Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Zhiwei Liu, Shangwen Jiang, Bingbing Hao, Shuyu Xie, Yingluo Liu, Yuqi Huang, Heng Xu, Cheng Luo, Min Huang, Minjia Tan, Jun-Yu Xu. A proteomic landscape of pharmacologic perturbations for functional relevance[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 128-139. doi: 10.1016/j.jpha.2023.08.021
Citation: Zhiwei Liu, Shangwen Jiang, Bingbing Hao, Shuyu Xie, Yingluo Liu, Yuqi Huang, Heng Xu, Cheng Luo, Min Huang, Minjia Tan, Jun-Yu Xu. A proteomic landscape of pharmacologic perturbations for functional relevance[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 128-139. doi: 10.1016/j.jpha.2023.08.021

A proteomic landscape of pharmacologic perturbations for functional relevance

doi: 10.1016/j.jpha.2023.08.021
Funds:

This work was supported by the Natural Science Foundation of China (Grant Nos.: 22225702 and 32322048), the National Key R&D Program of China (Grant No.: 2020YFE0202200), the Shanghai Academic/Technology Research Leader Program, China (Grant No.: 22XD1420900), Guangdong High-level New R&D Institute, China (Grant No.:2019B090904008), Guangdong High-level Innovative Research Institute, China (Grant No.:2021B0909050003), the Shanghai Rising-Star Program, China (Grant No.: 22QA1411100), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.: 2021276), the Young Elite Scientists Sponsorship Program by China Association for Science and Technology, China (Grant No.: 2022QNRC001), and the open fund of State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China (Grant No.: KF-202201). We also thank the support of the Innovative Research Team of High-Level Local Universities in Shanghai, China (Grant No.: SHSMU-ZDCX20212700) and Sanofi scholarship program.

  • Received Date: May 20, 2023
  • Accepted Date: Aug. 29, 2023
  • Rev Recd Date: Aug. 11, 2023
  • Publish Date: Aug. 31, 2023
  • Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
  • loading
  • [1]
    J. Lamb, E.D. Crawford, D. Peck, et al., The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease, Science 313 (2006) 1929-1935.
    [2]
    J.G. Moffat, F. Vincent, J.A. Lee, et al., Opportunities and challenges in phenotypic drug discovery: an industry perspective, Nat. Rev. Drug. Discov. 16 (2017) 531-543.
    [3]
    M. Frantzi, A. Latosinska, H. Mischak, Proteomics in drug development: The dawn of a new Era? Proteomics Clin. Appl. 13 (2019), e1800087.
    [4]
    A.A. Saei, C.M. Beusch, A. Chernobrovkin, et al., ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery, Nat. Commun. 10 (2019), 5715.
    [5]
    L. Litichevskiy, R. Peckner, J.G. Abelin, et al., A library of phosphoproteomic and chromatin signatures for characterizing cellular responses to drug perturbations, Cell Syst. 6 (2018) 424-443. e7.
    [6]
    W. Zhao, J. Li, M.M. Chen, et al., Large-scale characterization of drug responses of clinically relevant proteins in cancer cell lines, Cancer Cell 38 (2020) 829-843. e4.
    [7]
    B. Ruprecht, J. Di Bernardo, Z. Wang, et al., A mass spectrometry-based proteome map of drug action in lung cancer cell lines, Nat. Chem. Biol. 16 (2020) 1111-1119.
    [8]
    D.C. Mitchell, M. Kuljanin, J. Li, et al., A proteome-wide atlas of drug mechanism of action, Nat. Biotechnol. 41 (2023) 845-857.
    [9]
    K.A. Hoadley, C. Yau, T. Hinoue, et al., Cell-of-origin patterns dominate the Molecular classification of 10,000 tumors from 33 types of cancer, Cell 173 (2018) 291-304 e6.
    [10]
    W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics 8 (2007) 118-127.
    [11]
    D.J. Clark, S.M. Dhanasekaran, F. Petralia, et al., Integrated proteogenomic characterization of clear cell renal cell carcinoma, Cell 179 (2019) 964-983. e31.
    [12]
    J.C. Shelley, A. Cholleti, L.L. Frye, et al., Epik: a software program for pKa prediction and protonation state generation for drug-like molecules, J. Comput. Aided Mol. Des. 21 (2007) 681-691.
    [13]
    A. Sinha, V. Huang, J. Livingstone, et al., The proteogenomic landscape of curable prostate cancer, Cancer Cell 35 (2019) 414-427.e6.
