Volume 14 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
Tao Zhang, Lei Xu, Xiaowei Guo, Honglin Tao, Yue Liu, Xianfeng Liu, Yi Zhang, Xianli Meng. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 157-176. doi: 10.1016/j.jpha.2023.09.001
Citation: Tao Zhang, Lei Xu, Xiaowei Guo, Honglin Tao, Yue Liu, Xianfeng Liu, Yi Zhang, Xianli Meng. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 157-176. doi: 10.1016/j.jpha.2023.09.001

The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK

doi: 10.1016/j.jpha.2023.09.001
Funds:

This work was supported by the Natural Science Foundation of China (Grant No.: 82130113), the “Xinglin Scholars” Research Promotion Program of Chengdu University of Traditional Chinese Medicine (Program No.: ZDZX2022005), the China Postdoctoral Science Foundation (Grant No.: 2021MD703800), and the Science Foundation for Youths of Science & Technology Department of Sichuan Province (Grant No.: 2022NSFSC1449).

  • Received Date: Mar. 30, 2023
  • Accepted Date: Sep. 05, 2023
  • Rev Recd Date: Aug. 09, 2023
  • Publish Date: Feb. 29, 2024
  • Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
  • loading
  • [1]
    T. Shugg, A. Hudmon, B.R. Overholser, Neurohormonal regulation of IKs in heart failure: implications for ventricular arrhythmogenesis and sudden cardiac death, J Am Heart Assoc. 9 (2020), e016900.
    [2]
    G. Lippi, F. Sanchis-Gomar, Global epidemiology and future trends of heart failure, AME Med. J. 5 (2020), 15.
    [3]
    H.J. Warraich, H. Xu, A.D. DeVore, et al., Trends in hospice discharge and relative outcomes among medicare patients in the get with the guidelines-heart failure registry, JAMA Cardiol. 3 (2018) 917-926.
    [4]
    Kevin S. Shah, H.L. Xu, R.A. Matsouaka, et al., Heart Failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes, J. Am. Coll. Cardiol. 70 (2017) 2476-2486.
    [5]
    M.G. Del Buono, R. Arena, B.A. Borlaug, et al., Exercise intolerance in patients with heart failure, J. Am. Coll. Cardiol. 73 (2019) 2209-2225.
    [6]
    C.H. Zambroski, D.K. Moser, G. Bhat, et al., Impact of symptom prevalence and symptom burden on quality of life in patients with heart failure, Eur. J. Cardiovasc. Nurs. 4 (2005) 198-206.
    [7]
    M. Tanno, A. Kuno, Y. Horio, et al., Emerging beneficial roles of sirtuins in heart failure, Basic Res. Cardiol. 107 (2012), 273.
    [8]
    G.D. Lopaschuk, Q.G. Karwi, R. Tian, et al., Cardiac energy metabolism in heart failure, Circ. Res. 128 (2021) 1487-1513.
    [9]
    P.A. MacCarthy, A.M. Shah, Oxidative stress and heart failure, Coron. Artery Dis. 14 (2003) 109-113.
    [10]
    A. van der Pol, W.H. van Gilst, A.A. Voors, et al., Treating oxidative stress in heart failure: Past, present and future, Eur. J. Heart Fail. 21 (2019) 425-435.
    [11]
    Y. Mei, M.D. Thompson, R.A. Cohen, et al., Autophagy and oxidative stress in cardiovascular diseases, Biochim. Biophys. Acta 1852 (2015) 243-251.
    [12]
    T. Oka, S. Hikoso, O. Yamaguchi, et al., Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure, Nature 485 (2012) 251-255.
    [13]
    T. Gao, S.P. Zhang, J.F. Wang, et al., TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction, J. Cell. Mol. Med. 22 (2018) 395-408.
    [14]
    G. Olivetti, R. Abbi, F. Quaini, et al., Apoptosis in the failing human heart, N Engl J. Med. 336 (1997) 1131-1141.
    [15]
    J. Cowan, M.R. Longman, A.K. Snabaitis, Regulation of cardiomyocyte DNA damage and cell death by the type 2A protein phosphatase regulatory protein alpha4, Sci. Rep. 11 (2021), 6293.
    [16]
    R. Kumar, N. Mohan, A.D. Upadhyay, et al., Identification of serum sirtuins as novel noninvasive protein markers for frailty, Aging Cell. 13 (2014) 975-980.
    [17]
    W.L. Mu, Q.J. Zhang, X.Q. Tang, et al., Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure, Sci. China Life Sci. 57 (2014) 915-924.
    [18]
    F. Akkafa, I.H. Altiparmak, M.E. Erkus, et al., Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure, Redox Biol. 6 (2015) 169-173.
    [19]
    W.C. Wang, L.L. Wang, M.Y. Yang, et al., Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy, Cell Death Dis. 12 (2021), 1069.
    [20]
    A. Fukushima, G.D. Lopaschuk, Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure, Biochim. Biophys. Acta 1862 (2016) 2211-2220.
    [21]
    Y. Chen, C. Chen, B. Dong, et al., AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/Oxidative stress pathway, Eur. J. Pharmacol. 814 (2017) 335-342.
    [22]
    Y. Li, C. Chen, F. Yao, et al., AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1, Arch. Biochem. Biophys. 558 (2014) 79-86.
    [23]
    C. Canto, Z. Gerhart-Hines, J.N. Feige, et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature 458 (2009) 1056-1060.
