Volume 13 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Xixi Song, Zina Fredj, Yuqiao Zheng, Hongyong Zhang, Guoguang Rong, Sumin Bian, Mohamad Sawan. Biosensors for waterborne virus detection: Challenges and strategies[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1252-1268. doi: 10.1016/j.jpha.2023.08.020
Citation: Xixi Song, Zina Fredj, Yuqiao Zheng, Hongyong Zhang, Guoguang Rong, Sumin Bian, Mohamad Sawan. Biosensors for waterborne virus detection: Challenges and strategies[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1252-1268. doi: 10.1016/j.jpha.2023.08.020

Biosensors for waterborne virus detection: Challenges and strategies

doi: 10.1016/j.jpha.2023.08.020
Funds:

This research was supported by the Research Center for Industries of the Future of Westlake University, China (Grant No.: 210230006022219/001), the National Natural Science Foundation of China (Grant No.: 82104122), Westlake University, China (Grant No.: 10318A992001), and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, China (Grant No.: 2020R01005).

  • Received Date: Jun. 30, 2023
  • Accepted Date: Aug. 29, 2023
  • Rev Recd Date: Aug. 20, 2023
  • Publish Date: Aug. 31, 2023
  • Waterborne viruses that can be harmful to human health pose significant challenges globally, affecting health care systems and the economy. Identifying these waterborne pathogens is essential for preventing diseases and protecting public health. However, handling complex samples such as human and wastewater can be challenging due to their dynamic and complex composition and the ultralow concentration of target analytes. This review presents a comprehensive overview of the latest breakthroughs in waterborne virus biosensors. It begins by highlighting several promising strategies that enhance the sensing performance of optical and electrochemical biosensors in human samples. These strategies include optimizing bioreceptor selection, transduction elements, signal amplification, and integrated sensing systems. Furthermore, the insights gained from biosensing waterborne viruses in human samples are applied to improve biosensing in wastewater, with a particular focus on sampling and sample pretreatment due to the dispersion characteristics of waterborne viruses in wastewater. This review suggests that implementing a comprehensive system that integrates the entire waterborne virus detection process with high-accuracy analysis could enhance virus monitoring. These findings provide valuable insights for improving the effectiveness of waterborne virus detection, which could have significant implications for public health and environmental management.
  • loading
  • A.M. Gall, B.J. Marinas, Y. Lu, et al., Waterborne viruses: A barrier to safe drinking water, PLoS Pathog. 11 (2015), e1004867.
    N. Kumar, Y. Hu, S. Singh, et al., Emerging biosensor platforms for the assessment of water-borne pathogens, Analyst 143 (2018) 359-373.
    M. Guo, W. Tao, R.A. Flavell, et al., Potential intestinal infection and faecal-oral transmission of SARS-CoV-2, Nat. Rev. Gastroenterol. Hepatol. 18 (2021) 269-283.
    J. Hrdy, P. Vasickova, Virus detection methods for different kinds of food and water samples - The importance of molecular techniques, Food Contr. 134 (2022), 108764.
    K.R. Wigginton, Y. Ye, R.M. Ellenberg, Emerging investigators series: The source and fate of pandemic viruses in the urban water cycle, Environ. Sci.: Water Res. Technol. 1 (2015) 735-746.
    M.G. Jimenez-Rodriguez, F. Silva-Lance, L. Parra-Arroyo, et al., Biosensors for the detection of disease outbreaks through wastewater-based epidemiology, Trac Trends Anal. Chem. 155 (2022), 116585.
    D.F. Nieuwenhuijse, M.P.G. Koopmans, Metagenomic sequencing for surveillance of food- and waterborne viral diseases, Front. Microbiol. 8 (2017), 230.
    M. Pilevar, K.T. Kim, W.H. Lee, Recent advances in biosensors for detecting viruses in water and wastewater, J. Hazard. Mater. 410 (2021), 124656.
    S. Ahuja, M.S. Kumar, R. Nandeshwar, et al., Longer amplicons provide better sensitivity for electrochemical sensing of viral nucleic acid in water samples using PCB electrodes, Sci. Rep. 12 (2022), 8814.
    A. Tsopela, A. Laborde, L. Salvagnac, et al., Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis, Biosens. Bioelectron. 79 (2016) 568-573.