    [14]
    J.T. Leek, R.B. Scharpf, H.C. Bravo, et al., Tackling the widespread and critical impact of batch effects in high-throughput data, Nat. Rev. Genet. 11 (2010) 733-739.
    [15]
    M. Dou, G. Clair, C.F. Tsai, et al., High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform, Anal. Chem. 91 (2019) 13119-13127.
    [16]
    K.A. Donovan, J. An, R.P. Nowak, et al., Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome, eLife 7 (2018), 38430.
    [17]
    H. Xu, N. Dephoure, H. Sun, et al., Proteomic profiling of paclitaxel treated cells identifies a novel mechanism of drug resistance mediated by PDCD4, J. Proteome Res. 14 (2015) 2480-2491.
    [18]
    M.T. Mackmull, M. Iskar, L. Parca, et al., Histone deacetylase inhibitors (HDACi) cause the selective depletion of bromodomain containing proteins (BCPs), Mol. Cell Proteomics. 14 (2015) 1350-1360.
    [19]
    Q. Wu, W. Li, C. Wang, et al., Ultradeep lysine crotonylome reveals the crotonylation enhancement on both histones and nonhistone proteins by SAHA treatment, J. Proteome Res. 16 (2017) 3664-3671.
    [20]
    B. Hao, X.J. Li, X.L. Jia, et al., The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L, Acta Pharmacol. Sin 41 (2020) 1246-1254.
    [21]
    Y. Wang, J. Zhang, Z.H. Huang, et al., Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop, Cell Death Dis. 8 (2017), e2876.
    [22]
    B. Xue, W. Huang, X. Yuan, et al., YSY01A, a Novel proteasome inhibitor, induces cell cycle arrest on G2 phase in MCF-7 Cells via ERalpha and PI3K/Akt pathways, J. Cancer 6 (2015) 319-326.
    [23]
    R R.M. Meyers, J.G. Bryan, J.M. McFarland, et al., Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells, Nat. Genet. 49 (2017) 1779-1784.
    [24]
    L. Katz, R.H. Baltz, Natural product discovery: Past, present, and future, J. Ind. Microbiol. Biotechnol. 43 (2016) 155-176.
    [25]
    A.L. Demain, Importance of microbial natural products and the need to revitalize their discovery, J. Ind. Microbiol. Biotechnol. 41 (2014) 185-201.
    [26]
    M.S. Kinch, A. Haynesworth, S.L. Kinch, et al., An overview of FDA-approved new molecular entities: 1827-2013, Drug Discov. Today 19 (2014) 1033-1039.
    [27]
    L.-A. Giddings, D.J. Newman, Microbial natural products: Molecular blueprints for antitumor drugs, J. Ind. Microbiol. Biotechnol. 40 (2013) 1181-1210.
    [28]
    S. Dutta, Natural sources as potential anti-cancer agents: A review, Int.J.Pharm Drug Anal 3 (2015) 156-164.
    [29]
    A. Valdes, K.A. Artemenko, J. Bergquist, et al., Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography-orbitrap MS/MS, J. Proteome Res. 15 (2016) 1971-1985.
    [30]
    V. Raman, U.K. Aryal, V. Hedrick, et al., Proteomic analysis reveals that an extract of the plant lippia origanoides suppresses mitochondrial metabolism in triple-negative breast cancer cells, J. Proteome Res. 17 (2018) 3370-3383.
    [31]
    Y. Chen, S.Y. Wen, C.M. Deng, et al., Proteomic analysis reveals that odoroside a triggers G2/M arrest and apoptosis in colorectal carcinoma through ROS-p53 pathway, Proteomics 19 (2019), e1900092.
    [32]
    S. Roehrer, V. Stork, C. Ludwig, et al., Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics, PLoS One 14 (2019), e0213469.
    [33]
    A. Valdes, V. Garcia-Canas, K.A. Artemenko, et al., Nano-liquid chromatography-orbitrap MS-based quantitative proteomics reveals differences between the mechanisms of action of carnosic acid and carnosol in colon cancer cells, Mol. Cell Proteom. 16 (2017) 8-22.
    [34]
    D. Chen, K.G. Daniel, M.S. Chen, et al., Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells, Biochem Pharmacol 69 (2005) 1421-1432.
    [35]
    J.U. Peters, Polypharmacology-foe or friend?, J Med Chem 56 (2013) 8955-8971.
    [36]
    V.C. Jordan, Tamoxifen: A most unlikely pioneering medicine, Nat. Rev. Drug Discov. 2 (2003) 205-213.
    [37]
    A.A.M. Alkhanjaf, R. Raggiaschi, M. Crawford, et al., Moonlighting proteins and cardiopathy in the spatial response of MCF-7 breast cancer cells to tamoxifen, Prot. Clin. Appl. 13 (2019), 1900029.
