Citation: | Ruidi Jiao, Wei Jiang, Kunpeng Xu, Qian Luo, Luhua Wang, Chao Zhao. Lipid metabolism analysis in esophageal cancer and associated drug discovery[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 1-15. doi: 10.1016/j.jpha.2023.08.019 |
[1] |
E. Morgan, I. Soerjomataram, H. Rumgay, et al., The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020, Gastroenterology 163 (2022) 649-658.e2.
|
[2] |
H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
|
[3] |
H. Zeng, X. Ran, L. An, et al., Disparities in stage at diagnosis for five common cancers in China: A multicentre, hospital-based, observational study, Lancet Public Health 6 (2021) e877-e887.
|
[4] |
B.M. Eyck, J.J.B. van Lanschot, M.C.C.M. Hulshof, et al., Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial, J. Clin. Oncol. 39 (2021) 1995-2004.
|
[5] |
M.A. Shah, E.B. Kennedy, D.V. Catenacci, et al., Treatment of locally advanced esophageal carcinoma: ASCO guideline, J. Clin. Oncol. 38 (2020) 2677-2694.
|
[6] |
J.M. Sun, L. Shen, M.A. Shah, et al., Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (keynote-590): A randomised, placebo-controlled, phase 3 study, Lancet 398 (2021) 759-771.
|
[7] |
Y.Y. Janjigian, K. Shitara, M. Moehler, et al., First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial, Lancet 398 (2021) 27-40.
|
[8] |
E.C. Smyth, J. Lagergren, R.C. Fitzgerald, et al., Oesophageal cancer, Nat. Rev. Dis. Primers 3 (2017), 17048.
|
[9] |
L.A. Broadfield, A.A. Pane, A. Talebi, et al., Lipid metabolism in cancer: New perspectives and emerging mechanisms, Dev. Cell 56 (2021) 1363-1393.
|
[10] |
T. Petan, Lipid droplets in cancer, Rev. Physiol. Biochem. Pharmacol. 185 (2023) 53-86.
|
[11] |
H. Yoon, J.L. Shaw, M.C. Haigis, et al., Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity, Mol. Cell 81 (2021) 3708-3730.
|
[12] |
X. Han, Lipidomics for studying metabolism, Nat. Rev. Endocrinol. 12 (2016) 668-679.
|
[13] |
M.A. Alves, S. Lamichhane, A. Dickens, et al., Systems biology approaches to study lipidomes in health and disease, Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1866 (2021), 158857.
|
[14] |
C.W. Ko, J. Qu, D.D. Black, et al., Regulation of intestinal lipid metabolism: Current concepts and relevance to disease, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 169-183.
|
[15] |
A.L. Mellinger, D.C. Muddiman, M.P. Gamcsik, Highlighting functional mass spectrometry imaging methods in bioanalysis, J. Proteome Res. 21 (2022) 1800-1807.
|
[16] |
X. Bian, R. Liu, Y. Meng, et al., Lipid metabolism and cancer, J. Exp. Med. 218 (2021), e20201606.
|
[17] |
S.M. Lam, H. Tian, G. Shui, Lipidomics, en route to accurate quantitation, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (2017) 752-761.
|
[18] |
X. Guo, W. Cao, X. Fan, et al., Tandem mass spectrometry imaging enables high definition for mapping lipids in tissues, Angew. Chem. Int. Ed. Engl. 62 (2023), e202214804.
|
[19] |
E. Fahy, S. Subramaniam, R.C. Murphy, et al., Update of the LIPID MAPS comprehensive classification system for lipids, J. Lipid Res. 50 (2009) S9-S14.
|
[20] |
G. Liebisch, E. Fahy, J. Aoki, et al., Update on LIPID MAPS classification, nomenclature, and shorthand notation for ms-derived lipid structures, J. Lipid Res. 61 (2020) 1539-1555.
|
[21] |
M. Masoodi, M. Eiden, A. Koulman, et al., Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks, Anal. Chem. 82 (2010) 8176-8185.
