Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Ruidi Jiao, Wei Jiang, Kunpeng Xu, Qian Luo, Luhua Wang, Chao Zhao. Lipid metabolism analysis in esophageal cancer and associated drug discovery[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 1-15. doi: 10.1016/j.jpha.2023.08.019
Citation: Ruidi Jiao, Wei Jiang, Kunpeng Xu, Qian Luo, Luhua Wang, Chao Zhao. Lipid metabolism analysis in esophageal cancer and associated drug discovery[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 1-15. doi: 10.1016/j.jpha.2023.08.019

Lipid metabolism analysis in esophageal cancer and associated drug discovery

doi: 10.1016/j.jpha.2023.08.019
Funds:

The work was supported by the National Natural Science Foundation of China (Grant Nos.: 22176195 and 82127801), National Key R&D Program of China (Grant No.: 2022YFF0705003), the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression (Grant No.: ZDSYS20220606100606014), the Guangdong Province Zhu Jiang Talents Plan, China (Grant No.: 2021QN02Y028), the Natural Science Foundation of Guangdong Province, China (Grant No.: 2021A1515010171), the Key Program of Fundamental Research in Shenzhen, China (Grant No.: JCYJ20210324115811031), the Sustainable Development Program of Shenzhen, China (Grant No.: KCXFZ202002011008124), and the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen (Grant Nos.: SZ2020ZD002 and SZ2020QN005).

  • Received Date: Apr. 03, 2023
  • Accepted Date: Aug. 29, 2023
  • Rev Recd Date: Jul. 27, 2023
  • Publish Date: Sep. 01, 2023
  • Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis. It is still being explored in depth due to its complex molecular mechanisms of occurrence and development. Lipids play a crucial role in cells by participating in energy supply, biofilm formation, and signal transduction processes, and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors. More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning, progress, and treatment resistance. The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism. Therefore, we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer, and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer, as well as its significance in exploring potential therapeutic targets and biomarkers.
  • loading
  • [1]
    E. Morgan, I. Soerjomataram, H. Rumgay, et al., The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020, Gastroenterology 163 (2022) 649-658.e2.
    [2]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
    [3]
    H. Zeng, X. Ran, L. An, et al., Disparities in stage at diagnosis for five common cancers in China: A multicentre, hospital-based, observational study, Lancet Public Health 6 (2021) e877-e887.
    [4]
    B.M. Eyck, J.J.B. van Lanschot, M.C.C.M. Hulshof, et al., Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial, J. Clin. Oncol. 39 (2021) 1995-2004.
    [5]
    M.A. Shah, E.B. Kennedy, D.V. Catenacci, et al., Treatment of locally advanced esophageal carcinoma: ASCO guideline, J. Clin. Oncol. 38 (2020) 2677-2694.
    [6]
    J.M. Sun, L. Shen, M.A. Shah, et al., Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (keynote-590): A randomised, placebo-controlled, phase 3 study, Lancet 398 (2021) 759-771.
    [7]
    Y.Y. Janjigian, K. Shitara, M. Moehler, et al., First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial, Lancet 398 (2021) 27-40.
    [8]
    E.C. Smyth, J. Lagergren, R.C. Fitzgerald, et al., Oesophageal cancer, Nat. Rev. Dis. Primers 3 (2017), 17048.
    [9]
    L.A. Broadfield, A.A. Pane, A. Talebi, et al., Lipid metabolism in cancer: New perspectives and emerging mechanisms, Dev. Cell 56 (2021) 1363-1393.
    [10]
    T. Petan, Lipid droplets in cancer, Rev. Physiol. Biochem. Pharmacol. 185 (2023) 53-86.
    [11]
    H. Yoon, J.L. Shaw, M.C. Haigis, et al., Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity, Mol. Cell 81 (2021) 3708-3730.
    [12]
    X. Han, Lipidomics for studying metabolism, Nat. Rev. Endocrinol. 12 (2016) 668-679.
    [13]
    M.A. Alves, S. Lamichhane, A. Dickens, et al., Systems biology approaches to study lipidomes in health and disease, Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1866 (2021), 158857.
    [14]
    C.W. Ko, J. Qu, D.D. Black, et al., Regulation of intestinal lipid metabolism: Current concepts and relevance to disease, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 169-183.
    [15]
    A.L. Mellinger, D.C. Muddiman, M.P. Gamcsik, Highlighting functional mass spectrometry imaging methods in bioanalysis, J. Proteome Res. 21 (2022) 1800-1807.
    [16]
    X. Bian, R. Liu, Y. Meng, et al., Lipid metabolism and cancer, J. Exp. Med. 218 (2021), e20201606.
    [17]
    S.M. Lam, H. Tian, G. Shui, Lipidomics, en route to accurate quantitation, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (2017) 752-761.
