Citation: | Tao Zhang, Lei Xu, Xiaowei Guo, Honglin Tao, Yue Liu, Xianfeng Liu, Yi Zhang, Xianli Meng. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 157-176. doi: 10.1016/j.jpha.2023.09.001 |
[1] |
T. Shugg, A. Hudmon, B.R. Overholser, Neurohormonal regulation of IKs in heart failure: implications for ventricular arrhythmogenesis and sudden cardiac death, J Am Heart Assoc. 9 (2020), e016900.
|
[2] |
G. Lippi, F. Sanchis-Gomar, Global epidemiology and future trends of heart failure, AME Med. J. 5 (2020), 15.
|
[3] |
H.J. Warraich, H. Xu, A.D. DeVore, et al., Trends in hospice discharge and relative outcomes among medicare patients in the get with the guidelines-heart failure registry, JAMA Cardiol. 3 (2018) 917-926.
|
[4] |
Kevin S. Shah, H.L. Xu, R.A. Matsouaka, et al., Heart Failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes, J. Am. Coll. Cardiol. 70 (2017) 2476-2486.
|
[5] |
M.G. Del Buono, R. Arena, B.A. Borlaug, et al., Exercise intolerance in patients with heart failure, J. Am. Coll. Cardiol. 73 (2019) 2209-2225.
|
[6] |
C.H. Zambroski, D.K. Moser, G. Bhat, et al., Impact of symptom prevalence and symptom burden on quality of life in patients with heart failure, Eur. J. Cardiovasc. Nurs. 4 (2005) 198-206.
|
[7] |
M. Tanno, A. Kuno, Y. Horio, et al., Emerging beneficial roles of sirtuins in heart failure, Basic Res. Cardiol. 107 (2012), 273.
|
[8] |
G.D. Lopaschuk, Q.G. Karwi, R. Tian, et al., Cardiac energy metabolism in heart failure, Circ. Res. 128 (2021) 1487-1513.
|
[9] |
P.A. MacCarthy, A.M. Shah, Oxidative stress and heart failure, Coron. Artery Dis. 14 (2003) 109-113.
|
[10] |
A. van der Pol, W.H. van Gilst, A.A. Voors, et al., Treating oxidative stress in heart failure: Past, present and future, Eur. J. Heart Fail. 21 (2019) 425-435.
|
[11] |
Y. Mei, M.D. Thompson, R.A. Cohen, et al., Autophagy and oxidative stress in cardiovascular diseases, Biochim. Biophys. Acta 1852 (2015) 243-251.
|
[12] |
T. Oka, S. Hikoso, O. Yamaguchi, et al., Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure, Nature 485 (2012) 251-255.
|
[13] |
T. Gao, S.P. Zhang, J.F. Wang, et al., TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction, J. Cell. Mol. Med. 22 (2018) 395-408.
|
[14] |
G. Olivetti, R. Abbi, F. Quaini, et al., Apoptosis in the failing human heart, N Engl J. Med. 336 (1997) 1131-1141.
|
[15] |
J. Cowan, M.R. Longman, A.K. Snabaitis, Regulation of cardiomyocyte DNA damage and cell death by the type 2A protein phosphatase regulatory protein alpha4, Sci. Rep. 11 (2021), 6293.
|
[16] |
R. Kumar, N. Mohan, A.D. Upadhyay, et al., Identification of serum sirtuins as novel noninvasive protein markers for frailty, Aging Cell. 13 (2014) 975-980.
|
[17] |
W.L. Mu, Q.J. Zhang, X.Q. Tang, et al., Overexpression of a dominant-negative mutant of SIRT1 in mouse heart causes cardiomyocyte apoptosis and early-onset heart failure, Sci. China Life Sci. 57 (2014) 915-924.
|
[18] |
F. Akkafa, I.H. Altiparmak, M.E. Erkus, et al., Reduced SIRT1 expression correlates with enhanced oxidative stress in compensated and decompensated heart failure, Redox Biol. 6 (2015) 169-173.
|
[19] |
W.C. Wang, L.L. Wang, M.Y. Yang, et al., Circ-SIRT1 inhibits cardiac hypertrophy via activating SIRT1 to promote autophagy, Cell Death Dis. 12 (2021), 1069.
|
[20] |
A. Fukushima, G.D. Lopaschuk, Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure, Biochim. Biophys. Acta 1862 (2016) 2211-2220.
|
[21] |
Y. Chen, C. Chen, B. Dong, et al., AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/Oxidative stress pathway, Eur. J. Pharmacol. 814 (2017) 335-342.
|
[22] |
Y. Li, C. Chen, F. Yao, et al., AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1, Arch. Biochem. Biophys. 558 (2014) 79-86.
|
[23] |
C. Canto, Z. Gerhart-Hines, J.N. Feige, et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature 458 (2009) 1056-1060.
|
[24] |
C. Canto, J. Auwerx, PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure, Curr. Opin. Lipidol. 20 (2009) 98-105.
|
[25] |
L. Wang, N. Quan, W. Sun, et al., Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury, Cardiovasc. Res. 114 (2018) 805-821.
|
[26] |
Y. Dagon, C.S. Mantzoros, Y.B. Kim, AMPK↔Sirt1: From a signaling network to a combination drug, Metabolism 65 (2016) 1692-1694.
|
[27] |
Y. Wang, Y. Liang, P.M. Vanhoutte, SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model, FEBS Lett. 585 (2011) 986-994.
|
[28] |
P. Anggreini, H. Kuncoro, S.A. Sumiwi, et al., Role of the AMPK/SIRT1 pathway in non-alcoholic fatty liver disease (review), Mol Med Rep. 27 (2023), 35.
|
[29] |
S. Boeuf-Gibot, B. Pereira, J. Imbert, et al., Benefits and adverse effects of ACE inhibitors in patients with heart failure with reduced ejection fraction: A systematic review and meta-analysis, Eur. J. Clin. Pharmacol. 77 (2021) 321-329.