|
[22] |
F.R. Greten, S.I. Grivennikov, Inflammation and cancer: Triggers, mechanisms, and consequences, Immunity 51 (2019) 27-41.
|
[23] |
F. Pietrocola, L. Galluzzi, J.M. Bravo-San Pedro, et al., Acetyl coenzyme A: A central metabolite and second messenger, Cell Metab. 21 (2015) 805-821.
|
[24] |
J.E. Cronan Jr, G.L. Waldrop, Multi-subunit acetyl-CoA carboxylases, Prog. Lipid Res. 41 (2002) 407-435.
|
[25] |
J.A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Cancer 7 (2007) 763-777.
|
[26] |
A. Jakobsson, R. Westerberg, A. Jacobsson, Fatty acid elongases in mammals: Their regulation and roles in metabolism, Prog. Lipid Res. 45 (2006) 237-249.
|
[27] |
E. Currie, A. Schulze, R. Zechner, et al., Cellular fatty acid metabolism and cancer, Cell Metab. 18 (2013) 153-161.
|
[28] |
W. Shao, P.J. Espenshade, Expanding roles for SREBP in metabolism, Cell Metab. 16 (2012) 414-419.
|
[29] |
M. Febbraio, D.P. Hajjar, R.L. Silverstein, CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism, J. Clin. Invest. 108 (2001) 785-791.
|
[30] |
M. Kazantzis, A. Stahl, Fatty acid transport proteins, implications in physiology and disease, Biochim. Biophys. Acta 1821 (2012) 852-857.
|
[31] |
M. Furuhashi, G.S. Hotamisligil, Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets, Nat. Rev. Drug Discov. 7 (2008) 489-503.
|
[32] |
E.P. Kennedy, S.B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipides, J. Biol. Chem. 222 (1956) 193-214.
|
[33] |
S.H. Law, M.L. Chan, G.K. Marathe, et al., An updated review of lysophosphatidylcholine metabolism in human diseases, Int. J. Mol. Sci. 20 (2019), 1149.
|
[34] |
S.C. Spaulding, W.B. Bollag, The role of lipid second messengers in aldosterone synthesis and secretion, J. Lipid Res. 63 (2022), 100191.
|
[35] |
P.K. Anand, Lipids, inflammasomes, metabolism, and disease, Immunol. Rev. 297 (2020) 108-122.
|
[36] |
C. Cheng, F. Geng, X. Cheng, et al., Lipid metabolism reprogramming and its potential targets in cancer, Cancer Commun. (Lond) 38 (2018), 27.
|
[37] |
W. He, Q. Li, X. Li, Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer, Biochim. Biophys. Acta Rev. Cancer 1878 (2023), 188837.
|
[38] |
K. Bensaad, E. Favaro, C.A. Lewis, et al., Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation, Cell Rep. 9 (2014) 349-365.
|
[39] |
N. Koundouros, G. Poulogiannis, Reprogramming of fatty acid metabolism in cancer, Br. J. Cancer 122 (2020) 4-22.
|
[40] |
A. Ladanyi, A. Mukherjee, H.A. Kenny, et al., Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis, Oncogene 37 (2018) 2285-2301.
|
[41] |
Z. Wang, H.G. Park, D.H. Wang, et al., Fatty acid desaturase 2 (FADS2) but not FADS1 desaturates branched chain and odd chain saturated fatty acids, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865 (2020), 158572.
|
[42] |
K. Vriens, S. Christen, S. Parik, et al., Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity, Nature 566 (2019) 403-406.
|
[43] |
P.P. Wang, X. Song, X.K. Zhao, et al., Serum metabolomic profiling reveals biomarkers for early detection and prognosis of esophageal squamous cell carcinoma, Front. Oncol. 12 (2022), 790933.
|
[44] |
Q. Zang, C. Sun, X. Chu, et al., Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures, Anal. Chim. Acta 1155 (2021), 338342.
|
[45] |
D. Ackerman, M.C. Simon, Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment, Trends Cell Biol. 24 (2014) 472-478.
|
[46] |
C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 52-57.