    [24]
    C. Canto, J. Auwerx, PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure, Curr. Opin. Lipidol. 20 (2009) 98-105.
    [25]
    L. Wang, N. Quan, W. Sun, et al., Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury, Cardiovasc. Res. 114 (2018) 805-821.
    [26]
    Y. Dagon, C.S. Mantzoros, Y.B. Kim, AMPK↔Sirt1: From a signaling network to a combination drug, Metabolism 65 (2016) 1692-1694.
    [27]
    Y. Wang, Y. Liang, P.M. Vanhoutte, SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model, FEBS Lett. 585 (2011) 986-994.
    [28]
    P. Anggreini, H. Kuncoro, S.A. Sumiwi, et al., Role of the AMPK/SIRT1 pathway in non-alcoholic fatty liver disease (review), Mol Med Rep. 27 (2023), 35.
    [29]
    S. Boeuf-Gibot, B. Pereira, J. Imbert, et al., Benefits and adverse effects of ACE inhibitors in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis, Eur. J. Clin. Pharmacol. 77 (2021) 321-329.
    [30]
    J.M. Ter Maaten, P. Martens, K. Damman, et al., Higher doses of loop diuretics limit uptitration of angiotensin-converting enzyme inhibitors in patients with heart failure and reduced ejection fraction, Clin. Res. Cardiol. 109 (2020) 1048-1059.
    [31]
    D. Kiefer, T. Pantuso, Panax ginseng, Am. Fam. Physician 68 (2003) 1539-1542.
    [32]
    Q. Jia, L. Wang, X. Zhang, et al., Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota, Pharmacol. Res. 151 (2020), 104552.
    [33]
    X. Li, J. Zhang, J. Huang, et al., A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of Qili Qiangxin capsules in patients with chronic heart failure, J. Am. Coll. Cardiol. 62 (2013) 1065-1072.
    [34]
    J.M. Lorenzen, F. Martino, T. Thum, Epigenetic modifications in cardiovascular disease, Basic Res. Cardiol. 107 (2012), 245.
    [35]
    R. Nogueiras, K.M. Habegger, N. Chaudhary, et al., Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism, Physiol. Rev. 92 (2012) 1479-1514.
    [36]
    M. Tanno, J. Sakamoto, T. Miura, et al., Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1, J. Biol. Chem. 282 (2007) 6823-6832.
    [37]
    G. Bolasco, R. Calogero, M. Carrara, et al., Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice, Aging 4 (2012) 402-416.
    [38]
    R.S. Zee, C.B. Yoo, D.R. Pimentel, et al., Redox regulation of sirtuin-1 by S-glutathiolation, Antioxid. Redox Signal. 13 (2010) 1023-1032.
    [39]
    C.P. Hsu, I. Odewale, R.R. Alcendor, et al., Sirt1 protects the heart from aging and stress, Biol. Chem. 389 (2008) 221-231.
    [40]
    M.T. Borra, F.J. O’Neill, M.D. Jackson, et al., Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases, J. Biol. Chem. 277 (2002) 12632-12641.
    [41]
    S. Lee, L. Tong, J.M. Denu, Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose, Anal. Biochem. 383 (2008) 174-179.
    [42]
    L. Tong, S. Lee, J.M. Denu, Hydrolase regulates NAD+ metabolites and modulates cellular redox, J. Biol. Chem. 284 (2009) 11256-11266.
    [43]
    S. Nemoto, M.M. Fergusson, T. Finkel, SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}, J. Biol. Chem. 280 (2005) 16456-16460.
    [44]
    S. Oka, R. Alcendor, P. Zhai, et al., PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway, Cell Metab. 14 (2011) 598-611.
    [45]
    A. Cattelan, G. Ceolotto, S. Bova, et al., NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis, Vasc. Pharmacol. 70 (2015) 35-44.
    [46]
    M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nat. Cell Biol. 13 (2011) 1016-1023.
    [47]
    D.G. Hardie, AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy, Nat. Rev. Mol. Cell Biol. 8 (2007) 774-785.
    [48]
    X. Li, J. Liu, Q. Lu, et al., AMPK: a therapeutic target of heart failure-not only metabolism regulation, Biosci. Rep. 39 (2019), BSR20181767.
    [49]
    N.B. Ruderman, X. Julia Xu, L. Nelson, et al., AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298 (2010) E751-E760.
    [50]
    J.J. DiNicolantonio, M.F. McCarty, S.I. Assanga, et al., Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity, Open Heart 9 (2022), e001801.
    [51]
    Y. He, W. Huang, C. Zhang, et al., Energy metabolism disorders and potential therapeutic drugs in heart failure, Acta Pharm. Sin. B 11 (2021) 1098-1116.
    [52]
    A. Menssen, P. Hydbring, K. Kapelle, et al., The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop, Proc Natl Acad Sci U S A. 109 (2012) E187-E196.
    [53]
    J.E. Kim, J. Chen, Z. Lou, DBC1 is a negative regulator of SIRT1, Nature 451 (2008) 583-586.
    [54]
    V. Nin, C. Escande, C.C. Chini, et al., Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase, J. Biol. Chem. 287 (2012) 23489-23501.
    [55]
    C. Chang, H. Su, D. Zhang, et al., AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation, Mol. Cell 60 (2015) 930-940.
    [56]
    C.L. Passariello, M. Zini, P.A. Nassi, et al., Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts, Biochem. Biophys. Res. Commun. 407 (2011) 512-516.