    [38]
    M. Hasegawa, Y. Yasuda, M. Tanaka, et al., A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor, Eur. J. Med. Chem. 71 (2014) 290-305.
    [39]
    X. Dong, Y. Xiao, X. Jiang, et al., Quantitative proteomic analysis revealed lovastatin-induced perturbation of cellular pathways in HL-60 cells, J. Proteome Res. 10 (2011) 5463-5471.
    [40]
    X.H. Huang, Y. Wang, P. Hong, et al., Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation, Am J. Cancer Res. 9 (2019) 2397-2412.
    [41]
    T. Ito, H. Ando, T. Suzuki, et al., Identification of a primary target of thalidomide teratogenicity, Science 327 (2010) 1345-1350.
    [42]
    J. Kronke, N.D. Udeshi, A. Narla, et al., Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science 343 (2014) 301-305.
    [43]
    G. Lu, R.E. Middleton, H. Sun, et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science 343 (2014) 305-309.
    [44]
    I. Amelio, A. Lisitsa, R.A. Knight, et al., Polypharmacology of approved anticancer drugs, Curr. Drug Targets 18 (2017) 534-543.
    [45]
    A. Antolin, P Workman, J. Mestres, et al., Polypharmacology in precision oncology: Current applications and future prospects, Curr. Pharm. Des. 22 (2016) 6935-6945.
    [46]
    P.D. Leeson, B. Springthorpe, The influence of drug-like concepts on decision-making in medicinal chemistry, Nat. Rev. Drug Discov. 6 (2007) 881-890.
    [47]
    C. Holohan, S. Van Schaeybroeck, D.B. Longley, et al., Cancer drug resistance: An evolving paradigm, Nat. Rev. Cancer 13 (2013) 714-726.
    [48]
    X. Huang, J. Yan, M. Zhang, et al., Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-Aberrant solid tumors, Cell 175 (2018) 186-199 e19.
    [49]
    K.A. Zub, M.M. Sousa, A. Sarno, et al., Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells, PLoS One 10 (2015), e0119857.
    [50]
    N. Hoti, P. Shah, Y. Hu, et al., Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance, Proteomics 17 (2017), 1600228.
    [51]
    W. Li, H. Wang, Y. Yang, et al., Integrative analysis of proteome and ubiquitylome reveals unique features of Lysosomal and endocytic pathways in gefitinib-resistant non-Small cell lung cancer cells, Proteomics 18 (2018), 1700388.
    [52]
    W. Liu, J. Chang, M. Liu, et al., Quantitative proteomics profiling reveals activation of mTOR pathway in trastuzumab resistance, Oncotarget 8 (2017) 45793-45806.
    [53]
    S.L. Tilghman, I. Townley, Q. Zhong, et al., Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness, Mol. Cell Proteom. 12 (2013) 2440-2455.
    [54]
    N.P. Chappell, P.N. Teng, B.L. Hood, et al., Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer, J Proteome Res. 11 (2012) 4605-4614.
    [55]
    E.J. Molinelli, A. Korkut, W. Wang, et al., Perturbation biology: inferring signaling networks in cellular systems, PLoS Comput Biol 9 (2013), e1003290.
    [56]
    E.R. McDonald, 3rd, A. de Weck, M.R. Schlabach, et al., Project DRIVE: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening, Cell 170 (2017) 577-592. e10.
    [57]
    A. Tsherniak, F. Vazquez, P.G. Montgomery, et al., Defining a cancer dependency map, Cell 170 (2017) 564-576. e16.
    [58]
    A. Subramanian, R. Narayan, S.M. Corsello, et al., A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell 171 (2017) 1437-1452 e17.
    [59]
    T.I. Roumeliotis, S.P. Williams, E. Goncalves, et al., Genomic determinants of protein abundance variation in colorectal cancer cells, Cell Rep. 20 (2017) 2201-2214.
    [60]
    D.P. Nusinow, J. Szpyt, M. Ghandi, et al., Quantitative proteomics of the cancer cell line encyclopedia, Cell 180 (2020) 387-402.e16.
    [61]
    P. Mertins, D.R. Mani, K.V. Ruggles, et al., Proteogenomics connects somatic mutations to signalling in breast cancer, Nature 534 (2016) 55-62.
    [62]
    M. Ghandi, F.W. Huang, J. Jane-Valbuena, et al., Next-generation characterization of the Cancer Cell Line Encyclopedia, Nature 569 (2019) 503-508.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (285) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return