.
    [105]
    M. Castaneda-Bueno, L.G. Cervantes-Perez, N. Vazquez, et al., Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 7929-7934.
    [106]
    F.R. Schumacher, K. Siew, J. Zhang, et al., Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia, EMBO Mol. Med. 7 (2015) 1285-1306.
    [107]
    M. Ostrosky-Frid, M. Chavez-Canales, J. Zhang, et al., Role of KLHL3 and dietary K(+) in regulating KS-WNK1 expression, Am. J. Physiol. Ren. Physiol. 320 (2021) F734-F747.
    [108]
    D. Takahashi, T. Mori, N. Nomura, et al., WNK4 is the major WNK positively regulating NCC in the mouse kidney, Biosci. Rep. 34 (2014), e00107.
    [109]
    J. Zhang, K. Siew, T. Macartney, et al., Critical role of the SPAK protein kinase CCT domain in controlling blood pressure, Hum. Mol. Genet. 24 (2015) 4545-4558.
    [110]
    K. Yamada, H.M. Park, D.F. Rigel, et al., Small-molecule WNK inhibition regulates cardiovascular and renal function, Nat. Chem. Biol. 12 (2016) 896-898.
    [111]
    N.F. Meor Azlan, J. Zhang, Role of the cation-chloride-cotransporters in cardiovascular disease, Cells 9 (2020), 2293.
    [112]
    R. Panet, M. Marcus, H. Atlan, Overexpression of the Na(+)/K(+)/Cl(-) cotransporter gene induces cell proliferation and phenotypic transformation in mouse fibroblasts, J. Cell. Physiol. 182 (2000) 109-118.
    [113]
    P.-L. Sun, Y. Jin, S.Y. Park, et al., Expression of Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) predicts poor prognosis in lung adenocarcinoma and EGFR-mutated adenocarcinoma patients, QJM 109 (2016) 237-244.
    [114]
    J.-F. Wang, K. Zhao, Y.-Y. Chen, et al., NKCC1 promotes proliferation, invasion and migration in human gastric cancer cells via activation of the MAPK-JNK/EMT signaling pathway, J. Cancer 12 (2021) 253-263.
    [115]
    K. Hiraoka, H. Miyazaki, N. Niisato, et al., Chloride ion modulates cell proliferation of human androgen-independent prostatic cancer cell, Cell. Physiol. Biochem. 25 (2010) 379-388.
    [116]
    A. Shiozaki, Y. Nako, D. Ichikawa, et al., Role of the Na (+)/K (+)/2Cl(-) cotransporter NKCC1 in cell cycle progression in human esophageal squamous cell carcinoma, World J. Gastroenterol. 20 (2014) 6844-6859.
    [117]
    L. Luo, X. Guan, G. Begum, et al., Blockade of cell volume regulatory protein NKCC1 increases TMZ-induced glioma apoptosis and reduces astrogliosis, Mol. Cancer Ther. 19 (2020) 1550-1561.
    [118]
    S. Zhang, X. Wu, T. Jiang, et al., The up-regulation of KCC1 gene expression in cervical cancer cells by IGF-II through the ERK1/2MAPK and PI3K/AKT pathways and its significance, Eur. J. Gynaecol. Oncol. 30 (2009) 29-34.
    [119]
    H. Kajiya, F. Okamoto, J.-P. Li, et al., Expression of mouse osteoclast K-Cl Co-transporter-1 and its role during bone resorption, J. Bone Miner. Res. 21 (2006) 984-992.
    [120]
    M.-R. Shen, C.-Y. Chou, K.-F. Hsu, et al., The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 14714-14719.
    [121]
    M.B. Rust, S.L. Alper, Y. Rudhard, et al., Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice, J. Clin. Investig. 117 (2007) 1708-1717.
    [122]
    H.F. Clemo, J.J. Feher, C.M. Baumgarten, Modulation of rabbit ventricular cell volume and Na+/K+/2Cl- cotransport by cGMP and atrial natriuretic factor, J. Gen. Physiol. 100 (1992) 89-114.
    [123]
    G. Gamba, Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters, Physiol. Rev. 85 (2005) 423-493.
    [124]
    Y. Okada, Ion channels and transporters involved in cell volume regulation and sensor mechanisms, Cell Biochem. Biophys. 41 (2004) 233-258.
    [125]
    C.-P. Zhao, H.-Y. Guo, K.-C. Zhu, et al., Molecular characterization of Na(+)/K(+)/2Cl(-) cotransporter 1 alpha from Trachinotus ovatus (Linnaeus, 1758) and its expression responses to acute salinity stress, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 223 (2018) 29-38.
    [126]
    R.T. Alexander, S. Grinstein, Na+/H+ exchangers and the regulation of volume, Acta Physiol. 187 (2006) 159-167.