|
[30] |
J.M. Ter Maaten, P. Martens, K. Damman, et al., Higher doses of loop diuretics limit uptitration of angiotensin-converting enzyme inhibitors in patients with heart failure and reduced ejection fraction, Clin. Res. Cardiol. 109 (2020) 1048-1059.
|
[31] |
D. Kiefer, T. Pantuso, Panax ginseng, Am. Fam. Physician 68 (2003) 1539-1542.
|
[32] |
Q. Jia, L. Wang, X. Zhang, et al., Prevention and treatment of chronic heart failure through traditional Chinese medicine: Role of the gut microbiota, Pharmacol. Res. 151 (2020), 104552.
|
[33] |
X. Li, J. Zhang, J. Huang, et al., A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of Qili Qiangxin capsules in patients with chronic heart failure, J. Am. Coll. Cardiol. 62 (2013) 1065-1072.
|
[34] |
J.M. Lorenzen, F. Martino, T. Thum, Epigenetic modifications in cardiovascular disease, Basic Res. Cardiol. 107 (2012), 245.
|
[35] |
R. Nogueiras, K.M. Habegger, N. Chaudhary, et al., Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism, Physiol. Rev. 92 (2012) 1479-1514.
|
[36] |
M. Tanno, J. Sakamoto, T. Miura, et al., Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1, J. Biol. Chem. 282 (2007) 6823-6832.
|
[37] |
G. Bolasco, R. Calogero, M. Carrara, et al., Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice, Aging 4 (2012) 402-416.
|
[38] |
R.S. Zee, C.B. Yoo, D.R. Pimentel, et al., Redox regulation of sirtuin-1 by S-glutathiolation, Antioxid. Redox Signal. 13 (2010) 1023-1032.
|
[39] |
C.P. Hsu, I. Odewale, R.R. Alcendor, et al., Sirt1 protects the heart from aging and stress, Biol. Chem. 389 (2008) 221-231.
|
[40] |
M.T. Borra, F.J. O’Neill, M.D. Jackson, et al., Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases, J. Biol. Chem. 277 (2002) 12632-12641.
|
[41] |
S. Lee, L. Tong, J.M. Denu, Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose, Anal. Biochem. 383 (2008) 174-179.
|
[42] |
L. Tong, S. Lee, J.M. Denu, Hydrolase regulates NAD+ metabolites and modulates cellular redox, J. Biol. Chem. 284 (2009) 11256-11266.
|
[43] |
S. Nemoto, M.M. Fergusson, T. Finkel, SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}, J. Biol. Chem. 280 (2005) 16456-16460.
|
[44] |
S. Oka, R. Alcendor, P. Zhai, et al., PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway, Cell Metab. 14 (2011) 598-611.
|
[45] |
A. Cattelan, G. Ceolotto, S. Bova, et al., NAD(+)-dependent SIRT1 deactivation has a key role on ischemia-reperfusion-induced apoptosis, Vasc. Pharmacol. 70 (2015) 35-44.
|
[46] |
M.M. Mihaylova, R.J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nat. Cell Biol. 13 (2011) 1016-1023.
|
[47] |
D.G. Hardie, AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy, Nat. Rev. Mol. Cell Biol. 8 (2007) 774-785.
|
[48] |
X. Li, J. Liu, Q. Lu, et al., AMPK: a therapeutic target of heart failure-not only metabolism regulation, Biosci. Rep. 39 (2019), BSR20181767.
|
[49] |
N.B. Ruderman, X. Julia Xu, L. Nelson, et al., AMPK and SIRT1: A long-standing partnership? Am. J. Physiol. Endocrinol. Metab. 298 (2010) E751-E760.
|
[50] |
J.J. DiNicolantonio, M.F. McCarty, S.I. Assanga, et al., Ferulic acid and berberine, via Sirt1 and AMPK, may act as cell cleansing promoters of healthy longevity, Open Heart 9 (2022), e001801.
|
[51] |
Y. He, W. Huang, C. Zhang, et al., Energy metabolism disorders and potential therapeutic drugs in heart failure, Acta Pharm. Sin. B 11 (2021) 1098-1116.
|
[52] |
A. Menssen, P. Hydbring, K. Kapelle, et al., The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop, Proc Natl Acad Sci U S A. 109 (2012) E187-E196.
|
[53] |
J.E. Kim, J. Chen, Z. Lou, DBC1 is a negative regulator of SIRT1, Nature 451 (2008) 583-586.
|
[54] |
V. Nin, C. Escande, C.C. Chini, et al., Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase, J. Biol. Chem. 287 (2012) 23489-23501.
|
[55] |
C. Chang, H. Su, D. Zhang, et al., AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation, Mol. Cell 60 (2015) 930-940.
|
[56] |
C.L. Passariello, M. Zini, P.A. Nassi, et al., Upregulation of SIRT1 deacetylase in phenylephrine-treated cardiomyoblasts, Biochem. Biophys. Res. Commun. 407 (2011) 512-516.
|
[57] |
F. Lan, J.M. Cacicedo, N. Ruderman, et al., SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1, J. Biol. Chem. 283 (2008) 27628-27635.
|
[58] |
D.B. Shackelford, R.J. Shaw, The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression, Nat. Rev. Cancer 9 (2009) 563-575.
|
[59] |
M.A. Potenza, L. Sgarra, C. Nacci, et al., Activation of AMPK/SIRT1 axis is required for adiponectin-mediated preconditioning on myocardial ischemia-reperfusion (I/R) injury in rats, PLoS One 14 (2019), e0210654.
|
[60] |
M.N. Sack, T.A. Rader, S. Park, et al., Fatty acid oxidation enzyme gene expression is downregulated in the failing heart, Circulation 94 (1996) 2837-2842.