    [57]
    F. Lan, J.M. Cacicedo, N. Ruderman, et al., SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1, J. Biol. Chem. 283 (2008) 27628-27635.
    [58]
    D.B. Shackelford, R.J. Shaw, The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression, Nat. Rev. Cancer 9 (2009) 563-575.
    [59]
    M.A. Potenza, L. Sgarra, C. Nacci, et al., Activation of AMPK/SIRT1 axis is required for adiponectin-mediated preconditioning on myocardial ischemia-reperfusion (I/R) injury in rats, PLoS One 14 (2019), e0210654.
    [60]
    M.N. Sack, T.A. Rader, S. Park, et al., Fatty acid oxidation enzyme gene expression is downregulated in the failing heart, Circulation 94 (1996) 2837-2842.
    [61]
    P.S. Azevedo, M.F. Minicucci, P.P. Santos, et al., Energy metabolism in cardiac remodeling and heart failure, Cardiol. Rev. 21 (2013) 135-140.
    [62]
    J. Wu, J. Lu, J. Huang, et al., Variations in energy metabolism precede alterations in cardiac structure and function in hypertrophic preconditioning, Front. Cardiovasc. Med. 7 (2020), 602100.
    [63]
    G. Fragasso, A. Palloshi, P. Puccetti, et al., A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure, J. Am. Coll. Cardiol. 48 (2006) 992-998.
    [64]
    G. Fragasso, A. Salerno, G. Lattuada, et al., Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure, Heart Br. Card. Soc. 97 (2011) 1495-1500.
    [65]
    T. Salvatore, R. Galiero, A. Caturano, et al., Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence, Biomolecules 11 (2021), 1834.
    [66]
    S. Imai, C.M. Armstrong, M. Kaeberlein, et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (2000) 795-800.
    [67]
    W. Di, J. Lv, S. Jiang, et al., PGC-1: The energetic regulator in cardiac metabolism, Curr. News. Mol. Biol. 28 (2018) 29-46.
    [68]
    J. Lin, C. Handschin, B.M. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell Metab. 1 (2005) 361-370.
    [69]
    L.M. Dillon, A.P. Rebelo, C.T. Moraes, The role of PGC-1 coactivators in aging skeletal muscle and heart, IUBMB Life 64 (2012) 231-241.
    [70]
    G.C. Rowe, A. Jiang, Z. Arany, PGC-1 coactivators in cardiac development and disease, Circ. Res. 107 (2010) 825-838.
    [71]
    J. Schilling, L. Lai, N. Sambandam, et al., Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling, Circ Heart Fail 4 (2011) 474-482.
    [72]
    M. Waldman, K. Cohen, D. Yadin, et al., Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’, Cardiovasc. Diabetol. 17 (2018), 111.
    [73]
    L. Zhu, Q. Wang, L. Zhang, et al., Hypoxia induces PGC-1α expression and mitochondrial biogenesis in the myocardium of TOF patients, Cell Res. 20 (2010) 676-687.
    [74]
    S. Jager, C. Handschin, J. St-Pierre, et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 12017-12022.
    [75]
    D. Montaigne, L. Butruille, B. Staels, PPAR control of metabolism and cardiovascular functions, Nat. Rev. Cardiol. 18 (2021) 809-823.
    [76]
    Y. Irukayama-Tomobe, T. Miyauchi, S. Sakai, et al., Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway, Circulation 109 (2004) 904-910.
    [77]
    S.-Y. Park, Y.-R. Cho, B.N. Finck, et al., Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver, Diabetes 54 (2005) 2514-2524.
    [78]
    S.Z. Duan, C.Y. Ivashchenko, M.W. Russell, et al., Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice, Circ. Res. 97 (2005) 372-379.
    [79]
    J.M. Huss, K.I. Imahashi, C.R. Dufour, et al., The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload, Cell Metab. 6 (2007) 25-37.
    [80]
    A. Planavila, R. Iglesias, M. Giralt, et al., Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation, Cardiovasc. Res. 90 (2011) 276-284.
    [81]
    X. Xiao, G. Su, S.N. Brown, et al., Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase, J. Nutr. Biochem. 21 (2010) 621-626.
    [82]
    H.W. Dong, L.F. Zhang, S.L. Bao, AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 2757-2766.
    [83]
    D.H. Tran, Z.V. Wang, Glucose metabolism in cardiac hypertrophy and heart failure, J. Am. Heart Assoc. 8 (2019), e012673.
    [84]
    A.S. Marsin, L. Bertrand, M.H. Rider, et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Curr. Biol. 10 (2000) 1247-1255.
    [85]
    J. Li, X. Hu, P. Selvakumar, et al., Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle, Am. J. Physiol. Endocrinol. Metab. 287 (2004) E834-E841.
    [86]
    R.S. Williams, Apoptosis and heart failure, N. Engl. J. Med. 341 (1999) 759-760.
    [87]
    A. Abbate, G.G.L. Biondi-Zoccai, R. Bussani, et al., Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure, J. Am. Coll. Cardiol. 41 (2003) 753-760.
    [88]
    S. Garg, J. Narula, Y. Chandrashekhar, Apoptosis and heart failure: Clinical relevance and therapeutic target, J. Mol. Cell. Cardiol. 38 (2005) 73-79.
    [89]
    L. Rossig, J. Haendeler, Z. Mallat, et al., Congestive heart failure induces endothelial cell apoptosis: Protective role of carvedilol, J. Am. Coll. Cardiol. 36 (2000) 2081-2089.