    [127]
    S. Grinstein, C.A. Clarke, A. Rothstein, Activation of Na+/H+ exchange in lymphocytes by osmotically induced volume changes and by cytoplasmic acidification, J. Gen. Physiol. 82 (1983) 619-638.
    [128]
    M. Song, S.P. Yu, Ionic regulation of cell volume changes and cell death after ischemic stroke, Transl. Stroke Res. 5 (2014) 17-27.
    [129]
    A. Qusous, C.S. Geewan, P. Greenwell, et al., siRNA-mediated inhibition of Na(+)-K(+)-2Cl- cotransporter (NKCC1) and regulatory volume increase in the chondrocyte cell line C-20/A4, J. Membr. Biol. 243 (2011) 25-34.
    [130]
    N.C. Adragna, N.B. Ravilla, P.K. Lauf, et al., Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis, Front. Cell. Neurosci. 9 (2015), 255.
    [131]
    M.A. Tejada, K. Stople, S. Hammami Bomholtz, et al., Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels, PLoS One 9 (2014), e110833.
    [132]
    L. Sforna, A. Michelucci, F. Morena, et al., Piezo1 controls cell volume and migration by modulating swelling-activated chloride current through Ca(2+) influx, J. Cell. Physiol. 237 (2022) 1857-1870.
    [133]
    E.K. Hoffmann, I.H. Lambert, S.F. Pedersen, Physiology of cell volume regulation in vertebrates, Physiol. Rev. 89 (2009) 193-277.
    [134]
    P. de Los Heros, D.R. Alessi, R. Gourlay, et al., The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters, Biochem. J. 458 (2014) 559-573.
    [135]
    C. Richardson, F.H. Rafiqi, H.K. Karlsson, et al., Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1, J. Cell Sci. 121 (2008) 675-684.
    [136]
    K.T. Kahle, J. Rinehart, P. de Los Heros, et al., WNK3 modulates transport of Cl- in and out of cells: implications for control of cell volume and neuronal excitability, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 16783-16788.
    [137]
    C.R. Boyd-Shiwarski, D.J. Shiwarski, S.E. Griffiths, et al., WNK kinases sense molecular crowding and rescue cell volume via phase separation, Cell 185 (2022) 4488-4506 e4420.
    [138]
    J. Zhang, M.I.H. Bhuiyan, T. Zhang, et al., Modulation of brain cation-Cl(-) cotransport via the SPAK kinase inhibitor ZT-1a, Nat. Commun. 11 (2020), 78.
    [139]
    V.N. Bildin, Z. Wang, P. Iserovich, et al., Hypertonicity-induced p38MAPK activation elicits recovery of corneal epithelial cell volume and layer integrity, J. Membr. Biol. 193 (2003) 1-13.
    [140]
    G. Scepanovic, M.V. Hunter, R. Kafri, et al., p38-mediated cell growth and survival drive rapid embryonic wound repair, Cell Rep. 37 (2021), 109874.
    [141]
    L. Modol, D. Santos, S. Cobianchi, et al., NKCC1 activation is required for myelinated sensory neurons regeneration through JNK-dependent pathway, J. Neurosci. 35 (2015) 7414-7427.
    [142]
    E.K. Hoffmann, S.F. Pedersen, Shrinkage insensitivity of NKCC1 in myosin II-depleted cytoplasts from Ehrlich ascites tumor cells, Am. J. Physiol. Cell Physiol. 292 (2007) C1854-C1866.
    [143]
    W.L. Demian, A. Persaud, C. Jiang, et al., The ion transporter NKCC1 links cell volume to cell mass regulation by suppressing mTORC1, Cell Rep. 27 (2019) 1886-1896.
    [144]
    S.A. Serra, P. Stojakovic, R. Amat, et al., LRRC8A-containing chloride channel is crucial for cell volume recovery and survival under hypertonic conditions, Proc. Natl. Acad. Sci. U. S. A. 118 (2021), me2025013118.
    [145]
    M.A. Model, Methods for cell volume measurement, Cytometry A 93 (2018) 281-296.
    [146]
    S. Mizutani, S.M. Prasad, A.D. Sellitto, et al., Myocyte volume and function in response to osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener, Circulation 112 (2005) I219-I223.
    [147]
    S. Liu, M.B. Ginzberg, N. Patel, et al., Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length, eLife 7 (2018), e26947.
    [148]
    R. Munns, P.A. Wallace, N.L. Teakle, et al., Measuring soluble ion concentrations (Na+, K+, Cl-) in salt-treated plants. R. Sunkar, Plant Stress Tolerance: Methods and Protocols, first ed., vol. 639, Humana Press, Totowa, NJ, 2010, pp. 371-382.
    [149]
    M. Haas, The Na-K-Cl cotransporters, Am. J. Physiol. 267 (1994) C869-C885.
    [150]
    S. Bazua-Valenti, L. Rojas-Vega, M. Castaneda-Bueno, et al., The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway, J. Am. Soc. Nephrol. 29 (2018) 1838-1848.
    [151]
    F.A. Gesek, P.A. Friedman, Mechanism of calcium transport stimulated by chlorothiazide in mouse distal convoluted tubule cells, J. Clin. Investig. 90 (1992) 429-438.
    [152]
    R.S. Hoover, E. Poch, A. Monroy, et al., N-Glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na(+):Cl(-) cotransporter, J. Am. Soc. Nephrol. 14 (2003) 271-282.
    [153]
    G. Gamba, Regulation of the renal Na+-Cl- cotransporter by phosphorylation and ubiquitylation, Am. J. Physiol. Ren. Physiol. 303 (2012) F1573-F1583.
    [154]
    L.L. Rosenbaek, F. Rizzo, N. MacAulay, et al., Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells, Am. J. Physiol. Ren. Physiol. 313 (2017) F495-F504.
    [155]
    G.C. Terstappen, Nonradioactive rubidium ion efflux assay and its applications in drug discovery and development, Assay Drug Dev. Technol. 2 (2004) 553-559.
    [156]
    J.R. Williams, J.A. Payne, Cation transport by the neuronal K(+)-Cl(-) cotransporter KCC2: thermodynamics and kinetics of alternate transport modes, Am. J. Physiol. Cell Physiol. 287 (2004) C919-C931.
    [157]
    E. Chorin, O. Vinograd, I. Fleidervish, et al., Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor, J. Neurosci. 31 (2011) 12916-12926.
    [158]
    S. Titz, S. Hormuzdi, A. Lewen, et al., Intracellular acidification in neurons induced by ammonium depends on KCC2 function, Eur. J. Neurosci. 23 (2006) 454-464.
    [159]
    M. Hershfinkel, K. Kandler, M.E. Knoch, et al., Intracellular zinc inhibits KCC2 transporter activity, Nat. Neurosci. 12 (2009) 725-727.
    [160]
    E. Vizvari, M. Katona, P. Orvos, et al., Characterization of Na+-K+-2Cl- cotransporter activity in rabbit lacrimal gland duct cells, Invest. Ophthalmol. Vis. Sci. 57 (2016) 3828-3835.
    [161]
    D. Heitzmann, R. Warth, M. Bleich, et al., Regulation of the Na+ 2Cl- K+ cotransporter in isolated rat colon crypts, Pflug. Arch. 439 (2000) 378-384.
    [162]
    M. Kidokoro, T. Nakamoto, T. Mukaibo, et al., Na(+)-K(+)-2Cl(-) cotransporter-mediated fluid secretion increases under hypotonic osmolarity in the mouse submandibular salivary gland, Am. J. Physiol. Ren. Physiol. 306 (2014) F1155-F1160.
    [163]
    I. Medina, P. Friedel, C. Rivera, et al., Current view on the functional regulation of the neuronal K(+)-Cl(-) cotransporter KCC2, Front. Cell. Neurosci. 8 (2014), 27.
    [164]
    G.C. Terstappen, Nonradioactive rubidium efflux assay technology for screening of ion channels. M.A. Cooper, L. Mayr, Label-free Technologies for Drug Discovery, first ed., John Wiley & Sons, Chichester, West Sussex, U.K., 2011, pp. 111-122.
    [165]
    M. Carmosino, F. Rizzo, S. Torretta, et al., High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells, BMC Cell Biol. 14 (2013), 16.
    [166]
    S.A. Titus, D. Beacham, S.A. Shahane, et al., A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel, Anal. Biochem. 394 (2009) 30-38.
    [167]
    D.W. Beacham, T. Blackmer, O.G. M, et al., Cell-based potassium ion channel screening using the FluxOR assay, J. Biomol. Screen. 15 (2010) 441-446.
    [168]
    E. Delpire, E. Days, L.M. Lewis, et al., Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 5383-5388.
    [169]
    D. Zhang, S.M. Gopalakrishnan, G. Freiberg, et al., A thallium transport FLIPR-based assay for the identification of KCC2-positive modulators, J. Biomol. Screen. 15 (2010) 177-184.
    [170]
    S. Zhang, J. Zhou, Y. Zhang, et al., The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2, Commun. Biol. 4 (2021), 226.
    [171]
    H.-B. Yu, M. Li, W.-P. Wang, et al., High throughput screening technologies for ion channels, Acta Pharmacol. Sin. 37 (2016) 34-43.
    [172]
    C.L. Hill, G.J. Stephens, An introduction to patch clamp recording, Methods Mol. Biol. 2188 (2021) 1-19.
    [173]
    H.H. Lee, T.Z. Deeb, J.A. Walker, et al., NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents, Nat. Neurosci. 14 (2011) 736-743.
    [174]
    M.A. Woodin, K. Ganguly, M.M. Poo, Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity, Neuron 39 (2003) 807-820.
    [175]
    P. Friedel, K.T. Kahle, J. Zhang, et al., WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons, Sci. Signal. 8 (2015), ra65.
    [176]
    R.A. Cardarelli, K. Jones, L.I. Pisella, et al., The small molecule CLP257 does not modify activity of the K(+)-Cl(-) co-transporter KCC2 but does potentiate GABAA receptor activity, Nat. Med. 23 (2017) 1394-1396.
    [177]
    K.L. Lee, K. Abiraman, C. Lucaj, et al., Inhibiting with-no-lysine kinases enhances K+/Cl- cotransporter 2 activity and limits status epilepticus, Brain 145 (2021) 950-963.
    [178]
    S. Ebihara, K. Shirato, N. Harata, et al., Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride, J. Physiol. 484 (Pt 1) (1995) 77-86.
    [179]
    K. Lamsa, J.M. Palva, E. Ruusuvuori, et al., Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus, J. Neurophysiol. 83 (2000) 359-366.
    [180]
    A. Kyrozis, D.B. Reichling, Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration, J. Neurosci. Methods 57 (1995) 27-35.
    [181]
    C. Lytle, B. Forbush, 3rd, Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl, Am. J. Physiol. 270 (1996) C437-C448.
    [182]
    R.B. Darman, B. Forbush, A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1, J. Biol. Chem. 277 (2002) 37542-37550.
    [183]
    M. Mann, S.E. Ong, M. Gronborg, et al., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome, Trends Biotechnol. 20 (2002) 261-268.
    [184]
    J.J. Pitt, Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry, Clin. Biochem. Rev. 30 (2009) 19-34.
    [185]
    S.B. Breitkopf, J.M. Asara, Determining in vivo phosphorylation sites using mass spectrometry, Curr. Protoc. Mol. Biol. Chapter 2012. https://doi.org/10.1002/0471142727.mb1819s98.
    [186]
    M. Feric, B. Zhao, J.D. Hoffert, et al., Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule, Am. J. Physiol. Cell Physiol. 300 (2011) C755-C770.
    [187]
    R.L. Gundry, M.Y. White, C.I. Murray, et al., Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow, Curr. Protoc. Mol. Biol. Chapter 2009. https://doi.org/10.1002/0471142727.mb1025s88.
    [188]
    C. Richardson, K. Sakamoto, P. de los Heros, et al., Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways, J. Cell Sci. 124 (2011) 789-800.
    [189]
    R. Gunaratne, D.W. Braucht, M.M. Rinschen, et al., Quantitative phosphoproteomic analysis reveals cAMP/vasopressin-dependent signaling pathways in native renal thick ascending limb cells, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 15653-15658.
    [190]
    A.C. Vitari, J. Thastrup, F.H. Rafiqi, et al., Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1, Biochem. J. 397 (2006) 223-231.
    [191]
    B. Sid, L. Miranda, D. Vertommen, et al., Stimulation of human and mouse erythrocyte Na(+)-K(+)-2Cl(-) cotransport by osmotic shrinkage does not involve AMP-activated protein kinase, but is associated with STE20/SPS1-related proline/alanine-rich kinase activation, J. Physiol. 588 (2010) 2315-2328.
    [192]
    J.L. Smalley, G. Kontou, C. Choi, et al., Isolation and characterization of multi-protein complexes enriched in the K-Cl Co-transporter 2 from brain plasma membranes, Front. Mol. Neurosci. 13 (2020), 563091.
    [193]
    J. Rinehart, Y.D. Maksimova, J.E. Tanis, et al., Sites of regulated phosphorylation that control K-Cl cotransporter activity, Cell 138 (2009) 525-536.
    [194]
    Z. Melo, P. de los Heros, S. Cruz-Rangel, et al., N-terminal serine dephosphorylation is required for KCC3 cotransporter full activation by cell swelling, J. Biol. Chem. 288 (2013) 31468-31476.
    [195]
    A.N. Anselmo, S. Earnest, W. Chen, et al., WNK1 and OSR1 regulate the Na+, K+, 2Cl- cotransporter in HeLa cells, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10883-10888.
    [196]
    A. Zagorska, E. Pozo-Guisado, J. Boudeau, et al., Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress, J. Cell Biol. 176 (2007) 89-100.
    [197]
    D. Lagnaz, J.P. Arroyo, M. Chavez-Canales, et al., WNK3 abrogates the NEDD4-2-mediated inhibition of the renal Na+-Cl- cotransporter, Am. J. Physiol. Ren. Physiol. 307 (2014) F275-F286.
    [198]
    J. Zhang, G. Gao, G. Begum, et al., Functional kinomics establishes a critical node of volume-sensitive cation-Cl(-) cotransporter regulation in the mammalian brain, Sci. Rep. 6 (2016), 35986.