|
[61] |
P.S. Azevedo, M.F. Minicucci, P.P. Santos, et al., Energy metabolism in cardiac remodeling and heart failure, Cardiol. Rev. 21 (2013) 135-140.
|
[62] |
J. Wu, J. Lu, J. Huang, et al., Variations in energy metabolism precede alterations in cardiac structure and function in hypertrophic preconditioning, Front. Cardiovasc. Med. 7 (2020), 602100.
|
[63] |
G. Fragasso, A. Palloshi, P. Puccetti, et al., A randomized clinical trial of trimetazidine, a partial free fatty acid oxidation inhibitor, in patients with heart failure, J. Am. Coll. Cardiol. 48 (2006) 992-998.
|
[64] |
G. Fragasso, A. Salerno, G. Lattuada, et al., Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure, Heart Br. Card. Soc. 97 (2011) 1495-1500.
|
[65] |
T. Salvatore, R. Galiero, A. Caturano, et al., Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence, Biomolecules 11 (2021), 1834.
|
[66] |
S. Imai, C.M. Armstrong, M. Kaeberlein, et al., Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase, Nature 403 (2000) 795-800.
|
[67] |
W. Di, J. Lv, S. Jiang, et al., PGC-1: The energetic regulator in cardiac metabolism, Curr. News. Mol. Biol. 28 (2018) 29-46.
|
[68] |
J. Lin, C. Handschin, B.M. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell Metab. 1 (2005) 361-370.
|
[69] |
L.M. Dillon, A.P. Rebelo, C.T. Moraes, The role of PGC-1 coactivators in aging skeletal muscle and heart, IUBMB Life 64 (2012) 231-241.
|
[70] |
G.C. Rowe, A. Jiang, Z. Arany, PGC-1 coactivators in cardiac development and disease, Circ. Res. 107 (2010) 825-838.
|
[71] |
J. Schilling, L. Lai, N. Sambandam, et al., Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling, Circ Heart Fail 4 (2011) 474-482.
|
[72] |
M. Waldman, K. Cohen, D. Yadin, et al., Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’, Cardiovasc. Diabetol. 17 (2018), 111.
|
[73] |
L. Zhu, Q. Wang, L. Zhang, et al., Hypoxia induces PGC-1α expression and mitochondrial biogenesis in the myocardium of TOF patients, Cell Res. 20 (2010) 676-687.
|
[74] |
S. Jager, C. Handschin, J. St-Pierre, et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 12017-12022.
|
[75] |
D. Montaigne, L. Butruille, B. Staels, PPAR control of metabolism and cardiovascular functions, Nat. Rev. Cardiol. 18 (2021) 809-823.
|
[76] |
Y. Irukayama-Tomobe, T. Miyauchi, S. Sakai, et al., Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway, Circulation 109 (2004) 904-910.
|
[77] |
S.-Y. Park, Y.-R. Cho, B.N. Finck, et al., Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver, Diabetes 54 (2005) 2514-2524.
|
[78] |
S.Z. Duan, C.Y. Ivashchenko, M.W. Russell, et al., Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice, Circ. Res. 97 (2005) 372-379.
|
[79] |
J.M. Huss, K.I. Imahashi, C.R. Dufour, et al., The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload, Cell Metab. 6 (2007) 25-37.
|
[80] |
A. Planavila, R. Iglesias, M. Giralt, et al., Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation, Cardiovasc. Res. 90 (2011) 276-284.
|
[81] |
X. Xiao, G. Su, S.N. Brown, et al., Peroxisome proliferator-activated receptors gamma and alpha agonists stimulate cardiac glucose uptake via activation of AMP-activated protein kinase, J. Nutr. Biochem. 21 (2010) 621-626.
|
[82] |
H.W. Dong, L.F. Zhang, S.L. Bao, AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy, Eur. Rev. Med. Pharmacol. Sci. 22 (2018) 2757-2766.
|
[83] |
D.H. Tran, Z.V. Wang, Glucose metabolism in cardiac hypertrophy and heart failure, J. Am. Heart Assoc. 8 (2019), e012673.
|
[84] |
A.S. Marsin, L. Bertrand, M.H. Rider, et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Curr. Biol. 10 (2000) 1247-1255.
|
[85] |
J. Li, X. Hu, P. Selvakumar, et al., Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle, Am. J. Physiol. Endocrinol. Metab. 287 (2004) E834-E841.
|
[86] |
R.S. Williams, Apoptosis and heart failure, N. Engl. J. Med. 341 (1999) 759-760.
|
[87] |
A. Abbate, G.G.L. Biondi-Zoccai, R. Bussani, et al., Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure, J. Am. Coll. Cardiol. 41 (2003) 753-760.
|
[88] |
S. Garg, J. Narula, Y. Chandrashekhar, Apoptosis and heart failure: Clinical relevance and therapeutic target, J. Mol. Cell. Cardiol. 38 (2005) 73-79.
|
[89] |
L. Rossig, J. Haendeler, Z. Mallat, et al., Congestive heart failure induces endothelial cell apoptosis: Protective role of carvedilol, J. Am. Coll. Cardiol. 36 (2000) 2081-2089.
|
[90] |
T. Fujita, Y. Ishikawa, Apoptosis in heart failure.-The role of the β-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes-, Circ. J. 75 (2011) 1811-1818.
|
[91] |
X. Long, M.O. Boluyt, M.L. Hipolito, et al., p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes, J. Clin. Investig. 99 (1997) 2635-2643.
|
[92] |
X. Long, M.T. Crow, S.J. Sollott, et al., Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyocytes, J. Clin. Investig. 101 (1998) 1453-1461.
|
[93] |
C. Zhang, Y. Feng, S. Qu, et al., Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53, Cardiovasc. Res. 90 (2011) 538-545.
|
[94] |
R.G. Jones, D.R. Plas, S. Kubek, et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol. Cell. 18 (2005) 283-293.