|
[47] |
E. Barbayianni, E. Kaffe, V. Aidinis, et al., Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer, Prog. Lipid Res. 58 (2015) 76-96.
|
[48] |
B. Wang, P. Tontonoz, Phospholipid remodeling in physiology and disease, Annu. Rev. Physiol. 81 (2019) 165-188.
|
[49] |
S.Z. Bathaie, M. Ashrafi, M. Azizian, et al., Mevalonate pathway and human cancers, Curr. Mol. Pharmacol. 10 (2017) 77-85.
|
[50] |
F. Perrone, R. Minari, M. Bersanelli, et al., The prognostic role of high blood cholesterol in advanced cancer patients treated with immune checkpoint inhibitors, J. Immunother. 43 (2020) 196-203.
|
[51] |
L. Guo, X. Liu, C. Zhao, et al., iSegMSI: An interactive strategy to improve spatial segmentation of mass spectrometry imaging data, Anal. Chem. 94 (2022) 14522-14529.
|
[52] |
L. Guo, J. Dong, X. Xu, et al., Divide and conquer: A flexible deep learning strategy for exploring metabolic heterogeneity from mass spectrometry imaging data, Anal. Chem. 95 (2023) 1924-1932.
|
[53] |
T. Hu, J.L. Zhang, Mass-spectrometry-based lipidomics, J. Sep. Sci. 41 (2018) 351-372.
|
[54] |
J. Aldana, A. Romero-Otero, M.P. Cala, Exploring the lipidome: Current lipid extraction techniques for mass spectrometry analysis, Metabolites 10 (2020), 231.
|
[55] |
J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226 (1957) 497-509.
|
[56] |
T. Zhang, S. Chen, I. Syed, et al., A LC-MS-based workflow for measurement of branched fatty acid esters of hydroxy fatty acids, Nat. Protoc. 11 (2016) 747-763.
|
[57] |
V. Matyash, G. Liebisch, T.V. Kurzchalia, et al., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics, J. Lipid Res. 49 (2008) 1137-1146.
|
[58] |
L. Lofgren, G.B. Forsberg, M. Stahlman, The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue, Sci. Rep. 6 (2016), 27688.
|
[59] |
M.S. Silva, A.P.M. Tavares, H.D. de Faria, et al., Molecularly imprinted solid phase extraction aiding the analysis of disease biomarkers, Crit. Rev. Anal. Chem. 52 (2022) 933-948.
|
[60] |
Y.H. Rustam, G.E. Reid, Analytical challenges and recent advances in mass spectrometry based lipidomics, Anal. Chem. 90 (2018) 374-397.
|
[61] |
C. Hinz, S. Liggi, J.L. Griffin, The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics, Curr. Opin. Chem. Biol. 42 (2018) 42-50.
|
[62] |
H.H. Chiu, C.H. Kuo, Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples, J. Food Drug Anal. 28 (2020) 60-73.
|
[63] |
H.H. Son, J.Y. Moon, H.S. Seo, et al., High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina, J. Lipid Res. 55 (2014) 155-162.
|
[64] |
Y. Yang, Y. Liang, J. Yang, et al., Advances of supercritical fluid chromatography in lipid profiling, J. Pharm. Anal. 9 (2019) 1-8.
|
[65] |
H.F. Avela, H. Siren, Advances in lipidomics, Clin. Chim. Acta 510 (2020) 123-141.
|
[66] |
K. Yang, H. Cheng, R.W. Gross, et al., Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics, Anal. Chem. 81 (2009) 4356-4368.
|
[67] |
P. Yan, Y. Wei, M. Wang, et al., Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice, Food Funct. 13 (2022) 4714-4733.
|
[68] |
R. Matthiesen, C. Lauber, J.L. Sampaio, et al., Shotgun mass spectrometry-based lipid profiling identifies and distinguishes between chronic inflammatory diseases, EBioMedicine 70 (2021), 103504.
|
[69] |
L. Xu, Y. Chen, A. Feng, et al., Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology, Environ. Res. 232 (2023), 116389.
|
[70] |
A. Hoji, R. Kumar, J.E. Gern, et al., Cord blood sphingolipids are associated with atopic dermatitis and wheeze in the first year of life, J. Allergy Clin. Immunol. Glob. 1 (2022) 162-171.
|
[71] |
N. Sharma, M. Yadav, G. Tripathi, et al., Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder, Hepatology 76 (2022) 920-935.
|
[72] |
Y. Sun, B. Liu, Y. Chen, et al., Multi-omics prognostic signatures based on lipid metabolism for colorectal cancer, Front. Cell Dev. Biol. 9 (2021), 811957.
|
[73] |
N. Hoffmann, G. Mayer, C. Has, et al., A current encyclopedia of bioinformatics tools, data formats and resources for mass spectrometry lipidomics, Metabolites 12 (2022), 584.
|
[74] |
A. Mohamed, J. Molendijk, M.M. Hill, Lipidr: A software tool for data mining and analysis of lipidomics datasets, J. Proteome Res. 19 (2020) 2890-2897.
|
[75] |
A. Mohamed, M.M. Hill, LipidSuite: Interactive web server for lipidomics differential and enrichment analysis, Nucleic Acids Res. 49 (2021) W346-W351.
|
[76] |
Z. Pang, J. Chong, G. Zhou, et al., MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights, Nucleic Acids Res. 49 (2021) W388-W396.
|
[77] |
D. Wolrab, R. Jirasko, E. Cifkova, et al., Lipidomic profiling of human serum enables detection of pancreatic cancer, Nat. Commun. 13 (2022), 124.
|
[78] |
C. Zhao, L. Guo, J. Dong, et al., Mass spectrometry imaging-based multi-modal technique: Next-generation of biochemical analysis strategy, Innovation (Camb) 2 (2021), 100151.
|
[79] |
C. Zhao, Z. Cai, Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism, Mass Spectrom. Rev. 41 (2022) 469-487.
|
[80] |
C. Hu, W. Luo, J. Xu, et al., Recognition and avoidance of ion source-generated artifacts in lipidomics analysis, Mass Spectrom. Rev. 41 (2022) 15-31.
|
[81] |
J. He, C. Sun, T. Li, et al., A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology, Adv. Sci. (Weinh) 5 (2018), 1800250.
|
[82] |
J.Y. Han, H. Permentier, R. Bischoff, et al., Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge, Trac Trends Anal. Chem. 112 (2019) 13-28.
|
[83] |
K. Eberhardt, C. Stiebing, C. Matthaus, et al., Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update, Expert Rev. Mol. Diagn. 15 (2015) 773-787.
|
[84] |
S. Egoshi, K. Dodo, M. Sodeoka, Deuterium Raman imaging for lipid analysis, Curr. Opin. Chem. Biol. 70 (2022), 102181.
|
[85] |
M. Yao, M. Vaithiyanathan, N.L. Allbritton, Analytical techniques for single-cell biochemical assays of lipids, Annu. Rev. Biomed. Eng. 25 (2023) 281-309.
|
[86] |
A.S. Klymchenko, Fluorescent probes for lipid membranes: From the cell surface to organelles, Acc. Chem. Res. 56 (2023) 1-12.
|
[87] |
M.T. Snaebjornsson, S. Janaki-Raman, A. Schulze, Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer, Cell Metab. 31 (2020) 62-76.
|
[88] |
F. Turati, I. Tramacere, C. La Vecchia, et al., A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma, Ann. Oncol. 24 (2013) 609-617.
|
[89] |
S. Ma, B. Zhou, Q. Yang, et al., A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma, Cancer Res. 81 (2021) 1216-1229.
|
[90] |
C. Rogerson, E. Britton, S. Withey, et al., Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state, Genome Res. 29 (2019) 723-736.
|
[91] |
C. Rogerson, S. Ogden, E. Britton, et al., Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma, Elife 9 (2020), e57189.
|
[92] |
H. Zhang, C. Zhao, Q. Liu, et al., Dysregulation of fatty acid metabolism associated with esophageal inflammation of ICR mice induced by nitrosamines exposure, Environ. Pollut. 297 (2022), 118680.