    [199]
    K. Johansen, L. Svensson, Immunoprecipitation, Methods Mol. Med. 13 (1998) 15-28.
    [200]
    L.C. Conway, R.A. Cardarelli, Y.E. Moore, et al., N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation, J. Biol. Chem. 292 (2017) 21253-21263.
    [201]
    T. Mahmood, P.-C. Yang, Western blot: technique, theory, and trouble shooting, N. Am. J. Med. Sci. 4 (2012) 429-434.
    [202]
    J.D. Klein, W.C. O'Neill, Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport, Am. J. Physiol. 269 (1995) C1524-C1531.
    [203]
    J.B. Matthews, J.A. Smith, K.J. Tally, et al., Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding, J. Biol. Chem. 269 (1994) 15703-15709.
    [204]
    J. Liu, X. Ma, G.F. Cooper, et al., Explicit representation of protein activity states significantly improves causal discovery of protein phosphorylation networks, BMC Bioinform. 21 (2020), 379.
    [205]
    A. Hannemann, P.W. Flatman, Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells, PLoS One 6 (2011), e17992.
    [206]
    A. Hannemann, J.K. Christie, P.W. Flatman, Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant, J. Biol. Chem. 284 (2009) 35348-35358.
    [207]
    P. Blaesse, I. Guillemin, J. Schindler, et al., Oligomerization of KCC2 correlates with development of inhibitory neurotransmission, J. Neurosci. 26 (2006) 10407-10419.
    [208]
    M.A. Virtanen, P. Uvarov, M. Mavrovic, et al., The multifaceted roles of KCC2 in cortical development, Trends Neurosci. 44 (2021) 378-392.
    [209]
    P. Friedel, A. Ludwig, C. Pellegrino, et al., A novel view on the role of intracellular tails in surface delivery of the potassium-chloride cotransporter KCC2, eNeuro 4 (2017), ENEURO.0055-17.
    [210]
    S.S. Josiah, N.F. Meor Azlan, A. Oguro-Ando, et al., Study of the functions and activities of neuronal K-Cl co-transporter KCC2 using Western blotting, J. Vis. Exp. (2022), e64179.
    [211]
    A.J. Miller, Ion-selective microelectrodes for measurement of intracellular ion concentrations, Methods Cell Biol. 49 (1995) 275-291.
    [212]
    R.D. Keynes, Chloride in the squid giant axon, J. Physiol. 169 (1963) 690-705.
    [213]
    A. Strickholm, B.G. Wallin, Intracellular chloride activity of crayfish giant axons, Nature 208 (1965) 790-791.
    [214]
    T.O. Neild, R.C. Thomas, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol. 242 (1974) 453-470.
    [215]
    J.L. Walker, Ion specific liquid ion exchanger microelectrodes, Analyt. Chem. 43 (1971) 89A-93A.
    [216]
    P. Bregestovski, T. Waseem, M. Mukhtarov, Genetically encoded optical sensors for monitoring of intracellular chloride and chloride-selective channel activity, Front. Mol. Neurosci. 2 (2009), 15.
    [217]
    A.A. Vereninov, A.A. Rubashkin, T.S. Goryachaya, et al., Pump and channel K (Rb+) fluxes in apoptosis of human lymphoid cell line U937, Cell. Physiol. Biochem. 22 (2008) 187-194.
    [218]
    A. Ludwig, C. Rivera, P. Uvarov, A noninvasive optical approach for assessing chloride extrusion activity of the K-Cl cotransporter KCC2 in neuronal cells, BMC Neurosci. 18 (2017), 23.
    [219]
    V.E. Yurinskaya, I.A. Vereninov, A.A. Vereninov, A tool for computation of changes in Na(+), K(+), Cl(-) channels and transporters due to apoptosis by data on cell ion and water content alteration, Front. Cell Dev. Biol. 7 (2019), 58.
    [220]
    Y. Kovalchuk, O. Garaschuk, Two-photon chloride imaging using MQAE in vitro and in vivo, Cold Spring Harb. Protoc. 2012 (2012) 778-785.
    [221]
    M. Engels, M. Kalia, S. Rahmati, et al., Glial chloride homeostasis under transient ischemic stress, Front. Cell. Neurosci. 15 (2021), 735300.
    [222]
    S.H. Park, I. Shin, Y.H. Kim, et al., Mitochondrial Cl(-)-selective fluorescent probe for biological applications, Anal. Chem. 92 (2020) 12116-12119.
    [223]
    A. Savardi, M. Borgogno, R. Narducci, et al., Discovery of a small molecule drug candidate for selective NKCC1 inhibition in brain disorders, Chem 6 (2020) 2073-2096.
    [224]
    V.I. Dzhala, D.M. Talos, D.A. Sdrulla, et al., NKCC1 transporter facilitates seizures in the developing brain, Nat. Med. 11 (2005) 1205-1213.