|
[95] |
R. Okoshi, T. Ozaki, H. Yamamoto, et al., Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress, J. Biol. Chem. 283 (2008) 3979-3987.
|
[96] |
M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling, Cell. 132 (2008) 344-362.
|
[97] |
J.W. Gordon, J.A. Shaw, L.A. Kirshenbaum, Multiple facets of NF-κB in the heart: to be or not to NF-κB, Circ. Res. 108 (2011) 1122-1132.
|
[98] |
F. Yeung, J.E. Hoberg, C.S. Ramsey, et al., Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase, EMBO J. 23 (2004) 2369-2380.
|
[99] |
A. Salminen, J.M.T. Hyttinen, K. Kaarniranta, AMP-activated protein kinase inhibits NF-κB signaling and inflammation: Impact on healthspan and lifespan, J. Mol. Med. 89 (2011) 667-676.
|
[100] |
B. Shen, H. Zhang, Z. Zhu, et al., Baicalin relieves LPS-induced lung inflammation via the NF-κB and MAPK pathways, Molecules. 28 (2023), 1873.
|
[101] |
T. Yokota, Y. Wang, p38 MAP kinases in the heart, Gene 575 (2016) 369-376.
|
[102] |
M. Becatti, N. Taddei, C. Cecchi, et al., SIRT1 modulates MAPK pathways in ischemic-reperfused cardiomyocytes, Cell. Mol. Life Sci. 69 (2012) 2245-2260.
|
[103] |
N.R. Sundaresan, V.B. Pillai, D. Wolfgeher, et al., The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy, Sci. Signal. 4 (2011), ra46.
|
[104] |
L. Adrian, M. Lenski, K. Todter, et al., AMPK prevents palmitic acid-induced apoptosis and lipid accumulation in cardiomyocytes, Lipids 52 (2017) 737-750.
|
[105] |
Y. Li, Y. Wang, M. Zou, et al., AMPK blunts chronic heart failure by inhibiting autophagy, Biosci. Rep. 38 (2018), BSR20170982.
|
[106] |
L.A. Kiyuna, R.P.E. Albuquerque, C. Chen, et al., Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities, Free. Radic. Biol. Med. 129 (2018) 155-168.
|
[107] |
Z. Ahmed, W.H. Tang, Pharmacologic strategies to target oxidative stress in heart failure, Curr. Heart Fail. Rep. 9 (2012) 14-22.
|
[108] |
G. Akolkar, D. da Silva Dias, P. Ayyappan, et al., Vitamin C mitigates oxidative/nitrosative stress and inflammation in doxorubicin-induced cardiomyopathy, Am. J. Physiol. Heart Circ. Physiol. 313 (2017) H795-H809.
|
[109] |
Y. Ruan, C. Dong, J. Patel, et al., SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways, Cell. Physiol. Biochem. 35 (2015) 1116-1124.
|
[110] |
Y. Olmos, F.J. Sanchez-Gomez, B. Wild, et al., Sirt1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex, Antioxid. Redox Signal. 19 (2013) 1507-1521.
|
[111] |
G.J. Kops, T.B. Dansen, P.E. Polderman, et al., Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress, Nature 419 (2002) 316-321.
|
[112] |
S. Nemoto, T. Finkel, Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway, Science 295 (2002) 2450-2452.
|
[113] |
J. Huang, Y. Liu, M. Wang, et al., FoxO4 negatively modulates USP10 transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation-induced cardiomyocytes by regulating the Hippo/YAP pathway, J. Bioenerg. Biomembr. 53 (2021) 541-551.
|
[114] |
A. Brunet, L.B. Sweeney, J.F. Sturgill, et al., Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science 303 (2004) 2011-2015.
|
[115] |
L. Lai, L. Yan, S. Gao, et al., Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway, Circulation 127 (2013) 1692-1701.
|
[116] |
Y. Kobayashi, Y. Furukawa-Hibi, C. Chen, et al., SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress, Int. J. Mol. Med. 16 (2005) 237-243.
|
[117] |
X. Li, J. Song, L. Zhang, et al., Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin, Diabetes 58 (2009) 2246-2257.
|
[118] |
Z.X. Hong, J. Cao, D.D. Liu, ta al., Celastrol targeting Nedd4 reduces Nrf2-mediated oxidative stress in astrocytes after ischemic stroke, J. Pharm. Anal. 13 (2023) 156-169.
|
[119] |
J. Xu, J. Cui, Q. Lin, et al., Protection of the enhanced Nrf2 deacetylation and its downstream transcriptional activity by SIRT1 in myocardial ischemia/reperfusion injury, Int. J. Cardiol. 342 (2021) 82-93.
|
[120] |
M.S. Joo, W.D. Kim, K.Y. Lee, et al., AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550, Mol. Cell. Biol. 36 (2016) 1931-1942.
|
[121] |
X. Li, D. Wu, Y. Tian, Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway, Biochem. Biophys. Res. Commun. 502 (2018) 62-68.
|
[122] |
K. Nishida, S. Kyoi, O. Yamaguchi, et al., The role of autophagy in the heart, Cell Death Differ. 16 (2009) 31-38.
|
[123] |
A. Shirakabe, P. Zhai, Y. Ikeda, et al., Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure, Circulation 133 (2016) 1249-1263.
|
[124] |
S. Zhang, X. Lin, G. Li, et al., Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy, Cell Death Dis. 8 (2017), e2586.
|
[125] |
M. Liao, Q. Xie, Y. Zhao, et al., Main active components of Si-Miao-Yong-An decoction (SMYAD) attenuate autophagy and apoptosis via the PDE5A-AKT and TLR4-NOX4 pathways in isoproterenol (ISO)-induced heart failure models, Pharmacol. Res. 176 (2022), 106077.
|
[126] |
S. Sciarretta, M. Forte, G. Frati, et al., New insights into the role of mTOR signaling in the cardiovascular system, Circ. Res. 122 (2018) 489-505.