|
[93] |
C.N. Serhan, Pro-resolving lipid mediators are leads for resolution physiology, Nature 510 (2014) 92-101.
|
[94] |
H. Zhang, C. Zhao, Y. Zhang, et al., Multi-omics analysis revealed NMBA induced esophageal carcinoma tumorigenesis via regulating PPARα signaling pathway, Environ. Pollut. 324 (2023), 121369.
|
[95] |
J. Molendijk, C.M. Kolka, H. Cairns, et al., Elevation of fatty acid desaturase 2 in esophageal adenocarcinoma increases polyunsaturated lipids and may exacerbate bile acid-induced DNA damage, Clin. Transl. Med. 12 (2022), e810.
|
[96] |
T. Yoshida, T. Yokobori, H. Saito, et al., CD36 expression is associated with cancer aggressiveness and energy source in esophageal squamous cell carcinoma, Ann. Surg. Oncol. 28 (2021) 1217-1227.
|
[97] |
J. Wang, R. Ling, Y. Zhou, et al., SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway, Oncol. Lett. 20 (2020) 2855-2869.
|
[98] |
G.C. Zhang, X.N. Yu, H.Y. Guo, et al., PRP19 enhances esophageal squamous cell carcinoma progression by reprogramming SREBF1-dependent fatty acid metabolism, Cancer Res. 83 (2023) 521-537.
|
[99] |
T. Song, Y. Yang, H. Wei, et al., Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation, Nucleic Acids Res. 47 (2019) 6130-6144.
|
[100] |
X. Deng, R. Su, H. Weng, et al., RNA N6-methyladenosine modification in cancers: Current status and perspectives, Cell Res. 28 (2018) 507-517.
|
[101] |
X. Duan, L. Yang, L. Wang, et al., m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer, Cell Biosci. 12 (2022), 60.
|
[102] |
N.L. Alderson, B.M. Rembiesa, M.D. Walla, et al., The human FA2H gene encodes a fatty acid 2-hydroxylase, J. Biol. Chem. 279 (2004) 48562-48568.
|
[103] |
R. Liu, K. Cao, Y. Tang, et al., C16:0 ceramide effect on melanoma malignant behavior and glycolysis depends on its intracellular or exogenous location, Am. J. Transl. Res. 12 (2020) 1123-1135.
|
[104] |
X. Zhou, F. Huang, G. Ma, et al., Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis, Signal Transduct. Target. Ther. 7 (2022), 370.
|
[105] |
M. Tao, J. Luo, T. Gu, et al., LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma, Cell Death Dis. 12 (2021), 845.
|
[106] |
J. Xu, Y. Chen, R. Zhang, et al., Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers, Mol. Cell. Proteom. 12 (2013) 1306-1318.
|
[107] |
Z.J. Zhu, Z. Qi, J. Zhang, et al., Untargeted metabolomics analysis of esophageal squamous cell carcinoma discovers dysregulated metabolic pathways and potential diagnostic biomarkers, J. Cancer 11 (2020) 3944-3954.
|
[108] |
H. Li, C. Zhang, M. Zhang, et al., Angustoline inhibited esophageal tumors through regulating LKB1/AMPK/ELAVL1/LPACT2 pathway and phospholipid remodeling, Front. Oncol. 10 (2020), 1094.
|
[109] |
M.L. Edin, C. Duval, G. Zhang, et al., Role of linoleic acid-derived oxylipins in cancer, Cancer Metastasis Rev. 39 (2020) 581-582.
|
[110] |
T. Yang, R. Hui, J. Nouws, et al., Untargeted metabolomics analysis of esophageal squamous cell cancer progression, J. Transl. Med. 20 (2022), 127.
|
[111] |
N. Abbassi-Ghadi, S.S. Antonowicz, J.S. McKenzie, et al., De novo lipogenesis alters the phospholipidome of esophageal adenocarcinoma, Cancer Res. 80 (2020) 2764-2774.
|
[112] |
N. Abbassi-Ghadi, O. Golf, S. Kumar, et al., Imaging of esophageal lymph node metastases by desorption electrospray ionization mass spectrometry, Cancer Res. 76 (2016) 5647-5656.