    [225]
    I. Chamma, M. Heubl, Q. Chevy, et al., Activity-dependent regulation of the K/Cl transporter KCC2 membrane diffusion, clustering, and function in hippocampal neurons, J. Neurosci. 33 (2013) 15488-15503.
    [226]
    M.A. Valdez-Flores, R. Vargas-Poussou, S. Verkaart, et al., Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay, Am. J. Physiol. Ren. Physiol. 311 (2016) F1159-F1167.
    [227]
    M. Gagnon, M.J. Bergeron, G. Lavertu, et al., Chloride extrusion enhancers as novel therapeutics for neurological diseases, Nat. Med. 19 (2013) 1524-1528.
    [228]
    D. Ponomareva, E. Petukhova, P. Bregestovski, Simultaneous monitoring of pH and chloride (Cl(-)) in brain slices of transgenic mice, Int. J. Mol. Sci. 22 (2021), 13601.
    [229]
    M. Davidov, N. Kakaviatos, F.A. Finnerty, Jr., Antihypertensive properties of furosemide, Circulation 36 (1967) 125-135.
    [230]
    M.J. Asbury, P.B. Gatenby, S. O'Sullivan, et al., Bumetanide: potent new “loop” diuretic, Br. Med. J. 1 (1972) 211-213.
    [231]
    S.N. Orlov, S.V. Koltsova, L.V. Kapilevich, et al., NKCC1 and NKCC2: the pathogenetic role of cation-chloride cotransporters in hypertension, Genes Dis. 2 (2015) 186-196.
    [232]
    P. Hampel, K. Romermann, N. MacAulay, et al., Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium-potassium-chloride-cotransporter human variants hNKCC1A and hNKCC1B, Sci. Rep. 8 (2018), 9877.
    [233]
    A. Savardi, A. Patricelli Malizia, M. De Vivo, et al., Preclinical development of the Na-K-2Cl Co-transporter-1 (NKCC1) Inhibitor ARN23746 for the treatment of neurodevelopmental disorders, ACS Pharmacol. Transl. Sci. 6 (2023) 1-11.
    [234]
    C. Pegurier, N. Bosman, P. Collart, et al., Benzyl prolinate derivatives as novel selective KCC2 blockers, Bioorg. Med. Chem. Lett. 20 (2010) 2542-2545.
    [235]
    R.A. Deisz, S. Wierschke, U.C. Schneider, et al., Effects of VU0240551, a novel KCC2 antagonist, and DIDS on chloride homeostasis of neocortical neurons from rats and humans, Neuroscience 277 (2014) 831-841.
    [236]
    R. Garay, C. Nazaret, P. Hannaert, et al., Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system, Mol. Pharmacol. 33 (1988) 696-701.
    [237]
    R. Jarvis, S.F. Josephine Ng, A.J. Nathanson, et al., Direct activation of KCC2 arrests benzodiazepine refractory status epilepticus and limits the subsequent neuronal injury in mice, Cell Rep. Med. 4 (2023), 100957.
    [238]
    L. Luo, J. Wang, D. Ding, et al., Role of NKCC1 activity in glioma K(+) homeostasis and cell growth: new insights with the bumetanide-derivative STS66, Front. Physiol. 11 (2020), 911.
    [239]
    F. Ferrini, L.E. Lorenzo, A.G. Godin, et al., Enhancing KCC2 function counteracts morphine-induced hyperalgesia, Sci. Rep. 7 (2017), 3870.
    [240]
    I. Ferando, G.C. Faas, I. Mody, Diminished KCC2 confounds synapse specificity of LTP during senescence, Nat. Neurosci. 19 (2016) 1197-1200.
    [241]
    E. Delpire, A. Baranczak, A.G. Waterson, et al., Further optimization of the K-Cl cotransporter KCC2 antagonist ML077: development of a highly selective and more potent in vitro probe, Bioorg. Med. Chem. Lett. 22 (2012) 4532-4535.
    [242]
    P.K. Lauf, A.A. Chimote, N.C. Adragna, Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells, Cell. Physiol. Biochem. 21 (2008) 335-346.
    [243]
    M. Borgogno, A. Savardi, J. Manigrasso, et al., Design, synthesis, in vitro and in vivo characterization of selective NKCC1 inhibitors for the treatment of core symptoms in Down Syndrome, J. Med. Chem. 64 (2021) 10203-10229.
    [244]
    E.D. Freis, A. Wanko, I.M. Wilson, et al., Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents, J. Am. Med. Assoc. 166 (1958) 137-140.
    [245]
    M. Moser, A.I. Macaulay, Chlorothiazide as an adjunct in the treatment of essential hypertension, Am. J. Cardiol. 3 (1959) 214-219.
    [246]
    M.E. Ernst, M. Moser, Use of diuretics in patients with hypertension, N. Engl. J. Med. 361 (2009) 2153-2164.
    [247]
    N.T. Pham, J.G. Owen, N. Singh, et al., The use of thiazide diuretics for the treatment of hypertension in patients with advanced chronic kidney disease, Cardiol. Rev. 31 (2023) 99-107.