    Z. Kotsiri, J. Vidic, A. Vantarakis, Applications of biosensors for bacteria and virus detection in food and water-a systematic review, J. Environ. Sci. 111 (2022) 367-379.
    F. Ejeian, P. Etedali, H.-A. Mansouri-Tehrani, et al., Biosensors for wastewater monitoring: A review, Biosens. Bioelectron. 118 (2018) 66-79.
    K. Mao, H. Zhang, Y. Pan, et al., Biosensors for wastewater-based epidemiology for monitoring public health, Water Res. 191 (2021), 116787.
    S. Srikanth, U.S. Jayapiriya, S.K. Dubey, et al., A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria, iScience 25 (2022), 105388.
    A. Vishwakarma, R. Lal, M. Ramya, Aptamer-based approaches for the detection of waterborne pathogens, Int. Microbiol. 24 (2021) 125-140.
    S.M. Sheta, S.M. El-Sheikh, Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses, Anal. Biochem. 648 (2022), 114680.
    M.V.A. Corpuz, A. Buonerba, G. Vigliotta, et al., Viruses in wastewater: Occurrence, abundance and detection methods, Sci. Total Environ. 745 (2020), 140910.
    C. Twigg, J. Wenk, Review and meta-analysis: SARS-CoV-2 and enveloped virus detection in feces and wastewater, ChemBioEng Rev. 9 (2022) 129-145.
    D. Kadadou, L. Tizani, V.S. Wadi, et al., Recent advances in the biosensors application for the detection of bacteria and viruses in wastewater, J. Environ. Chem. Eng. 10 (2022), 107070.
    N. Bhardwaj, S.K. Bhardwaj, D. Bhatt, et al., Optical detection of waterborne pathogens using nanomaterials, Trac Trends Anal. Chem. 113 (2019) 280-300.
    R.C. Groendahl-Rosado, E. Yarovitsyna, E. Trettenes, et al., A one year study on the concentrations of norovirus and enteric adenoviruses in wastewater and A surface drinking water source in Norway, Food Environ. Virol. 6 (2014) 232-245.
    I.M. Sayed, Dual infection of hepatitis A virus and hepatitis E virus-What is known? Viruses 15 (2023), 298.
    K. Kumthip, P. Khamrin, H. Ushijima, et al., Detection of six different human enteric viruses contaminating environmental water in Chiang Mai, Thailand, Microbiol. Spectr. 11 (2023) e03512-e03522.
    T. Prado, A. de Castro Bruni, M.R.F. Barbosa, et al., Performance of wastewater reclamation systems in enteric virus removal, Sci. Total Environ. 678 (2019) 33-42.
    A.I. Silverman, A.B. Boehm, Systematic review and meta-analysis of the persistence of enveloped viruses in environmental waters and wastewater in the absence of disinfectants, Environ. Sci. Technol. 55 (2021) 14480-14493.
    F. Cariti, A. Tunas Corzon, X. Fernandez-Cassi, et al., Wastewater reveals the spatiotemporal spread of SARS-CoV-2 in the canton of Ticino (switzerland) during the onset of the COVID-19 pandemic, ACS ES&T Water 2 (2022) 2194-2200.
    M. Gross, Wastewater warnings, Curr. Biol. 31 (2021) R267-R269.
    K. Jenns, H.P. Sassi, R. Zhou, et al., Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma, Trends Food Sci. Technol. 124 (2022) 323-333.
    L. Chen, Y. Deng, S. Dong, et al., The occurrence and control of waterborne viruses in drinking water treatment: A review, Chemosphere 281 (2021), 130728.
    R.J. Drout, L. Robison, Z. Chen, et al., Zirconium metal-organic frameworks for organic pollutant adsorption, Trends Chem. 1 (2019) 304-317.
    C. Teng, K. Zhou, L. Liao, et al., Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater, Sci. Total Environ. 838 (2022), 156462.
    E.M. Symonds, M.E. Verbyla, J.O. Lukasik, et al., A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia, Water Res. 65 (2014) 257-270.
    X. Huang, Y. Zhu, E. Kianfar, Nano Biosensors: Properties, applications and electrochemical techniques, J. Mater. Res. Technol. 12 (2021) 1649-1672.
    Y. Alhamoud, D. Yang, S.S. Fiati Kenston, et al., Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications, Biosens. Bioelectron. 141 (2019), 111418.