|
[113] |
A. Buck, V.M. Prade, T. Kunzke, et al., Metabolic tumor constitution is superior to tumor regression grading for evaluating response to neoadjuvant therapy of esophageal adenocarcinoma patients, J. Pathol. 256 (2022) 202-213.
|
[114] |
L. Mi, Y. Zhou, D. Wu, et al., ACSS2/AMPK/PCNA pathway-driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress, Mol. Med. Rep. 20 (2019) 5286-5296.
|
[115] |
H. Luo, X. Wang, S. Song, et al., Targeting stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic cell death in esophageal squamous cell carcinoma, Oncoimmunology 11 (2022), 2101769.
|
[116] |
F. Shao, X. Bian, H. Jiang, et al., Association of phosphoenolpyruvate carboxykinase 1 protein kinase activity-dependent sterol regulatory element-binding protein 1 activation with prognosis of oesophageal carcinoma, Eur. J. Cancer 142 (2021) 123-131.
|
[117] |
W. Chang, Q. Luo, X. Wu, et al., OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis, Cell Rep. 41 (2022), 111561.
|
[118] |
Q. Zhu, L. Huang, Q. Yang, et al., Metabolomic analysis of exosomal-markers in esophageal squamous cell carcinoma, Nanoscale 13 (2021) 16457-16464.
|
[119] |
R. Xu, A. Rai, M. Chen, et al., Extracellular vesicles in cancer - implications for future improvements in cancer care, Nat. Rev. Clin. Oncol. 15 (2018) 617-638.
|
[120] |
T.C. Johnstone, K. Suntharalingam, S.J. Lippard, The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs, Chem. Rev. 116 (2016) 3436-3486.
|
[121] |
J. Li, D. Cheng, M. Zhu, et al., OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer, Theranostics 9 (2019) 179-195.
|
[122] |
Z. Zhang, J. Du, S. Wang, et al., OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ, Mol. Cell 73 (2019) 7-21.e7.
|
[123] |
S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: An iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072.
|
[124] |
X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
|
[125] |
G. Lei, Y. Zhang, P. Koppula, et al., The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression, Cell Res. 30 (2020) 146-162.
|
[126] |
D. Li, Y. Li, The interaction between ferroptosis and lipid metabolism in cancer, Signal Transduct. Target. Ther. 5 (2020), 108.
|
[127] |
J.M. Ubellacker, A. Tasdogan, V. Ramesh, et al., Lymph protects metastasizing melanoma cells from ferroptosis, Nature 585 (2020) 113-118.
|
[128] |
W. Jiang, J.W. Hu, X.R. He, et al., Statins: A repurposed drug to fight cancer, J. Exp. Clin. Cancer Res. 40 (2021), 241.
|
[129] |
Y. Jin, K. Xu, Q. Chen, et al., Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway, Exp. Cell Res. 362 (2018) 362-369.
|
[130] |
Y. Chen, L.B. Li, J. Zhang, et al., Simvastatin, but not pravastatin, inhibits the proliferation of esophageal adenocarcinoma and squamous cell carcinoma cells: A cell-molecular study, Lipids Health Dis. 17 (2018), 290.
|
[131] |
R. Ventura, K. Mordec, J. Waszczuk, et al., Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression, EBioMedicine 2 (2015) 808-824.
|
[132] |
Y. Wang, W. Yu, S. Li, et al., Acetyl-CoA carboxylases and diseases, Front. Oncol. 12 (2022), 836058.
|
[133] |
C.M. Huang, C.S. Huang, T.N. Hsu, et al., Disruption of cancer metabolic SREBP1/miR-142-5p suppresses epithelial-mesenchymal transition and stemness in esophageal carcinoma, Cells 9 (2019), 7.
|
[134] |
Y. Jun, Z. Tang, C. Luo, et al., Leukocyte-mediated combined targeted chemo and gene therapy for esophageal cancer, ACS Appl. Mater. Interfaces 12 (2020) 47330-47341.
|