    [248]
    A.D. Hughes, How do thiazide and thiazide-like diuretics lower blood pressure?, J. Renin Angiotensin Aldosterone Syst. 5 (2004) 155-160.
    [249]
    D.H. Ellison, J. Loffing, Thiazide effects and adverse effects: insights from molecular genetics, Hypertension 54 (2009) 196-202.
    [250]
    M.B. Sandberg, A.D. Riquier, K. Pihakaski-Maunsbach, et al., ANG II provokes acute trafficking of distal tubule Na+-Cl(-) cotransporter to apical membrane, Am. J. Physiol. Ren. Physiol. 293 (2007) F662-F669.
    [251]
    H. Velazquez, F.S. Wright, Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule, Am. J. Physiol. 250 (1986) F1013-F1023.
    [252]
    E. Schlatter, R. Greger, C. Weidtke, Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency, Pflug. Arch. 396 (1983) 210-217.
    [253]
    P.W. Feit, Aminobenzoic acid diuretics. 2. 4-Substituted-3-amino-5-sulfamylbenzoic acid derivatives, J. Med. Chem. 14 (1971) 432-439.
    [254]
    O.B. Tvaermose Nielsen, P.W. Feit, Structure-activity relationships of aminobenzoic acid diuretics and related compounds. E.J. Cragoe Jr, Diuretic Agents, Vol. 83, American Chemical Society, Washington, D.C., 1978, pp. 12-23.
    [255]
    P.W. Feit, Bumetanide: Historical Background, Taxonomy and Chemistry. A.F. Lant, Bumetanid, Marius Press, Camforth, UK, 1990, pp. 1-13.
    [256]
    M. Cohen, Pharmacology of bumetanide, J. Clin. Pharmacol. 21 (1981) 537-542.
    [257]
    R.A. Frizzell, M. Field, S.G. Schultz, Sodium-coupled chloride transport by epithelial tissues, Am. J. Physiol. 236 (1979) F1-F8.
    [258]
    H.C. Palfrey, P.W. Feit, P. Greengard, cAMP-stimulated cation cotransport in avian erythrocytes: inhibition by “loop” diuretics, Am. J. Physiol. 238 (1980) C139-C148.
    [259]
    P.W. Flatman, J. Creanor, Regulation of Na+-K+-2Cl- cotransport by protein phosphorylation in ferret erythrocytes, J. Physiol. 517 (Pt 3) (1999) 699-708.
    [260]
    K. Lykke, K. Tollner, K. Romermann, et al., Structure-activity relationships of bumetanide derivatives: correlation between diuretic activity in dogs and inhibition of human NKCC2 variant A, Br. J. Pharmacol. 172 (2015) 4469-4480.
    [261]
    T. Blauwblomme, V. Dzhala, K. Staley, Transient ischemia facilitates neuronal chloride accumulation and severity of seizures, Ann. Clin. Transl. Neurol. 5 (2018) 1048-1061.
    [262]
    V.I. Dzhala, A.C. Brumback, K.J. Staley, Bumetanide enhances phenobarbital efficacy in a neonatal seizure model, Ann. Neurol. 63 (2008) 222-235.
    [263]
    E. Lemonnier, Y. Ben-Ari, The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects, Acta Paediatr. 99 (2010) 1885-1888.
    [264]
    E. Lemonnier, C. Degrez, M. Phelep, et al., A randomised controlled trial of bumetanide in the treatment of autism in children, Transl. Psychiatry 2 (2012), e202.
    [265]
    J.S. Soul, A.M. Bergin, C. Stopp, et al., A pilot randomized, controlled, double-blind trial of bumetanide to treat neonatal seizures, Ann. Neurol. 89 (2021) 327-340.
    [266]
    J.J. Sprengers, D.M. van Andel, N.P.A. Zuithoff, et al., Bumetanide for core symptoms of Autism Spectrum Disorder (BAMBI): a single center, double-blinded, participant-randomized, placebo-controlled, phase-2 superiority trial, J. Am. Acad. Child Adolesc. Psychiatry 60 (2021) 865-876.
    [267]
    K. Tollner, C. Brandt, M. Topfer, et al., A novel prodrug-based strategy to increase effects of bumetanide in epilepsy, Ann. Neurol. 75 (2014) 550-562.
    [268]
    C. Brandt, P. Seja, K. Tollner, et al., Bumepamine, a brain-permeant benzylamine derivative of bumetanide, does not inhibit NKCC1 but is more potent to enhance phenobarbital's anti-seizure efficacy, Neuropharmacology 143 (2018) 186-204.
    [269]
    H. Huang, M.I.H. Bhuiyan, T. Jiang, et al., A novel Na(+)-K(+)-Cl(-) cotransporter 1 inhibitor STS66∗ reduces brain damage in mice after ischemic stroke, Stroke 50 (2019) 1021-1025.