    [18]
    X. Guo, W. Cao, X. Fan, et al., Tandem mass spectrometry imaging enables high definition for mapping lipids in tissues, Angew. Chem. Int. Ed. Engl. 62 (2023), e202214804.
    [19]
    E. Fahy, S. Subramaniam, R.C. Murphy, et al., Update of the LIPID MAPS comprehensive classification system for lipids, J. Lipid Res. 50 (2009) S9-S14.
    [20]
    G. Liebisch, E. Fahy, J. Aoki, et al., Update on LIPID MAPS classification, nomenclature, and shorthand notation for ms-derived lipid structures, J. Lipid Res. 61 (2020) 1539-1555.
    [21]
    M. Masoodi, M. Eiden, A. Koulman, et al., Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks, Anal. Chem. 82 (2010) 8176-8185.
    [22]
    F.R. Greten, S.I. Grivennikov, Inflammation and cancer: Triggers, mechanisms, and consequences, Immunity 51 (2019) 27-41.
    [23]
    F. Pietrocola, L. Galluzzi, J.M. Bravo-San Pedro, et al., Acetyl coenzyme A: A central metabolite and second messenger, Cell Metab. 21 (2015) 805-821.
    [24]
    J.E. Cronan Jr, G.L. Waldrop, Multi-subunit acetyl-CoA carboxylases, Prog. Lipid Res. 41 (2002) 407-435.
    [25]
    J.A. Menendez, R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Cancer 7 (2007) 763-777.
    [26]
    A. Jakobsson, R. Westerberg, A. Jacobsson, Fatty acid elongases in mammals: Their regulation and roles in metabolism, Prog. Lipid Res. 45 (2006) 237-249.
    [27]
    E. Currie, A. Schulze, R. Zechner, et al., Cellular fatty acid metabolism and cancer, Cell Metab. 18 (2013) 153-161.
    [28]
    W. Shao, P.J. Espenshade, Expanding roles for SREBP in metabolism, Cell Metab. 16 (2012) 414-419.
    [29]
    M. Febbraio, D.P. Hajjar, R.L. Silverstein, CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism, J. Clin. Invest. 108 (2001) 785-791.
    [30]
    M. Kazantzis, A. Stahl, Fatty acid transport proteins, implications in physiology and disease, Biochim. Biophys. Acta 1821 (2012) 852-857.
    [31]
    M. Furuhashi, G.S. Hotamisligil, Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets, Nat. Rev. Drug Discov. 7 (2008) 489-503.
    [32]
    E.P. Kennedy, S.B. Weiss, The function of cytidine coenzymes in the biosynthesis of phospholipides, J. Biol. Chem. 222 (1956) 193-214.
    [33]
    S.H. Law, M.L. Chan, G.K. Marathe, et al., An updated review of lysophosphatidylcholine metabolism in human diseases, Int. J. Mol. Sci. 20 (2019), 1149.
    [34]
    S.C. Spaulding, W.B. Bollag, The role of lipid second messengers in aldosterone synthesis and secretion, J. Lipid Res. 63 (2022), 100191.
    [35]
    P.K. Anand, Lipids, inflammasomes, metabolism, and disease, Immunol. Rev. 297 (2020) 108-122.
    [36]
    C. Cheng, F. Geng, X. Cheng, et al., Lipid metabolism reprogramming and its potential targets in cancer, Cancer Commun. (Lond) 38 (2018), 27.
    [37]
    W. He, Q. Li, X. Li, Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer, Biochim. Biophys. Acta Rev. Cancer 1878 (2023), 188837.
    [38]
    K. Bensaad, E. Favaro, C.A. Lewis, et al., Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation, Cell Rep. 9 (2014) 349-365.
    [39]
    N. Koundouros, G. Poulogiannis, Reprogramming of fatty acid metabolism in cancer, Br. J. Cancer 122 (2020) 4-22.
    [40]
    A. Ladanyi, A. Mukherjee, H.A. Kenny, et al., Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis, Oncogene 37 (2018) 2285-2301.
    [41]
    Z. Wang, H.G. Park, D.H. Wang, et al., Fatty acid desaturase 2 (FADS2) but not FADS1 desaturates branched chain and odd chain saturated fatty acids, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865 (2020), 158572.
    [42]
    K. Vriens, S. Christen, S. Parik, et al., Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity, Nature 566 (2019) 403-406.
    [43]
    P.P. Wang, X. Song, X.K. Zhao, et al., Serum metabolomic profiling reveals biomarkers for early detection and prognosis of esophageal squamous cell carcinoma, Front. Oncol. 12 (2022), 790933.
    [44]
    Q. Zang, C. Sun, X. Chu, et al., Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures, Anal. Chim. Acta 1155 (2021), 338342.