|
[127] |
A. Vlahakis, T. Powers, A role for TOR complex 2 signaling in promoting autophagy, Autophagy 10 (2014) 2085-2086.
|
[128] |
K. Inoki, T. Zhu, K.-L. Guan, TSC2 mediates cellular energy response to control cell growth and survival, Cell. 115 (2003) 577-590.
|
[129] |
D.M. Gwinn, D.B. Shackelford, D.F. Egan, et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol. Cell. 30 (2008) 214-226.
|
[130] |
H.S. Ghosh, M. McBurney, P.D. Robbins, SIRT1 negatively regulates the mammalian target of rapamycin, PLoS One 5 (2010), e9199.
|
[131] |
N. Mizushima, The ATG conjugation systems in autophagy, Curr. Opin. Cell Biol. 63 (2020) 1-10.
|
[132] |
I.H. Lee, L. Cao, R. Mostoslavsky, et al., A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 3374-3379.
|
[133] |
W.N. Hait, H. Wu, S. Jin, et al., Elongation factor-2 kinase: Its role in protein synthesis and autophagy, Autophagy 2 (2006) 294-296.
|
[134] |
J.P. Da Silva, K. Monceaux, A. Guilbert, et al., SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy, Cells 9 (2020), 426.
|
[135] |
A. Prola, J. Pires Da Silva, A. Guilbert, et al., SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation, Cell Death Differ. 24 (2017) 343-356.
|
[136] |
G.J. Browne, S.G. Finn, C.G. Proud, Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398, J. Biol. Chem. 279 (2004) 12220-12231.
|
[137] |
P. Xu, S. Xu, H. Pan, et al., Differential effects of the LncRNA RNF157-AS1 on epithelial ovarian cancer cells through suppression of DIRAS3- and ULK1-mediated autophagy, Cell Death Dis. 14 (2023), 140.
|
[138] |
J.W. Lee, S. Park, Y. Takahashi, et al., The association of AMPK with ULK1 regulates autophagy, PLoS One 5 (2010), e15394.
|
[139] |
J. Xing, H. Liu, H. Yang, et al., Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy, PLoS One 9 (2014), e116165.
|
[140] |
S.M. Yoo, Y.K. Jung, A molecular approach to mitophagy and mitochondrial dynamics, Mol. Cells 41 (2018) 18-26.
|
[141] |
B. Wang, J. Nie, L. Wu, et al., AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation, Circ. Res. 122 (2018) 712-729.
|
[142] |
G. Luo, Z. Jian, Y. Zhu, et al., Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress, Int. J. Mol. Med. 43 (2019) 2033-2043.
|
[143] |
A. Lala, A.S. Desai, The role of coronary artery disease in heart failure, Heart Fail. Clin. 10 (2014) 353-365.
|
[144] |
H. Meng, Q. Wang, N. Li, et al., Danqi Tablet () regulates energy metabolism in ischemic heart rat model through AMPK/SIRT1-PGC-1α pathway, Chin. J. Integr. Med. 27 (2021) 597-603.
|
[145] |
X. Wang, Y. Jiang, Q. Zhang, et al., Autophagy as a novel insight into mechanism of Danqi pill against post-acute myocardial infarction heart failure, J. Ethnopharmacol. 266 (2021), 113404.
|
[146] |
Q. Li, N. Li, H. Cui, et al., Tongxinluo exerts protective effects via anti-apoptotic and pro-autophagic mechanisms by activating AMPK pathway in infarcted rat hearts, Exp. Physiol. 102 (2017) 422-435.
|
[147] |
X. Shi, H. Zhu, Y. Zhang, et al., XuefuZhuyu Decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy, BMC Complementary Altern. Med. 17 (2017), 325.
|
[148] |
M. Chen, K. Yao, Z. Liu, et al., Xuefu Zhuyu oral liquid () prevents apoptosis of ischemic myocardium cells in rats by regulating SIRT1 and its pathway-related genes, Chin. J. Integr. Med. 26 (2020) 442-447.
|
[149] |
S. Yu, H. Qian, D. Tian, et al., Linggui Zhugan Decoction activates the SIRT1-AMPK-PGC1α signaling pathway to improve mitochondrial and oxidative damage in rats with chronic heart failure caused by myocardial infarction, Front. Pharmacol. 14 (2023), 1074837.
|
[150] |
Y. Huang, K. Zhang, M. Jiang, et al., Regulation of energy metabolism by combination therapy attenuates cardiac metabolic remodeling in heart failure, Int. J. Biol. Sci. 16 (2020) 3133-3148.
|
[151] |
T. Lou, J. Ma, Y. Xie, et al., Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway, Biomed Pharmacother. 135 (2021), 111188.
|
[152] |
J. Zhao, J. Zhang, Q. Liu, et al., Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic- flux, Biomed Pharmacother. 135 (2021), 111205.
|
[153] |
Y.L. Zhao, Y. Yuan, X.L. Ma, et al., Study on protective mechanism of Dracocephalum moldavica total flavonoids against myocardial ischemia-reperfusion injury in rats based on AMPK/SIRT1/PGC-1α signaling pathway, Chinese Pharmacy 32 (2021) 278-283.
|
[154] |
N. Wei, C. Zhang, H. He, et al., Protective effect of saponins extract from Panax japonicus on myocardial infarction: Involvement of NF-κB, Sirt1 and mitogen-activated protein kinase signalling pathways and inhibition of inflammation, J. Pharm. Pharmacol. 66 (2014) 1641-1651.
|
[155] |
D. Wang, L. Lv, Y. Xu, et al., Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy, Biomed Pharmacother. 136 (2021), 111287.
|
[156] |
K. Cao, W. Lv, X. Liu, et al., Herba Houttuyniae extract benefits hyperlipidemic mice via activation of the AMPK/PGC-1α/Nrf2 cascade, Nutrients 12 (2020), 164.
|
[157] |
S. Upadhyay, A.K. Mantha, M. Dhiman, Glycyrrhiza glabra (Licorice) root extract attenuates doxorubicin-induced cardiotoxicity via alleviating oxidative stress and stabilising the cardiac health in H9c2 cardiomyocytes, J. Ethnopharmacol. 258 (2020), 112690.
|
[158] |
Y.M. Chang, H.H. Chang, W.W. Kuo, et al., Anti-apoptotic and pro-survival effect of alpinate oxyphyllae fructus (AOF) in a d-galactose-induced aging heart, Int. J. Mol. Sci. 17 (2016), 466.
|
[159] |
T.H. Huang, G. Peng, B.P. Kota, et al., Pomegranate flower improves cardiac lipid metabolism in a diabetic rat model: Role of lowering circulating lipids, Br. J. Pharmacol. 145 (2005) 767-774.
|
[160] |
R.A. Syahputra, U. Harahap, A. Dalimunthe, et al., The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: A review, Molecules 27 (2022), 1320.
|
[161] |
X. Zhang, Q. Wang, X. Wang, et al., Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway, Biomed Pharmacother. 112 (2019), 108599.
|
[162] |
J. Zhong, H. Ouyang, M. Sun, et al., Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PGC1α-mitochondrial apoptosis pathway, Cell Stress. Chaperones 24 (2019) 991-1003.
|
[163] |
Y. Cui, Y. Hong, W. Wu, et al., Acacetin ameliorates cardiac hypertrophy by activating Sirt1/AMPK/PGC-1α pathway, Eur. J. Pharmacol. 920 (2022), 174858.
|
[164] |
C. Wu, J. Yan, W. Li, Acacetin as a potential protective compound against cardiovascular diseases, Evid. Based Complementary Altern. Med. 2022 (2022), 6265198.
|
[165] |
W. Wu, Y. Cui, Y. Hong, et al., Doxorubicin cardiomyopathy is ameliorated by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules, J. Cell. Mol. Med. 24 (2020) 12141-12153.
|
[166] |
Y. Hong, W. Wu, F. Song, et al., Cardiac senescence is alleviated by the natural flavone acacetin via enhancing mitophagy, Aging 13 (2021) 16381-16403.
|
[167] |
L. Chen, S. Li, J. Zhu, et al., Mangiferin prevents myocardial infarction-induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway, J. Cell. Mol. Med. 25 (2021) 2944-2955.
|
[168] |
F.S. Khattulanuar, M. Sekar, S. Fuloria, et al., Tilianin: A potential natural lead molecule for new drug design and development for the treatment of cardiovascular disorders, Molecules 27 (2022), 673.
|
[169] |
L. Tian, W. Cao, R. Yue, et al., Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway, J. Pharmacol. Sci. 139 (2019) 352-360.
|
[170] |
L. Zhao, Z. Zhou, C. Zhu, et al., Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF-κB pathway, Int. Immunopharmacol. 85 (2020), 106680.
|
[171] |
J. Tang, L. Lu, Y. Liu, et al., Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling, J. Cell. Biochem. 120 (2019) 9747-9757.
|
[172] |
X. Chang, T. Zhang, Q. Meng, et al., Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-related mitophagy and endoplasmic reticulum stress, Oxid. Med. Cell. Longev. 2021 (2021), 5529913.
|
[173] |
B. Wu, J. Feng, L. Yu, et al., Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage, Br. J. Pharmacol. 175 (2018) 4137-4153.
|
[174] |
L. Testai, E. Piragine, I. Piano, et al., The Citrus flavonoid naringenin protects the myocardium from ageing-dependent dysfunction: Potential role of SIRT1, Oxid. Med. Cell. Longev. 2020 (2020), 4650207.
|
[175] |
H. Yang, C. Wang, L. Zhang, et al., Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression, Chem. Biol. Interact. 297 (2019) 44-49.
|
[176] |
Z.K. Wang, R.R. Chen, J.H. Li, et al., Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting inflammation and the NLRP3 inflammasome: The role of the SIRT1/NF-κB pathway, Int. Immunopharmacol. 89 (2020), 107086.
|
[177] |
Z. Sun, W. Lu, N. Lin, et al., Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1, Biochem Pharmacol. 175 (2020), 113888.
|
[178] |
Y. Liu, L. Zhou, B. Du, et al., Protection against doxorubicin-related cardiotoxicity by jaceosidin involves the Sirt1 signaling pathway, Oxid. Med. Cell. Longev. 2021 (2021), 9984330.
|
[179] |
L. Lu, Q. Guo, L. Zhao, Overview of oroxylin A: A promising flavonoid compound, Phytother. Res. 30 (2016) 1765-1774.
|
[180] |
W. Zhang, Y. Zheng, Y. Wu, Protective effects of oroxylin A against doxorubicin-induced cardiotoxicity via the activation of Sirt1 in mice, Oxid. Med. Cell. Longev. 2021 (2021), 6610543.
|
[181] |
Y. Du, J. Han, H. Zhang, et al., Kaempferol prevents against ang II-induced cardiac remodeling through attenuating ang II-induced inflammation and oxidative stress, J. Cardiovasc. Pharmacol. 74 (2019) 326-335.
|
[182] |
Z. Guo, Z. Liao, L. Huang, et al., Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1, Eur. J. Pharmacol. 761 (2015) 245-253.
|
[183] |
L. Huang, H. He, Z. Liu, et al., Protective effects of isorhamnetin on cardiomyocytes against Anoxia/reoxygenation-induced injury is mediated by SIRT1, J. Cardiovasc. Pharmacol. 67 (2016) 526-537.
|
[184] |
Y. Ying, C. Jiang, M. Zhang, et al., Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model, Aging 11 (2019) 2822-2835.