    [270]
    B. Welzel, R. Schmidt, L. Kirchhoff, et al., The loop diuretic torasemide but not azosemide potentiates the anti-seizure and disease-modifying effects of midazolam in a rat model of birth asphyxia, Epilepsy Behav. 139 (2023), 109057.
    [271]
    K. Sturm, W. Siedel, R. Weyer, Inventors; Sulphamoylanthranilic acids, FRG patent 1,122,541 (CA 56:14032-33), 1962.
    [272]
    K. Strange, T.D. Singer, R. Morrison, et al., Dependence of KCC2 K-Cl cotransporter activity on a conserved carboxy terminus tyrosine residue, Am. J. Physiol. Cell Physiol. 279 (2000) C860-C867.
    [273]
    N.C. Adragna, M. Di Fulvio, P.K. Lauf, Regulation of K-Cl cotransport: from function to genes, J. Membr. Biol. 201 (2004) 109-137.
    [274]
    E.R. Korpi, T. Kuner, P.H. Seeburg, et al., Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor, Mol. Pharmacol. 47 (1995) 283-289.
    [275]
    K.H. Reid, S.Z. Guo, V.G. Iyer, Agents which block potassium-chloride cotransport prevent sound-triggered seizures in post-ischemic audiogenic seizure-prone rats, Brain Res. 864 (2000) 134-137.
    [276]
    L. Chen, J. Yu, L. Wan, et al., Furosemide prevents membrane KCC2 downregulation during convulsant stimulation in the hippocampus, IBRO Neurosci. Rep. 12 (2022) 355-365.
    [277]
    H.H. Lee, J.A. Walker, J.R. Williams, et al., Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2, J. Biol. Chem. 282 (2007) 29777-29784.
    [278]
    Y.-T. Sun, C.-C. Shieh, E. Delpire, et al., K(+)-Cl(-) cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation, J. Physiol. 590 (2012) 3231-3243.
    [279]
    J. Zhang, X. Deng, K.T. Kahle, Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition, Sci. Signal. 9 (2016), e3.
    [280]
    J. Lepault, F.P. Booy, J. Dubochet, Electron microscopy of frozen biological suspensions, J. Microsc. 129 (1983) 89-102.
    [281]
    A. Assaiya, A.P. Burada, S. Dhingra, et al., An overview of the recent advances in cryo-electron microscopy for life sciences, Emerg. Top. Life Sci. 5 (2021) 151-168.
    [282]
    D. Cressey, E. Callaway, Cryo-electron microscopy wins chemistry Nobel, Nature 550 (2017), 167.
    [283]
    Y. Zhao, K. Roy, P. Vidossich, et al., Structural basis for inhibition of the cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide, Nat. Commun. 13 (2022), 2747.
    [284]
    Y. Zhao, J. Shen, Q. Wang, et al., Structure of the human cation-chloride cotransport KCC1 in an outward-open state, Proc. Natl. Acad. Sci. U. S. A. 119 (2022), e2109083119.
    [285]
    X. Yang, Q. Wang, E. Cao, Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy, Nat. Commun. 11 (2020), 1016.
    [286]
    J.-H. Zhang, T.D. Chung, K.R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen. 4 (1999) 67-73.
    [287]
    P.M. Klein, A.C. Lu, M.E. Harper, et al., Tenuous inhibitory GABAergic signaling in the reticular thalamus, J. Neurosci. 38 (2018) 1232-1248.
    [288]
    S. Sivakumaran, R.A. Cardarelli, J. Maguire, et al., Selective inhibition of KCC2 leads to hyperexcitability and epileptiform discharges in hippocampal slices and in vivo, J. Neurosci. 35 (2015) 8291-8296.
    [289]
    Y.H. Raol, S.M. Joksimovic, D. Sampath, et al., The role of KCC2 in hyperexcitability of the neonatal brain, Neurosci. Lett. 738 (2020), 135324.
    [290]
    F.J. Prael Iii, K. Kim, Y. Du, et al., Discovery of small molecule KCC2 potentiators which attenuate in vitro seizure-like activity in cultured neurons, Front. Cell Dev. Biol. 10 (2022), 912812.
    [291]
    J.S. Grimley, L. Li, W. Wang, et al., Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation, J. Neurosci. 33 (2013) 16297-16309.
    [292]
    S. Gill, R. Gill, Y. Wen, et al., A high-throughput screening assay for NKCC1 cotransporter using nonradioactive rubidium flux technology, Assay Drug Dev. Technol. 15 (2017) 167-177.
    [293]
    A.S. Roy, S.S. Sawrav, S. Hossain, et al., In silico identification of potential inhibitors with higher potency than bumetanide targeting NKCC1: an important ion cotransporter to treat neurological disorders, Inform. Med. Unlocked 27 (2021), 100777.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (297) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return