    [90]
    T. Fujita, Y. Ishikawa, Apoptosis in heart failure.-The role of the β-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes-, Circ. J. 75 (2011) 1811-1818.
    [91]
    X. Long, M.O. Boluyt, M.L. Hipolito, et al., p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes, J. Clin. Investig. 99 (1997) 2635-2643.
    [92]
    X. Long, M.T. Crow, S.J. Sollott, et al., Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyocytes, J. Clin. Investig. 101 (1998) 1453-1461.
    [93]
    C. Zhang, Y. Feng, S. Qu, et al., Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53, Cardiovasc. Res. 90 (2011) 538-545.
    [94]
    R.G. Jones, D.R. Plas, S. Kubek, et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell. 18 (2005) 283-293.
    [95]
    R. Okoshi, T. Ozaki, H. Yamamoto, et al., Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress, J. Biol. Chem. 283 (2008) 3979-3987.
    [96]
    M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling, Cell. 132 (2008) 344-362.
    [97]
    J.W. Gordon, J.A. Shaw, L.A. Kirshenbaum, Multiple facets of NF-κB in the heart: to be or not to NF-κB, Circ. Res. 108 (2011) 1122-1132.
    [98]
    F. Yeung, J.E. Hoberg, C.S. Ramsey, et al., Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J. 23 (2004) 2369-2380.
    [99]
    A. Salminen, J.M.T. Hyttinen, K. Kaarniranta, AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan, J. Mol. Med. 89 (2011) 667-676.
    [100]
    B. Shen, H. Zhang, Z. Zhu, et al., Baicalin relieves LPS-induced lung inflammation via the NF-κB and MAPK pathways, Molecules. 28 (2023), 1873.
    [101]
    T. Yokota, Y. Wang, p38 MAP kinases in the heart, Gene 575 (2016) 369-376.
    [102]
    M. Becatti, N. Taddei, C. Cecchi, et al., SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes, Cell. Mol. Life Sci. 69 (2012) 2245-2260.
    [103]
    N.R. Sundaresan, V.B. Pillai, D. Wolfgeher, et al., The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy, Sci. Signal. 4 (2011), ra46.
    [104]
    L. Adrian, M. Lenski, K. Todter, et al., AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes, Lipids 52 (2017) 737-750.
    [105]
    Y. Li, Y. Wang, M. Zou, et al., AMPK blunts chronic heart failure by inhibiting autophagy, Biosci. Rep. 38 (2018), BSR20170982.
    [106]
    L.A. Kiyuna, R.P.E. Albuquerque, C. Chen, et al., Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities, Free. Radic. Biol. Med. 129 (2018) 155-168.
    [107]
    Z. Ahmed, W.H. Tang, Pharmacologic strategies to target oxidative stress in heart failure, Curr. Heart Fail. Rep. 9 (2012) 14-22.
    [108]
    G. Akolkar, D. da Silva Dias, P. Ayyappan, et al., Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy, Am. J. Physiol. Heart Circ. Physiol. 313 (2017) H795-H809.
    [109]
    Y. Ruan, C. Dong, J. Patel, et al., SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways, Cell. Physiol. Biochem. 35 (2015) 1116-1124.
    [110]
    Y. Olmos, F.J. Sanchez-Gomez, B. Wild, et al., Sirt1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex, Antioxid. Redox Signal. 19 (2013) 1507-1521.
    [111]
    G.J. Kops, T.B. Dansen, P.E. Polderman, et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress, Nature 419 (2002) 316-321.
    [112]
    S. Nemoto, T. Finkel, Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway, Science 295 (2002) 2450-2452.
    [113]
    J. Huang, Y. Liu, M. Wang, et al., FoxO4 negatively modulates USP10 transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation-induced cardiomyocytes by regulating the Hippo/YAP pathway, J. Bioenerg. Biomembr. 53 (2021) 541-551.
    [114]
    A. Brunet, L.B. Sweeney, J.F. Sturgill, et al., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science 303 (2004) 2011-2015.
    [115]
    L. Lai, L. Yan, S. Gao, et al., Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway, Circulation 127 (2013) 1692-1701.
    [116]
    Y. Kobayashi, Y. Furukawa-Hibi, C. Chen, et al., SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress, Int. J. Mol. Med. 16 (2005) 237-243.
    [117]
    X. Li, J. Song, L. Zhang, et al., Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin, Diabetes 58 (2009) 2246-2257.
    [118]
    Z.X. Hong, J. Cao, D.D. Liu, ta al., Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke, J. Pharm. Anal. 13 (2023) 156-169.
    [119]
    J. Xu, J. Cui, Q. Lin, et al., Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury, Int. J. Cardiol. 342 (2021) 82-93.
    [120]
    M.S. Joo, W.D. Kim, K.Y. Lee, et al., AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550, Mol. Cell. Biol. 36 (2016) 1931-1942.
    [121]
    X. Li, D. Wu, Y. Tian, Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway, Biochem. Biophys. Res. Commun. 502 (2018) 62-68.
    [122]
    K. Nishida, S. Kyoi, O. Yamaguchi, et al., The role of autophagy in the heart, Cell Death Differ. 16 (2009) 31-38.
    [123]
    A. Shirakabe, P. Zhai, Y. Ikeda, et al., Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure, Circulation 133 (2016) 1249-1263.
    [124]
    S. Zhang, X. Lin, G. Li, et al., Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy, Cell Death Dis. 8 (2017), e2586.
    [125]
    M. Liao, Q. Xie, Y. Zhao, et al., Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models, Pharmacol. Res. 176 (2022), 106077.
    [126]
    S. Sciarretta, M. Forte, G. Frati, et al., New insights into the role of mTOR signaling in the cardiovascular system, Circ. Res. 122 (2018) 489-505.
    [127]
    A. Vlahakis, T. Powers, A role for TOR complex 2 signaling in promoting autophagy, Autophagy 10 (2014) 2085-2086.
    [128]
    K. Inoki, T. Zhu, K.-L. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell. 115 (2003) 577-590.
    [129]
    D.M. Gwinn, D.B. Shackelford, D.F. Egan, et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol. Cell. 30 (2008) 214-226.
    [130]
    H.S. Ghosh, M. McBurney, P.D. Robbins, SIRT1 negatively regulates the mammalian target of rapamycin, PLoS One 5 (2010), e9199.
    [131]
    N. Mizushima, The ATG conjugation systems in autophagy, Curr. Opin. Cell Biol. 63 (2020) 1-10.
    [132]
    I.H. Lee, L. Cao, R. Mostoslavsky, et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 3374-3379.
    [133]
    W.N. Hait, H. Wu, S. Jin, et al., Elongation factor-2 kinase: Its role in protein synthesis and autophagy, Autophagy 2 (2006) 294-296.
    [134]
    J.P. Da Silva, K. Monceaux, A. Guilbert, et al., SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy, Cells 9 (2020), 426.
    [135]
    A. Prola, J. Pires Da Silva, A. Guilbert, et al., SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation, Cell Death Differ. 24 (2017) 343-356.
    [136]
    G.J. Browne, S.G. Finn, C.G. Proud, Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398, J. Biol. Chem. 279 (2004) 12220-12231.
    [137]
    P. Xu, S. Xu, H. Pan, et al., Differential effects of the LncRNA RNF157-AS1 on epithelial ovarian cancer cells through suppression of DIRAS3- and ULK1-mediated autophagy, Cell Death Dis. 14 (2023), 140.
    [138]
    J.W. Lee, S. Park, Y. Takahashi, et al., The association of AMPK with ULK1 regulates autophagy, PLoS One 5 (2010), e15394.
    [139]
    J. Xing, H. Liu, H. Yang, et al., Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy, PLoS One 9 (2014), e116165.
    [140]
    S.M. Yoo, Y.K. Jung, A molecular approach to mitophagy and mitochondrial dynamics, Mol. Cells 41 (2018) 18-26.
    [141]
    B. Wang, J. Nie, L. Wu, et al., AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation, Circ. Res. 122 (2018) 712-729.
    [142]
    G. Luo, Z. Jian, Y. Zhu, et al., Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress, Int. J. Mol. Med. 43 (2019) 2033-2043.
    [143]
    A. Lala, A.S. Desai, The role of coronary artery disease in heart failure, Heart Fail. Clin. 10 (2014) 353-365.
    [144]
    H. Meng, Q. Wang, N. Li, et al., Danqi Tablet () regulates energy metabolism in ischemic heart rat model through AMPK/SIRT1-PGC-1α pathway, Chin. J. Integr. Med. 27 (2021) 597-603.
    [145]
    X. Wang, Y. Jiang, Q. Zhang, et al., Autophagy as a novel insight into mechanism of Danqi pill against post-acute myocardial infarction heart failure, J. Ethnopharmacol. 266 (2021), 113404.
    [146]
    Q. Li, N. Li, H. Cui, et al., Tongxinluo exerts protective effects via anti-apoptotic and pro-autophagic mechanisms by activating AMPK pathway in infarcted rat hearts, Exp. Physiol. 102 (2017) 422-435.
    [147]
    X. Shi, H. Zhu, Y. Zhang, et al., XuefuZhuyu Decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy, BMC Complementary Altern. Med. 17 (2017), 325.
    [148]
    M. Chen, K. Yao, Z. Liu, et al., Xuefu Zhuyu oral liquid () prevents apoptosis of ischemic myocardium cells in rats by regulating SIRT1 and its pathway-related genes, Chin. J. Integr. Med. 26 (2020) 442-447.
    [149]
    S. Yu, H. Qian, D. Tian, et al., Linggui Zhugan Decoction activates the SIRT1-AMPK-PGC1α signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction, Front. Pharmacol. 14 (2023), 1074837.
    [150]
    Y. Huang, K. Zhang, M. Jiang, et al., Regulation of energy metabolism by combination therapy attenuates cardiac metabolic remodeling in heart failure, Int. J. Biol. Sci. 16 (2020) 3133-3148.
    [151]
    T. Lou, J. Ma, Y. Xie, et al., Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway, Biomed Pharmacother. 135 (2021), 111188.
    [152]
    J. Zhao, J. Zhang, Q. Liu, et al., Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic- flux, Biomed Pharmacother. 135 (2021), 111205.
    [153]
    Y.L. Zhao, Y. Yuan, X.L. Ma, et al., Study on protective mechanism of Dracocephalum moldavica total flavonoids against myocardial ischemia-reperfusion injury in rats based on AMPK/SIRT1/PGC-1α signaling pathway, Chinese Pharmacy 32 (2021) 278-283.
    [154]
    N. Wei, C. Zhang, H. He, et al., Protective effect of saponins extract from Panax japonicus on myocardial infarction: Involvement of NF-κB, Sirt1 and mitogen-activated protein kinase signalling pathways and inhibition of inflammation, J. Pharm. Pharmacol. 66 (2014) 1641-1651.
    [155]
    D. Wang, L. Lv, Y. Xu, et al., Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy, Biomed Pharmacother. 136 (2021), 111287.
    [156]
    K. Cao, W. Lv, X. Liu, et al., Herba Houttuyniae extract benefits hyperlipidemic mice via activation of the AMPK/PGC-1α/Nrf2 cascade, Nutrients 12 (2020), 164.
    [157]
    S. Upadhyay, A.K. Mantha, M. Dhiman, Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes, J. Ethnopharmacol. 258 (2020), 112690.
    [158]
    Y.M. Chang, H.H. Chang, W.W. Kuo, et al., Anti-apoptotic and pro-survival effect of alpinate oxyphyllae fructus (AOF) in a d-galactose-induced aging heart, Int. J. Mol. Sci. 17 (2016), 466.
    [159]
    T.H. Huang, G. Peng, B.P. Kota, et al., Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids, Br. J. Pharmacol. 145 (2005) 767-774.
    [160]
    R.A. Syahputra, U. Harahap, A. Dalimunthe, et al., The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: A review, Molecules 27 (2022), 1320.
    [161]
    X. Zhang, Q. Wang, X. Wang, et al., Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway, Biomed Pharmacother. 112 (2019), 108599.
    [162]
    J. Zhong, H. Ouyang, M. Sun, et al., Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PGC1α-mitochondrial apoptosis pathway, Cell Stress. Chaperones 24 (2019) 991-1003.
    [163]
    Y. Cui, Y. Hong, W. Wu, et al., Acacetin ameliorates cardiac hypertrophy by activating Sirt1/AMPK/PGC-1α pathway, Eur. J. Pharmacol. 920 (2022), 174858.
    [164]
    C. Wu, J. Yan, W. Li, Acacetin as a potential protective compound against cardiovascular diseases, Evid. Based Complementary Altern. Med. 2022 (2022), 6265198.
    [165]
    W. Wu, Y. Cui, Y. Hong, et al., Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules, J. Cell. Mol. Med. 24 (2020) 12141-12153.
    [166]
    Y. Hong, W. Wu, F. Song, et al., Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy, Aging 13 (2021) 16381-16403.
    [167]
    L. Chen, S. Li, J. Zhu, et al., Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway, J. Cell. Mol. Med. 25 (2021) 2944-2955.
    [168]
    F.S. Khattulanuar, M. Sekar, S. Fuloria, et al., Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders, Molecules 27 (2022), 673.
    [169]
    L. Tian, W. Cao, R. Yue, et al., Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway, J. Pharmacol. Sci. 139 (2019) 352-360.
    [170]
    L. Zhao, Z. Zhou, C. Zhu, et al., Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF-κB pathway, Int. Immunopharmacol. 85 (2020), 106680.
    [171]
    J. Tang, L. Lu, Y. Liu, et al., Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling, J. Cell. Biochem. 120 (2019) 9747-9757.
    [172]
    X. Chang, T. Zhang, Q. Meng, et al., Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress, Oxid. Med. Cell. Longev. 2021 (2021), 5529913.
    [173]
    B. Wu, J. Feng, L. Yu, et al., Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage, Br. J. Pharmacol. 175 (2018) 4137-4153.
    [174]
    L. Testai, E. Piragine, I. Piano, et al., The Citrus flavonoid naringenin protects the myocardium from ageing-dependent dysfunction: Potential role of SIRT1, Oxid. Med. Cell. Longev. 2020 (2020), 4650207.
    [175]
    H. Yang, C. Wang, L. Zhang, et al., Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression, Chem. Biol. Interact. 297 (2019) 44-49.
    [176]
    Z.K. Wang, R.R. Chen, J.H. Li, et al., Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting inflammation and the NLRP3 inflammasome: The role of the SIRT1/NF-κB pathway, Int. Immunopharmacol. 89 (2020), 107086.
    [177]
    Z. Sun, W. Lu, N. Lin, et al., Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1, Biochem Pharmacol. 175 (2020), 113888.
    [178]
    Y. Liu, L. Zhou, B. Du, et al., Protection against doxorubicin-related cardiotoxicity by jaceosidin involves the Sirt1 signaling pathway, Oxid. Med. Cell. Longev. 2021 (2021), 9984330.
    [179]
    L. Lu, Q. Guo, L. Zhao, Overview of oroxylin A: A promising flavonoid compound, Phytother. Res. 30 (2016) 1765-1774.
    [180]
    W. Zhang, Y. Zheng, Y. Wu, Protective effects of oroxylin A against doxorubicin-induced cardiotoxicity via the activation of Sirt1 in mice, Oxid. Med. Cell. Longev. 2021 (2021), 6610543.
    [181]
    Y. Du, J. Han, H. Zhang, et al., Kaempferol prevents against ang II-induced cardiac remodeling through attenuating ang II-induced inflammation and oxidative stress, J. Cardiovasc. Pharmacol. 74 (2019) 326-335.
    [182]
    Z. Guo, Z. Liao, L. Huang, et al., Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1, Eur. J. Pharmacol. 761 (2015) 245-253.
    [183]
    L. Huang, H. He, Z. Liu, et al., Protective effects of isorhamnetin on cardiomyocytes against Anoxia/reoxygenation-induced injury is mediated by SIRT1, J. Cardiovasc. Pharmacol. 67 (2016) 526-537.
    [184]
    Y. Ying, C. Jiang, M. Zhang, et al., Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model, Aging 11 (2019) 2822-2835.
    [185]
    P. Liu, J. Li, M. Liu, et al., Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis, Biomed Pharmacother. 139 (2021), 111552.
    [186]
    H. Zou, X. Zhu, G. Zhang, et al., Silibinin: An old drug for hematological disorders, Oncotarget 8 (2017) 89307-89314.
    [187]
    B. Zhou, L.J. Wu, L.H. Li, et al., Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1, J. Pharmacol. Sci. 102 (2006) 387-395.
    [188]
    T. Tang, X. Wang, L. Wang, et al., Liquiritin inhibits H2O2-induced oxidative stress injury in H9c2 cells via the AMPK/SIRT1/NF-κB signaling pathway, J. Food Biochem. 46 (2022), e14351.
    [189]
    A.P. Laddha, Y.A. Kulkarni, Daidzein mitigates myocardial injury in streptozotocin-induced diabetes in rats, Life Sci. 284 (2021), 119664.
    [190]
    T. Moses, J. Pollier, J.M. Thevelein, et al., Bioengineering of plant (tri)terpenoids: From metabolic engineering of plants to synthetic biology in vivo and in vitro, N. Phytol. 200 (2013) 27-43.
    [191]
    S. Kamran, A. Sinniah, M.A.M. Abdulghani, et al., Therapeutic potential of certain terpenoids as anticancer agents: A scoping review, Cancers 14 (2022), 1100.
    [192]
    M.E. Bergman, B. Davis, M.A. Phillips, Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action, Molecules 24 (2019), 3961.
    [193]
    S. Hortelano, L. Gonzalez-Cofrade, I. Cuadrado, et al., Current status of terpenoids as inflammasome inhibitors, Biochem. Pharmacol. 172 (2020), 113739.
    [194]
    S. Agatonovic-Kustrin, E. Kustrin, V. Gegechkori, et al., Anxiolytic terpenoids and aromatherapy for anxiety and depression, Adv. Exp. Med. Biol. 1260 (2020) 283-296.
    [195]
    K. Wang, W. Hu, Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway, Acta Biochim. Pol. 67 (2020) 239-245.
    [196]
    C. Yu, X. Cai, X. Liu, et al., Betulin alleviates myocardial ischemia-reperfusion injury in rats via regulating the Siti1/NLRP3/NF-κB signaling pathway, Inflammation 44 (2021) 1096-1107.
    [197]
    J. Feng, Y. Yang, Y. Zhou, et al., Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: The role of silent information regulator 1, Apoptosis 21 (2016) 532-545.
    [198]
    W. Ma, W. Guo, F. Shang, et al., Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2020 (2020), 3732718.
    [199]
    Z. Ma, C. Kong, P. Song, et al., Geniposide protects against obesity-related cardiac injury through AMPKα- and Sirt1-dependent mechanisms, Oxid. Med. Cell. Longev. 2018 (2018), 6053727.
    [200]
    Y. Hou, P. Yuan, Y. Fu, et al., Geniposide from Gardenia jasminoides var. radicans makino attenuates myocardial injury in spontaneously hypertensive rats via regulating apoptotic and energy metabolism signalling pathway, Drug Des. Dev. Ther. 15 (2021) 949-962.
    [201]
    Y. Mei, H. Hu, L. Deng, et al., Isosteviol sodium attenuates high fat/high cholesterol-induced myocardial dysfunction by regulating the Sirt1/AMPK pathway, Biochem. Biophys. Res. Commun. 621 (2022) 80-87.
    [202]
    Y. Mei, B. Liu, H. Su, et al., Isosteviol sodium protects the cardiomyocyte response associated with the SIRT1/PGC-1α pathway, J. Cell. Mol. Med. 24 (2020) 10866-10875.
    [203]
    Q. Jiang, M. Lu, J. Li, et al., Ginkgolide B protects cardiomyocytes from angiotensin II-induced hypertrophy via regulation of autophagy through SIRT1-FoxO1, Cardiovasc. Ther. 2021 (2021), 5554569.
    [204]
    C.G. Fraga, K.D. Croft, D.O. Kennedy, et al., The effects of polyphenols and other bioactives on human health, Food Funct. 10 (2019) 514-528.
    [205]
    X.S. Gu, Z.B. Wang, Z. Ye, et al., Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure, Genet. Mol. Res. 13 (2014) 323-335.
    [206]
    N.L. Price, A.P. Gomes, A.J. Ling, et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab. 15 (2012) 675-690.
    [207]
    D. Liu, Z. Ma, L. Xu, et al., PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades, Aging 11 (2019) 10061-10073.
    [208]
    L.M. Yu, X. Dong, X.D. Xue, et al., Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism, Chem. Biol. Interact. 306 (2019) 152-162.
    [209]
    J. Xiao, X. Sheng, X. Zhang, et al., Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro, Drug Des. Dev. Ther. 10 (2016) 1267-1277.
    [210]
    B.C. Ren, Y.F. Zhang, S.S. Liu, et al., Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways, J. Cell. Mol. Med. 24 (2020) 12355-12367.
    [211]
    J.Z. Altamimi, N.A. Alfaris, G.M. Alshammari, et al., Ellagic acid protects against diabetic cardiomyopathy in rats by stimulating cardiac silent information regulator 1 signaling, J. Physiol. Pharmacol. 71 (2020) 891-904.
    [212]
    J. Diao, H. Zhao, P. You, et al., Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway, Biochem. Biophys. Res. Commun. 546 (2021) 29-34.
    [213]
    B. Tan, X. Wu, J. Yu, et al., The role of saponins in the treatment of neuropathic pain, Molecules 27 (2022), 3956.
    [214]
    A.V. Rao, M.K. Sung, Saponins as anticarcinogens, J. Nutr. 125 (1995) 717S-724S.
    [215]
    A. Sun, X. Xu, J. Lin, et al., Neuroprotection by saponins, Phytother. Res. 29 (2015) 187-200.
    [216]
    Q. Huang, H. Su, B. Qi, et al., A SIRT1 activator, ginsenoside rc, promotes energy metabolism in cardiomyocytes and neurons, J. Am. Chem. Soc. 143 (2021) 1416-1427.
    [217]
    Y. Xue, W. Fu, Y. Liu, et al., Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation, J. Food Sci. 85 (2020) 4039-4049.
    [218]
    M. Wang, R. Wang, X. Xie, et al., Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function, Biomed Pharmacother. 117 (2019), 109143.
    [219]
    X. Han, Y. Yang, M. Zhang, et al., Protective effects of 6-gingerol on cardiotoxicity induced by arsenic trioxide through AMPK/SIRT1/PGC-1α signaling pathway, Front. Pharmacol. 13 (2022), 868393.
    [220]
    Q. Li, Z. Zuo, Y. Pan, et al., Salvianolic acid B alleviates myocardial ischemia injury by suppressing NLRP3 inflammasome activation via SIRT1-AMPK-PGC-1α signaling pathway, Cardiovasc. Toxicol. 22 (2022) 842-857.
    [221]
    C. Pan, L. Lou, Y. Huo, et al., Salvianolic acid B and tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways, Ther. Adv. Cardiovasc. Dis. 5 (2011) 99-111.
    [222]
    C.Y. Liu, Y. Zhou, T. Chen, et al., AMPK/SIRT1 pathway is involved in arctigenin-mediated protective effects against myocardial ischemia-reperfusion injury, Front. Pharmacol. 11 (2020), 616813.
    [223]
    K. Wang, X. Feng, L. Chai, et al., The metabolism of berberine and its contribution to the pharmacological effects, Drug Metab. Rev. 49 (2017) 139-157.
    [224]
    Z. Huang, Z. Han, B. Ye, et al., Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes, Eur. J. Pharmacol. 762 (2015) 1-10.
    [225]
    C. Li, S. Jiang, H. Wang, et al., Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway, Biomed Pharmacother. 151 (2022), 113097.
    [226]
    Y. Ni, J. Deng, X. Liu, et al., Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol, J. Cell. Mol. Med. 25 (2021) 203-216.
    [227]
    W. Lu, H. Zhu, J. Wu, et al., Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling, J. Transl. Med. 20 (2022), 305.
    [228]
    Y. Lu, Y. Feng, D. Liu, et al., Thymoquinone attenuates myocardial ischemia/reperfusion injury through activation of SIRT1 signaling, Cell. Physiol. Biochem. 47 (2018) 1193-1206.
    [229]
    B. Zhang, M. Zhai, B. Li, et al., Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2018 (2018), 3159801.
    [230]
    H. He, Y. Zhou, J. Huang, et al., Capsaicin protects cardiomyocytes against Anoxia/reoxygenation injury via preventing mitochondrial dysfunction mediated by SIRT1, Oxid. Med. Cell. Longev. 2017 (2017), 1035702.
    [231]
    X. Wang, B. Yuan, B. Cheng, et al., Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway, Shock. Augusta Ga 51 (2019) 123-130.
    [232]
    M. Arad, C.E. Seidman, J.G. Seidman, AMP-activated protein kinase in the heart: Role during health and disease, Circ. Res. 100 (2007) 474-488.
    [233]
    S. Oka, P. Zhai, R. Alcendor, et al., Suppression of ERR targets by a PPARα/Sirt1 complex in the failing heart, Cell Cycle Georget. Tex 11 (2012) 856-864.
    [234]
    C. Julien, C. Tremblay, V. Emond, et al., Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease, J. Neuropathol. Exp. Neurol. 68 (2009) 48-58.
    [235]
    A.J. Clark, S.M. Parikh, Targeting energy pathways in kidney disease: The roles of sirtuins, AMPK, and PGC1α, Kidney Int. 99 (2021) 828-840.
    [236]
    Y. An, B. Wang, X. Wang, et al., SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop, Cell Death Dis. 11 (2020), 115.
    [237]
    Y. Ma, M. Zeng, R. Sun, et al., Disposition of flavonoids impacts their efficacy and safety, Curr. Drug Metab. 15 (2014) 841-864.
    [238]
    Y. Liu, Q.L. Luo, X.B. Jia, et al., Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology, J. Pharm. Anal. 13 (2023) 239-254.
    [239]
    D. Pandita, S. Kumar, N. Poonia, et al., Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol, Food Res. Int. 62 (2014) 1165-1174.
    [240]
    R.S. Najjar, R.G. Feresin, Protective role of polyphenols in heart failure: Molecular targets and cellular mechanisms underlying their therapeutic potential, Int. J. Mol. Sci. 22 (2021), 1668.
    [241]
    M. Hoda, S. Hemaiswarya, M. Doble, Pharmacokinetics and pharmacodynamics of polyphenols. Role of Phenolic Phytochemicals in Diabetes Management, Springer, Singapore, 2019, pp. 159-173.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (398) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return