|
[185] |
P. Liu, J. Li, M. Liu, et al., Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis, Biomed Pharmacother. 139 (2021), 111552.
|
[186] |
H. Zou, X. Zhu, G. Zhang, et al., Silibinin: An old drug for hematological disorders, Oncotarget 8 (2017) 89307-89314.
|
[187] |
B. Zhou, L.J. Wu, L.H. Li, et al., Silibinin protects against isoproterenol-induced rat cardiac myocyte injury through mitochondrial pathway after up-regulation of SIRT1, J. Pharmacol. Sci. 102 (2006) 387-395.
|
[188] |
T. Tang, X. Wang, L. Wang, et al., Liquiritin inhibits H2O2-induced oxidative stress injury in H9c2 cells via the AMPK/SIRT1/NF-κB signaling pathway, J. Food Biochem. 46 (2022), e14351.
|
[189] |
A.P. Laddha, Y.A. Kulkarni, Daidzein mitigates myocardial injury in streptozotocin-induced diabetes in rats, Life Sci. 284 (2021), 119664.
|
[190] |
T. Moses, J. Pollier, J.M. Thevelein, et al., Bioengineering of plant (tri)terpenoids: From metabolic engineering of plants to synthetic biology in vivo and in vitro, N. Phytol. 200 (2013) 27-43.
|
[191] |
S. Kamran, A. Sinniah, M.A.M. Abdulghani, et al., Therapeutic potential of certain terpenoids as anticancer agents: A scoping review, Cancers 14 (2022), 1100.
|
[192] |
M.E. Bergman, B. Davis, M.A. Phillips, Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action, Molecules 24 (2019), 3961.
|
[193] |
S. Hortelano, L. Gonzalez-Cofrade, I. Cuadrado, et al., Current status of terpenoids as inflammasome inhibitors, Biochem. Pharmacol. 172 (2020), 113739.
|
[194] |
S. Agatonovic-Kustrin, E. Kustrin, V. Gegechkori, et al., Anxiolytic terpenoids and aromatherapy for anxiety and depression, Adv. Exp. Med. Biol. 1260 (2020) 283-296.
|
[195] |
K. Wang, W. Hu, Oxypaeoniflorin improves myocardial ischemia/reperfusion injury by activating the Sirt1/Foxo1 signaling pathway, Acta Biochim. Pol. 67 (2020) 239-245.
|
[196] |
C. Yu, X. Cai, X. Liu, et al., Betulin alleviates myocardial ischemia-reperfusion injury in rats via regulating the Siti1/NLRP3/NF-κB signaling pathway, Inflammation 44 (2021) 1096-1107.
|
[197] |
J. Feng, Y. Yang, Y. Zhou, et al., Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: The role of silent information regulator 1, Apoptosis 21 (2016) 532-545.
|
[198] |
W. Ma, W. Guo, F. Shang, et al., Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2020 (2020), 3732718.
|
[199] |
Z. Ma, C. Kong, P. Song, et al., Geniposide protects against obesity-related cardiac injury through AMPKα- and Sirt1-dependent mechanisms, Oxid. Med. Cell. Longev. 2018 (2018), 6053727.
|
[200] |
Y. Hou, P. Yuan, Y. Fu, et al., Geniposide from Gardenia jasminoides var. radicans makino attenuates myocardial injury in spontaneously hypertensive rats via regulating apoptotic and energy metabolism signalling pathway, Drug Des. Dev. Ther. 15 (2021) 949-962.
|
[201] |
Y. Mei, H. Hu, L. Deng, et al., Isosteviol sodium attenuates high fat/high cholesterol-induced myocardial dysfunction by regulating the Sirt1/AMPK pathway, Biochem. Biophys. Res. Commun. 621 (2022) 80-87.
|
[202] |
Y. Mei, B. Liu, H. Su, et al., Isosteviol sodium protects the cardiomyocyte response associated with the SIRT1/PGC-1α pathway, J. Cell. Mol. Med. 24 (2020) 10866-10875.
|
[203] |
Q. Jiang, M. Lu, J. Li, et al., Ginkgolide B protects cardiomyocytes from angiotensin II-induced hypertrophy via regulation of autophagy through SIRT1-FoxO1, Cardiovasc. Ther. 2021 (2021), 5554569.
|
[204] |
C.G. Fraga, K.D. Croft, D.O. Kennedy, et al., The effects of polyphenols and other bioactives on human health, Food Funct. 10 (2019) 514-528.
|
[205] |
X.S. Gu, Z.B. Wang, Z. Ye, et al., Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure, Genet. Mol. Res. 13 (2014) 323-335.
|
[206] |
N.L. Price, A.P. Gomes, A.J. Ling, et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab. 15 (2012) 675-690.
|
[207] |
D. Liu, Z. Ma, L. Xu, et al., PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades, Aging 11 (2019) 10061-10073.
|
[208] |
L.M. Yu, X. Dong, X.D. Xue, et al., Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism, Chem. Biol. Interact. 306 (2019) 152-162.
|
[209] |
J. Xiao, X. Sheng, X. Zhang, et al., Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro, Drug Des. Dev. Ther. 10 (2016) 1267-1277.
|
[210] |
B.C. Ren, Y.F. Zhang, S.S. Liu, et al., Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways, J. Cell. Mol. Med. 24 (2020) 12355-12367.
|
[211] |
J.Z. Altamimi, N.A. Alfaris, G.M. Alshammari, et al., Ellagic acid protects against diabetic cardiomyopathy in rats by stimulating cardiac silent information regulator 1 signaling, J. Physiol. Pharmacol. 71 (2020) 891-904.
|
[212] |
J. Diao, H. Zhao, P. You, et al., Rosmarinic acid ameliorated cardiac dysfunction and mitochondrial injury in diabetic cardiomyopathy mice via activation of the SIRT1/PGC-1α pathway, Biochem. Biophys. Res. Commun. 546 (2021) 29-34.
|
[213] |
B. Tan, X. Wu, J. Yu, et al., The role of saponins in the treatment of neuropathic pain, Molecules 27 (2022), 3956.
|
[214] |
A.V. Rao, M.K. Sung, Saponins as anticarcinogens, J. Nutr. 125 (1995) 717S-724S.
|
[215] |
A. Sun, X. Xu, J. Lin, et al., Neuroprotection by saponins, Phytother. Res. 29 (2015) 187-200.
|
[216] |
Q. Huang, H. Su, B. Qi, et al., A SIRT1 activator, ginsenoside rc, promotes energy metabolism in cardiomyocytes and neurons, J. Am. Chem. Soc. 143 (2021) 1416-1427.
|
[217] |
Y. Xue, W. Fu, Y. Liu, et al., Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation, J. Food Sci. 85 (2020) 4039-4049.
|
[218] |
M. Wang, R. Wang, X. Xie, et al., Araloside C protects H9c2 cardiomyoblasts against oxidative stress via the modulation of mitochondrial function, Biomed Pharmacother. 117 (2019), 109143.
|
[219] |
X. Han, Y. Yang, M. Zhang, et al., Protective effects of 6-gingerol on cardiotoxicity induced by arsenic trioxide through AMPK/SIRT1/PGC-1α signaling pathway, Front. Pharmacol. 13 (2022), 868393.
|
[220] |
Q. Li, Z. Zuo, Y. Pan, et al., Salvianolic acid B alleviates myocardial ischemia injury by suppressing NLRP3 inflammasome activation via SIRT1-AMPK-PGC-1α signaling pathway, Cardiovasc. Toxicol. 22 (2022) 842-857.
|
[221] |
C. Pan, L. Lou, Y. Huo, et al., Salvianolic acid B and tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways, Ther. Adv. Cardiovasc. Dis. 5 (2011) 99-111.
|
[222] |
C.Y. Liu, Y. Zhou, T. Chen, et al., AMPK/SIRT1 pathway is involved in arctigenin-mediated protective effects against myocardial ischemia-reperfusion injury, Front. Pharmacol. 11 (2020), 616813.
|
[223] |
K. Wang, X. Feng, L. Chai, et al., The metabolism of berberine and its contribution to the pharmacological effects, Drug Metab. Rev. 49 (2017) 139-157.
|
[224] |
Z. Huang, Z. Han, B. Ye, et al., Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes, Eur. J. Pharmacol. 762 (2015) 1-10.
|
[225] |
C. Li, S. Jiang, H. Wang, et al., Berberine exerts protective effects on cardiac senescence by regulating the Klotho/SIRT1 signaling pathway, Biomed Pharmacother. 151 (2022), 113097.
|
[226] |
Y. Ni, J. Deng, X. Liu, et al., Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol, J. Cell. Mol. Med. 25 (2021) 203-216.
|
[227] |
W. Lu, H. Zhu, J. Wu, et al., Rhein attenuates angiotensin II-induced cardiac remodeling by modulating AMPK-FGF23 signaling, J. Transl. Med. 20 (2022), 305.
|
[228] |
Y. Lu, Y. Feng, D. Liu, et al., Thymoquinone attenuates myocardial ischemia/reperfusion injury through activation of SIRT1 signaling, Cell. Physiol. Biochem. 47 (2018) 1193-1206.
|
[229] |
B. Zhang, M. Zhai, B. Li, et al., Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway, Oxid. Med. Cell. Longev. 2018 (2018), 3159801.
|
[230] |
H. He, Y. Zhou, J. Huang, et al., Capsaicin protects cardiomyocytes against Anoxia/reoxygenation injury via preventing mitochondrial dysfunction mediated by SIRT1, Oxid. Med. Cell. Longev. 2017 (2017), 1035702.
|
[231] |
X. Wang, B. Yuan, B. Cheng, et al., Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway, Shock. Augusta Ga 51 (2019) 123-130.
|
[232] |
M. Arad, C.E. Seidman, J.G. Seidman, AMP-activated protein kinase in the heart: Role during health and disease, Circ. Res. 100 (2007) 474-488.
|
[233] |
S. Oka, P. Zhai, R. Alcendor, et al., Suppression of ERR targets by a PPARα/Sirt1 complex in the failing heart, Cell Cycle Georget. Tex 11 (2012) 856-864.
|
[234] |
C. Julien, C. Tremblay, V. Emond, et al., Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease, J. Neuropathol. Exp. Neurol. 68 (2009) 48-58.
|
[235] |
A.J. Clark, S.M. Parikh, Targeting energy pathways in kidney disease: The roles of sirtuins, AMPK, and PGC1α, Kidney Int. 99 (2021) 828-840.
|
[236] |
Y. An, B. Wang, X. Wang, et al., SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop, Cell Death Dis. 11 (2020), 115.
|
[237] |
Y. Ma, M. Zeng, R. Sun, et al., Disposition of flavonoids impacts their efficacy and safety, Curr. Drug Metab. 15 (2014) 841-864.
|
[238] |
Y. Liu, Q.L. Luo, X.B. Jia, et al., Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: Integration of herbal medicine, enzyme engineering, and nanotechnology, J. Pharm. Anal. 13 (2023) 239-254.
|
[239] |
D. Pandita, S. Kumar, N. Poonia, et al., Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol, Food Res. Int. 62 (2014) 1165-1174.
|
[240] |
R.S. Najjar, R.G. Feresin, Protective role of polyphenols in heart failure: Molecular targets and cellular mechanisms underlying their therapeutic potential, Int. J. Mol. Sci. 22 (2021), 1668.
|
[241] |
M. Hoda, S. Hemaiswarya, M. Doble, Pharmacokinetics and pharmacodynamics of polyphenols. Role of Phenolic Phytochemicals in Diabetes Management, Springer, Singapore, 2019, pp. 159-173.
|