    J. Ashley, M.-A. Shahbazi, K. Kant, et al., Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives, Biosens. Bioelectron. 91 (2017) 606-615.
    T. Ozer, B.J. Geiss, C.S. Henry, Review-Chemical and biological sensors for viral detection, J. Electrochem. Soc. 167 (2020), 037523.
    A. Karimzadeh, M. Hasanzadeh, N. Shadjou, et al., Peptide based biosensors, Trac Trends Anal. Chem. 107 (2018) 1-20.
    S.H. Baek, M.W. Kim, C.Y. Park, et al., Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides, Biosens. Bioelectron. 123 (2019) 223-229.
    L. Yuan, L. Liu, Peptide-based electrochemical biosensing, Sens. Actuat. B 344 (2021), 130232.
    S. Kim, S. Lee, H.J. Lee, An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein, Sens. Actuat. B 273 (2018) 1029-1036.
    R. Chand, S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus, Biosens. Bioelectron. 98 (2017) 47-53.
    H. Zhao, W. Xie, R.-L. Zhang, et al., Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites, Talanta 237 (2022), 122896.
    P. Weerathunge, R. Ramanathan, V.A. Torok, et al., Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor, Anal. Chem. 91 (2019) 3270-3276.
    D. Alzate, M.C. Lopez-Osorio, F. Cortes-Mancera, et al., Detection of hepatitis E virus genotype 3 in wastewater by an electrochemical genosensor, Anal. Chim. Acta 1221 (2022), 340121.
    T. Ngamdee, L.S. Yin, S. Vongpunsawad, et al., Target Induced-DNA strand displacement reaction using gold nanoparticle labeling for hepatitis E virus detection, Anal. Chim. Acta 1134 (2020) 10-17.
    O. Adegoke, M.-W. Seo, T. Kato, et al., An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus, Biosens. Bioelectron. 86 (2016) 135-142.
    N. Nawaz, N.K. Abu Bakar, H.N. Muhammad Ekramul Mahmud, et al., Molecularly imprinted polymers-based DNA biosensors, Anal. Biochem. 630 (2021), 114328.
    R. Ding, Y. Chen, Q. Wang, et al., Recent advances in quantum dots-based biosensors for antibiotics detection, J. Pharm. Anal. 12 (2022) 355-364.
    B. Babamiri, A. Salimi, R. Hallaj, A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore, Biosens. Bioelectron. 117 (2018) 332-339.
    E. Mauriz, M.C. Garcia-Fernandez, L.M. Lechuga, Towards the design of universal immunosurfaces for SPR-based assays: A review, Trac Trends Anal. Chem. 79 (2016) 191-198.
    Y. Liu, J. Yu, Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review, Microchim. Acta 183 (2016) 1-19.
    S. Gao, J.M. Guisan, J. Rocha-Martin, Oriented immobilization of antibodies onto sensing platforms - A critical review, Anal. Chim. Acta 1189 (2022), 338907.
    E. Gonzalez-Fernandez, M. Staderini, N. Avlonitis, et al., Effect of spacer length on the performance of peptide-based electrochemical biosensors for protease detection, Sens. Actuat. B 255 (2018) 3040-3046.
    M. Yuce, N. Ullah, H. Budak, Trends in aptamer selection methods and applications, Analyst 140 (2015) 5379-5399.
    H.J. Hwang, M.Y. Ryu, C.Y. Park, et al., High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder, Biosens. Bioelectron. 87 (2017) 164-170.
    J. Guo, D. Liu, Z. Yang, et al., A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection, Bioelectrochemistry 136 (2020), 107591.
    A.D. Chowdhury, K. Takemura, T.-C. Li, et al., Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nat. Commun. 10 (2019), 3737.
    S.H. Baek, C.Y. Park, T.P. Nguyen, et al., Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster, Food Contr. 114 (2020), 107225.
    W. Sukjee, A. Thitithanyanont, S. Manopwisedjaroen, et al., Virus MIP-composites for SARS-CoV-2 detection in the aquatic environment, Mater. Lett. 315 (2022), 131973.
    H. Du, Y. Xie, J. Wang, Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications, Trac Trends Anal. Chem. 135 (2021), 116178.
    J. Fei, W. Dou, G. Zhao, A sandwich electrochemical immunosensor for Salmonella pullorum and Salmonella gallinarum based on a screen-printed carbon electrode modified with an ionic liquid and electrodeposited gold nanoparticles, Microchim. Acta 182 (2015) 2267-2275.
    D. Tang, J. Tang, B. Su, et al., Simultaneous determination of five-type hepatitis virus antigens in 5 min using an integrated automatic electrochemical immunosensor array, Biosens. Bioelectron. 25 (2010) 1658-1662.
    F. De Maio, V. Palmieri, G. Babini, et al., Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2, iScience 24 (2021), 102788.
    G. Seo, G. Lee, M.J. Kim, et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor, ACS Nano 14 (2020) 5135-5142.
    N. Dhanalakshmi, T. Priya, S. Thennarasu, et al., Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing, J. Pharm. Anal. 11 (2021) 48-56.
    F. Liu, Y.H. Kim, D.S. Cheon, et al., Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection, Sens. Actuat. B 186 (2013) 252-257.
    M. Alafeef, K. Dighe, P. Moitra, et al., Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip, ACS Nano 14 (2020) 17028-17045.
    H. Jiang, Z. Sun, C. Zhang, et al., 3D-architectured aptasensor for ultrasensitive electrochemical detection of norovirus based on phosphorene-gold nanocomposites, Sens. Actuat. B 354 (2022), 131232.
    H. L. Chia, C.C. Mayorga-Martinez, M. Pumera, Doping and decorating 2D materials for biosensing: Benefits and drawbacks, Adv. Funct. Mater. 31 (2021), 2102555.
    A.B. Ganganboina, A.D. Chowdhury, I.M. Khoris, et al., Dual modality sensor using liposome-based signal amplification technique for ultrasensitive norovirus detection, Biosens. Bioelectron. 157 (2020), 112169.
    C. Jiang, X. Mu, S. Liu, et al., A study of the detection of SARS-CoV-2 ORF1ab gene by the use of electrochemiluminescent biosensor based on dual-probe hybridization, Sensors 22 (2022), 2402.
    Y. Peng, Y. Pan, Z. Sun, et al., An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA, Biosens. Bioelectron. 186 (2021), 113309.
    M.S. Kumar, R. Nandeshwar, S.B. Lad, et al., Electrochemical sensing of SARS-CoV-2 amplicons with PCB electrodes, Sens. Actuat. B 343 (2021), 130169.
    V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon 7 (2021), e06321.
    K. Takemura, Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: Optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology, Biosensors 11 (2021), 250.
    N. Cennamo, L. Pasquardini, F. Arcadio, et al., SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor, Talanta 233 (2021), 122532.
    P.N. Abadian, N. Yildirim, A.Z. Gu, et al., SPRi-based adenovirus detection using a surrogate antibody method, Biosens. Bioelectron. 74 (2015) 808-814.
    W. Udos, C.-W. Ooi, S.-H. Tan, et al., Label-free surface-plasmon resonance fiber grating biosensor for Hand-foot-mouth disease (EV-A71) detection, Optik 228 (2021), 166221.
    L. Huang, L. Ding, J. Zhou, et al., One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device, Biosens. Bioelectron. 171 (2021), 112685.
    G. Qiu, Z. Gai, Y. Tao, et al., Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection, ACS Nano 14 (2020) 5268-5277.
    Y. Zheng, S. Bian, J. Sun, et al., Label-free LSPR-vertical microcavity biosensor for on-site SARS-CoV-2 detection, Biosensors 12 (2022), 151.
    G. Rong, Y. Zheng, X. Li, et al., A high-throughput fully automatic biosensing platform for efficient COVID-19 detection, Biosens. Bioelectron. 220 (2023), 114861.
    F. Nasrin, A.D. Chowdhury, K. Takemura, et al., Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots, Biosens. Bioelectron. 122 (2018) 16-24.
    A.D. Chowdhury, F. Nasrin, R. Gangopadhyay, et al., Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors, Biosens. Bioelectron. 170 (2020), 112657.
    K. Takemura, J. Lee, T. Suzuki, et al., Ultrasensitive detection of norovirus using a magnetofluoroimmunoassay based on synergic properties of gold/magnetic nanoparticle hybrid nanocomposites and quantum dots, Sens. Actuat. B 296 (2019), 126672.