    [45]
    D. Ackerman, M.C. Simon, Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment, Trends Cell Biol. 24 (2014) 472-478.
    [46]
    C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 52-57.
    [47]
    E. Barbayianni, E. Kaffe, V. Aidinis, et al., Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer, Prog. Lipid Res. 58 (2015) 76-96.
    [48]
    B. Wang, P. Tontonoz, Phospholipid remodeling in physiology and disease, Annu. Rev. Physiol. 81 (2019) 165-188.
    [49]
    S.Z. Bathaie, M. Ashrafi, M. Azizian, et al., Mevalonate pathway and human cancers, Curr. Mol. Pharmacol. 10 (2017) 77-85.
    [50]
    F. Perrone, R. Minari, M. Bersanelli, et al., The prognostic role of high blood cholesterol in advanced cancer patients treated with immune checkpoint inhibitors, J. Immunother. 43 (2020) 196-203.
    [51]
    L. Guo, X. Liu, C. Zhao, et al., iSegMSI: An interactive strategy to improve spatial segmentation of mass spectrometry imaging data, Anal. Chem. 94 (2022) 14522-14529.
    [52]
    L. Guo, J. Dong, X. Xu, et al., Divide and conquer: A flexible deep learning strategy for exploring metabolic heterogeneity from mass spectrometry imaging data, Anal. Chem. 95 (2023) 1924-1932.
    [53]
    T. Hu, J.L. Zhang, Mass-spectrometry-based lipidomics, J. Sep. Sci. 41 (2018) 351-372.
    [54]
    J. Aldana, A. Romero-Otero, M.P. Cala, Exploring the lipidome: Current lipid extraction techniques for mass spectrometry analysis, Metabolites 10 (2020), 231.
    [55]
    J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226 (1957) 497-509.
    [56]
    T. Zhang, S. Chen, I. Syed, et al., A LC-MS-based workflow for measurement of branched fatty acid esters of hydroxy fatty acids, Nat. Protoc. 11 (2016) 747-763.
    [57]
    V. Matyash, G. Liebisch, T.V. Kurzchalia, et al., Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics, J. Lipid Res. 49 (2008) 1137-1146.
    [58]
    L. Lofgren, G.B. Forsberg, M. Stahlman, The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue, Sci. Rep. 6 (2016), 27688.
    [59]
    M.S. Silva, A.P.M. Tavares, H.D. de Faria, et al., Molecularly imprinted solid phase extraction aiding the analysis of disease biomarkers, Crit. Rev. Anal. Chem. 52 (2022) 933-948.
    [60]
    Y.H. Rustam, G.E. Reid, Analytical challenges and recent advances in mass spectrometry based lipidomics, Anal. Chem. 90 (2018) 374-397.
    [61]
    C. Hinz, S. Liggi, J.L. Griffin, The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics, Curr. Opin. Chem. Biol. 42 (2018) 42-50.
    [62]
    H.H. Chiu, C.H. Kuo, Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples, J. Food Drug Anal. 28 (2020) 60-73.
    [63]
    H.H. Son, J.Y. Moon, H.S. Seo, et al., High-temperature GC-MS-based serum cholesterol signatures may reveal sex differences in vasospastic angina, J. Lipid Res. 55 (2014) 155-162.
    [64]
    Y. Yang, Y. Liang, J. Yang, et al., Advances of supercritical fluid chromatography in lipid profiling, J. Pharm. Anal. 9 (2019) 1-8.
    [65]
    H.F. Avela, H. Siren, Advances in lipidomics, Clin. Chim. Acta 510 (2020) 123-141.
    [66]
    K. Yang, H. Cheng, R.W. Gross, et al., Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics, Anal. Chem. 81 (2009) 4356-4368.
    [67]
    P. Yan, Y. Wei, M. Wang, et al., Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice, Food Funct. 13 (2022) 4714-4733.
    [68]
    R. Matthiesen, C. Lauber, J.L. Sampaio, et al., Shotgun mass spectrometry-based lipid profiling identifies and distinguishes between chronic inflammatory diseases, EBioMedicine 70 (2021), 103504.
    [69]
    L. Xu, Y. Chen, A. Feng, et al., Study on detection method of microplastics in farmland soil based on hyperspectral imaging technology, Environ. Res. 232 (2023), 116389.
    [70]
    A. Hoji, R. Kumar, J.E. Gern, et al., Cord blood sphingolipids are associated with atopic dermatitis and wheeze in the first year of life, J. Allergy Clin. Immunol. Glob. 1 (2022) 162-171.
    [71]
    N. Sharma, M. Yadav, G. Tripathi, et al., Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder, Hepatology 76 (2022) 920-935.
    [72]
    Y. