Citation: | Zhiwei Liu, Shangwen Jiang, Bingbing Hao, Shuyu Xie, Yingluo Liu, Yuqi Huang, Heng Xu, Cheng Luo, Min Huang, Minjia Tan, Jun-Yu Xu. A proteomic landscape of pharmacologic perturbations for functional relevance[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 128-139. doi: 10.1016/j.jpha.2023.08.021 |
[1] |
J. Lamb, E.D. Crawford, D. Peck, et al., The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease, Science 313 (2006) 1929-1935.
|
[2] |
J.G. Moffat, F. Vincent, J.A. Lee, et al., Opportunities and challenges in phenotypic drug discovery: an industry perspective, Nat. Rev. Drug. Discov. 16 (2017) 531-543.
|
[3] |
M. Frantzi, A. Latosinska, H. Mischak, Proteomics in drug development: The dawn of a new Era? Proteomics Clin. Appl. 13 (2019), e1800087.
|
[4] |
A.A. Saei, C.M. Beusch, A. Chernobrovkin, et al., ProTargetMiner as a proteome signature library of anticancer molecules for functional discovery, Nat. Commun. 10 (2019), 5715.
|
[5] |
L. Litichevskiy, R. Peckner, J.G. Abelin, et al., A library of phosphoproteomic and chromatin signatures for characterizing cellular responses to drug perturbations, Cell Syst. 6 (2018) 424-443. e7.
|
[6] |
W. Zhao, J. Li, M.M. Chen, et al., Large-scale characterization of drug responses of clinically relevant proteins in cancer cell lines, Cancer Cell 38 (2020) 829-843. e4.
|
[7] |
B. Ruprecht, J. Di Bernardo, Z. Wang, et al., A mass spectrometry-based proteome map of drug action in lung cancer cell lines, Nat. Chem. Biol. 16 (2020) 1111-1119.
|
[8] |
D.C. Mitchell, M. Kuljanin, J. Li, et al., A proteome-wide atlas of drug mechanism of action, Nat. Biotechnol. 41 (2023) 845-857.
|
[9] |
K.A. Hoadley, C. Yau, T. Hinoue, et al., Cell-of-origin patterns dominate the Molecular classification of 10,000 tumors from 33 types of cancer, Cell 173 (2018) 291-304 e6.
|
[10] |
W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics 8 (2007) 118-127.
|
[11] |
D.J. Clark, S.M. Dhanasekaran, F. Petralia, et al., Integrated proteogenomic characterization of clear cell renal cell carcinoma, Cell 179 (2019) 964-983. e31.
|
[12] |
J.C. Shelley, A. Cholleti, L.L. Frye, et al., Epik: a software program for pKa prediction and protonation state generation for drug-like molecules, J. Comput. Aided Mol. Des. 21 (2007) 681-691.
|
[13] |
A. Sinha, V. Huang, J. Livingstone, et al., The proteogenomic landscape of curable prostate cancer, Cancer Cell 35 (2019) 414-427.e6.
|
[14] |
J.T. Leek, R.B. Scharpf, H.C. Bravo, et al., Tackling the widespread and critical impact of batch effects in high-throughput data, Nat. Rev. Genet. 11 (2010) 733-739.
|
[15] |
M. Dou, G. Clair, C.F. Tsai, et al., High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform, Anal. Chem. 91 (2019) 13119-13127.
|
[16] |
K.A. Donovan, J. An, R.P. Nowak, et al., Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome, eLife 7 (2018), 38430.
|
[17] |
H. Xu, N. Dephoure, H. Sun, et al., Proteomic profiling of paclitaxel treated cells identifies a novel mechanism of drug resistance mediated by PDCD4, J. Proteome Res. 14 (2015) 2480-2491.
|
[18] |
M.T. Mackmull, M. Iskar, L. Parca, et al., Histone deacetylase inhibitors (HDACi) cause the selective depletion of bromodomain containing proteins (BCPs), Mol. Cell Proteomics. 14 (2015) 1350-1360.
|
[19] |
Q. Wu, W. Li, C. Wang, et al., Ultradeep lysine crotonylome reveals the crotonylation enhancement on both histones and nonhistone proteins by SAHA treatment, J. Proteome Res. 16 (2017) 3664-3671.
|
[20] |
B. Hao, X.J. Li, X.L. Jia, et al., The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L, Acta Pharmacol. Sin 41 (2020) 1246-1254.
|
[21] |
Y. Wang, J. Zhang, Z.H. Huang, et al., Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop, Cell Death Dis. 8 (2017), e2876.
|
[22] |
B. Xue, W. Huang, X. Yuan, et al., YSY01A, a Novel proteasome inhibitor, induces cell cycle arrest on G2 phase in MCF-7 Cells via ERalpha and PI3K/Akt pathways, J. Cancer 6 (2015) 319-326.
|
[23] |
R R.M. Meyers, J.G. Bryan, J.M. McFarland, et al., Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells, Nat. Genet. 49 (2017) 1779-1784.
|
[24] |
L. Katz, R.H. Baltz, Natural product discovery: Past, present, and future, J. Ind. Microbiol. Biotechnol. 43 (2016) 155-176.
|
[25] |
A.L. Demain, Importance of microbial natural products and the need to revitalize their discovery, J. Ind. Microbiol. Biotechnol. 41 (2014) 185-201.
|
[26] |
M.S. Kinch, A. Haynesworth, S.L. Kinch, et al., An overview of FDA-approved new molecular entities: 1827-2013, Drug Discov. Today 19 (2014) 1033-1039.
|
[27] |
L.-A. Giddings, D.J. Newman, Microbial natural products: Molecular blueprints for antitumor drugs, J. Ind. Microbiol. Biotechnol. 40 (2013) 1181-1210.
|
[28] |
S. Dutta, Natural sources as potential anti-cancer agents: A review, Int.J.Pharm Drug Anal 3 (2015) 156-164.
|
[29] |
A. Valdes, K.A. Artemenko, J. Bergquist, et al., Comprehensive proteomic study of the antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using nanoliquid chromatography-orbitrap MS/MS, J. Proteome Res. 15 (2016) 1971-1985.
|
[30] |
V. Raman, U.K. Aryal, V. Hedrick, et al., Proteomic analysis reveals that an extract of the plant lippia origanoides suppresses mitochondrial metabolism in triple-negative breast cancer cells, J. Proteome Res. 17 (2018) 3370-3383.
|
[31] |
Y. Chen, S.Y. Wen, C.M. Deng, et al., Proteomic analysis reveals that odoroside a triggers G2/M arrest and apoptosis in colorectal carcinoma through ROS-p53 pathway, Proteomics 19 (2019), e1900092.
|
[32] |
S. Roehrer, V. Stork, C. Ludwig, et al., Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics, PLoS One 14 (2019), e0213469.
|
[33] |
A. Valdes, V. Garcia-Canas, K.A. Artemenko, et al., Nano-liquid chromatography-orbitrap MS-based quantitative proteomics reveals differences between the mechanisms of action of carnosic acid and carnosol in colon cancer cells, Mol. Cell Proteom. 16 (2017) 8-22.
|
[34] |
D. Chen, K.G. Daniel, M.S. Chen, et al., Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells, Biochem Pharmacol 69 (2005) 1421-1432.
|
[35] |
J.U. Peters, Polypharmacology-foe or friend?, J Med Chem 56 (2013) 8955-8971.
|
[36] |
V.C. Jordan, Tamoxifen: A most unlikely pioneering medicine, Nat. Rev. Drug Discov. 2 (2003) 205-213.
|
[37] |
A.A.M. Alkhanjaf, R. Raggiaschi, M. Crawford, et al., Moonlighting proteins and cardiopathy in the spatial response of MCF-7 breast cancer cells to tamoxifen, Prot. Clin. Appl. 13 (2019), 1900029.
|
[38] |
M. Hasegawa, Y. Yasuda, M. Tanaka, et al., A novel tamoxifen derivative, ridaifen-F, is a nonpeptidic small-molecule proteasome inhibitor, Eur. J. Med. Chem. 71 (2014) 290-305.
|
[39] |
X. Dong, Y. Xiao, X. Jiang, et al., Quantitative proteomic analysis revealed lovastatin-induced perturbation of cellular pathways in HL-60 cells, J. Proteome Res. 10 (2011) 5463-5471.
|
[40] |
X.H. Huang, Y. Wang, P. Hong, et al., Benzethonium chloride suppresses lung cancer tumorigenesis through inducing p38-mediated cyclin D1 degradation, Am J. Cancer Res. 9 (2019) 2397-2412.
|
[41] |
T. Ito, H. Ando, T. Suzuki, et al., Identification of a primary target of thalidomide teratogenicity, Science 327 (2010) 1345-1350.
|
[42] |
J. Kronke, N.D. Udeshi, A. Narla, et al., Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science 343 (2014) 301-305.
|
[43] |
G. Lu, R.E. Middleton, H. Sun, et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science 343 (2014) 305-309.
|
[44] |
I. Amelio, A. Lisitsa, R.A. Knight, et al., Polypharmacology of approved anticancer drugs, Curr. Drug Targets 18 (2017) 534-543.
|
[45] |
A. Antolin, P Workman, J. Mestres, et al., Polypharmacology in precision oncology: Current applications and future prospects, Curr. Pharm. Des. 22 (2016) 6935-6945.
|
[46] |
P.D. Leeson, B. Springthorpe, The influence of drug-like concepts on decision-making in medicinal chemistry, Nat. Rev. Drug Discov. 6 (2007) 881-890.
|
[47] |
C. Holohan, S. Van Schaeybroeck, D.B. Longley, et al., Cancer drug resistance: An evolving paradigm, Nat. Rev. Cancer 13 (2013) 714-726.
|
[48] |
X. Huang, J. Yan, M. Zhang, et al., Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-Aberrant solid tumors, Cell 175 (2018) 186-199 e19.
|
[49] |
K.A. Zub, M.M. Sousa, A. Sarno, et al., Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells, PLoS One 10 (2015), e0119857.
|
[50] |
N. Hoti, P. Shah, Y. Hu, et al., Proteomics analyses of prostate cancer cells reveal cellular pathways associated with androgen resistance, Proteomics 17 (2017), 1600228.
|
[51] |
W. Li, H. Wang, Y. Yang, et al., Integrative analysis of proteome and ubiquitylome reveals unique features of Lysosomal and endocytic pathways in gefitinib-resistant non-Small cell lung cancer cells, Proteomics 18 (2018), 1700388.
|
[52] |
W. Liu, J. Chang, M. Liu, et al., Quantitative proteomics profiling reveals activation of mTOR pathway in trastuzumab resistance, Oncotarget 8 (2017) 45793-45806.
|
[53] |
S.L. Tilghman, I. Townley, Q. Zhong, et al., Proteomic signatures of acquired letrozole resistance in breast cancer: suppressed estrogen signaling and increased cell motility and invasiveness, Mol. Cell Proteom. 12 (2013) 2440-2455.
|
[54] |
N.P. Chappell, P.N. Teng, B.L. Hood, et al., Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer, J Proteome Res. 11 (2012) 4605-4614.
|
[55] |
E.J. Molinelli, A. Korkut, W. Wang, et al., Perturbation biology: inferring signaling networks in cellular systems, PLoS Comput Biol 9 (2013), e1003290.
|
[56] |
E.R. McDonald, 3rd, A. de Weck, M.R. Schlabach, et al., Project DRIVE: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening, Cell 170 (2017) 577-592. e10.
|
[57] |
A. Tsherniak, F. Vazquez, P.G. Montgomery, et al., Defining a cancer dependency map, Cell 170 (2017) 564-576. e16.
|
[58] |
A. Subramanian, R. Narayan, S.M. Corsello, et al., A next generation connectivity map: L1000 platform and the first 1,000,000 profiles, Cell 171 (2017) 1437-1452 e17.
|
[59] |
T.I. Roumeliotis, S.P. Williams, E. Goncalves, et al., Genomic determinants of protein abundance variation in colorectal cancer cells, Cell Rep. 20 (2017) 2201-2214.
|
[60] |
D.P. Nusinow, J. Szpyt, M. Ghandi, et al., Quantitative proteomics of the cancer cell line encyclopedia, Cell 180 (2020) 387-402.e16.
|
[61] |
P. Mertins, D.R. Mani, K.V. Ruggles, et al., Proteogenomics connects somatic mutations to signalling in breast cancer, Nature 534 (2016) 55-62.
|
[62] |
M. Ghandi, F.W. Huang, J. Jane-Valbuena, et al., Next-generation characterization of the Cancer Cell Line Encyclopedia, Nature 569 (2019) 503-508.
|