    Y. Yang, Y. Peng, C. Lin, et al., Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection, Nano-Micro Lett. 13 (2021), 109.
    M. Zhang, X. Li, J. Pan, et al., Ultrasensitive detection of SARS-CoV-2 spike protein in untreated saliva using SERS-based biosensor, Biosens. Bioelectron. 190 (2021), 113421.
    O.J. Achadu, F. Abe, T. Suzuki, et al., Molybdenum trioxide nanocubes aligned on a graphene oxide substrate for the detection of norovirus by surface-enhanced Raman scattering, ACS Appl. Mater. Interfaces 12 (2020) 43522-43534.
    DishaM.K. NayakP. Kumari, et al., Functional nanomaterials based opto-electrochemical sensors for the detection of gonadal steroid hormones, Trac Trends Anal. Chem. 150 (2022), 116571.
    L. Chen, X. Zhang, G. Zhou, et al., Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay, Anal. Chem. 84 (2012) 3200-3207.
    L. Guo, J.A. Jackman, H.-H. Yang, et al., Strategies for enhancing the sensitivity of plasmonic nanosensors, Nano Today 10 (2015) 213-239.
    E. Karakus, E. Erdemir, N. Demirbilek, et al., Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor, Anal. Chim. Acta 1182 (2021), 338939.
    Y. Gao, Y. Han, C. Wang, et al., Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles, Anal. Chim. Acta 1154 (2021), 338330.
    T.K. Sharma, R. Ramanathan, P. Weerathunge, et al., Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection, Chem. Commun. 50 (2014) 15856-15859.
    I.M. Khoris, K. Takemura, J. Lee, et al., Enhanced colorimetric detection of norovirus using in situ growth of Ag shell on Au NPs, Biosens. Bioelectron. 126 (2019) 425-432.
    J. Sun, Y. Gan, T. Liang, et al., Signal enhancement of electrochemical DNA biosensors for the detection of trace heavy metals, Curr. Opin. Electrochem. 17 (2019) 23-29.
    P. Miao, Y. Tang, B. Wang, et al., Signal amplification by enzymatic tools for nucleic acids, Trac Trends Anal. Chem. 67 (2015) 1-15.
    M. Pirzada, Z. Altintas, Nanomaterials for virus sensing and tracking, Chem. Soc. Rev. 51 (2022) 5805-5841.
    H. Zhao, F. Liu, W. Xie, et al., Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone, Sens. Actuat. B 327 (2021), 128899.
    E.A. Pumford, J. Lu, I. Spaczai, et al., Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics, Biosens. Bioelectron. 170 (2020), 112674.
    T. Kang, J. Lu, T. Yu, et al., Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example, Biosens. Bioelectron. 206 (2022), 114109.
    C.E. Jin, T.Y. Lee, B. Koo, et al., Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing, Sens. Actuat. B 255 (2018) 2399-2406.
    J.P. Broughton, X. Deng, G. Yu, et al., CRISPR-Cas12-based detection of SARS-CoV-2, Nat. Biotechnol. 38 (2020) 870-874.
    T. Chaibun, J. Puenpa, T. Ngamdee, et al., Rapid electrochemical detection of coronavirus SARS-CoV-2, Nat. Commun. 12 (2021), 802.
    W.-J. Liu, X. Zhang, F. Ma, et al., Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay, Trac Trends Anal. Chem. 160 (2023), 116998.
    K. Zhang, Z. Fan, Y. Huang, et al., Hybridization chain reaction circuit-based electrochemiluminescent biosensor for SARS-cov-2 RdRp gene assay, Talanta 240 (2022), 123207.
    H. Yang, Y. Zhou, J. Liu, G-quadruplex DNA for construction of biosensors, Trac Trends Anal. Chem. 132 (2020), 116060.
    M. Du, J. Zheng, S. Tian, et al., DNAzyme walker for homogeneous detection of enterovirus EV71 and CVB3, Anal. Chem. 93 (2021) 5606-5611.
    H. Xi, M. Juhas, Y. Zhang, G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection, Biosens. Bioelectron. 167 (2020), 112494.
    S.U. Kim, B.S. Batule, H. Mun, et al., Colorimetric molecular diagnosis of the HIV gag gene using DNAzyme and a complementary DNA-extended primer, Analyst 143 (2018) 695-699.
    W.Y. Cui, H.J. Yoo, Y.G. Li, et al., Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads, Biosens. Bioelectron. 199 (2022), 113878.
    Z. Fan, B. Yao, Y. Ding, et al., Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds, Biosens. Bioelectron. 178 (2021), 113015.
    J. Liu, Y. Zhang, H. Xie, et al., Applications of catalytic hairpin assembly reaction in biosensing, Small 15 (2019), 1902989.
    S.D. Mason, Y. Tang, Y. Li, et al., Emerging bioanalytical applications of DNA walkers, Trac Trends Anal. Chem. 107 (2018) 212-221.
    H.-M. Kim, H.-J. Kim, J.-H. Park, et al., High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance, Anal. Chim. Acta 1213 (2022), 339960.
    S. Ruan, Z. Li, H. Qi, et al., Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene, Microchim. Acta 181 (2014) 1293-1300.
    O.J. Achadu, F. Abe, F. Hossain, et al., Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus, Biosens. Bioelectron. 193 (2021), 113540.
    K. Mao, K. Zhang, W. Du, et al., The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks, Curr. Opin. Environ. Sci. Heath 17 (2020) 1-7.
    M. Yasuura, H. Shirato, K. Higo-Moriguchi, et al., Detection of norovirus-like particles with an external force-assisted near-field illumination biosensor, Jpn. J. Appl. Phys. 58 (2019), 071005.
    S. Chung, L.E. Breshears, S. Perea, et al., Smartphone-based paper microfluidic particulometry of norovirus from environmental water samples at the single copy level, ACS Omega 4 (2019) 11180-11188.
    S. Liu, K. Zhao, M. Huang, et al., Research progress on detection techniques for point-of-care testing of foodborne pathogens, Front. Bioeng. Biotechnol. 10 (2022), 958134.
    E. O’Brien, I. Xagoraraki, A water-focused one-health approach for early detection and prevention of viral outbreaks, One Heath 7 (2019), 100094.
    S. Martinez-Puchol, M. Rusinol, X. Fernandez-Cassi, et al., Characterisation of the sewage virome: Comparison of NGS tools and occurrence of significant pathogens, Sci. Total Environ. 713 (2020), 136604.
    S. Bofill-Mas, M. Rusinol, Recent trends on methods for the concentration of viruses from water samples, Curr. Opin. Environ. Sci. Heath16 (2020) 7-13.
    L. Ren, J. Ma, M. Chen, et al., Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater, iScience 25 (2022), 104342.
    D. Lu, Z. Huang, J. Luo, et al., Primary concentration - The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review, Sci. Total Environ. 747 (2020), 141245.
    D.B. Ngo, T. Chaibun, L.S. Yin, et al., Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling, Anal. Bioanal. Chem. 413 (2021) 1027-1037.
    Z. Altintas, M. Gittens, A. Guerreiro, et al., Detection of waterborne viruses using high affinity molecularly imprinted polymers, Anal. Chem. 87 (2015) 6801-6807.
    A. Rahman, S. Kang, W. Wang, et al., Nanobiotechnology enabled approaches for wastewater based epidemiology, Trac Trends Anal. Chem. 143 (2021), 116400.
    A. Thakur, A. Kumar, Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors, Sci. Total Environ. 834 (2022), 155219.
    Q. Wang, J. Wang, Y. Huang, et al., Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: More rapid, sensitive, and universal, Biosens. Bioelectron. 197 (2022), 113739.
    S.M. Leitao, V. Navikas, H. Miljkovic, et al., Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds, Nat. Nanotechnol. (2023).
    Y. Yang, B. Xu, J. Murray, et al., Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning, Biosens. Bioelectron. 217 (2022), 114721.
    K.Y. Goud, K.K. Reddy, A. Khorshed, et al., Electrochemical diagnostics of infectious viral diseases: Trends and challenges, Biosens. Bioelectron. 180 (2021), 113112.
    Y. Zheng, X. Song, Z. Fredj, et al., Challenges and perspectives of multi-virus biosensing techniques: A review, Anal. Chim. Acta 1244 (2023), 340860.
    Z. Fan, X. Feng, W. Zhang, et al., Rapid detection of high-risk HPV16 and HPV18 based on microchip electrophoresis, J. Pharm. Anal. 10 (2020) 329-333.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (290) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return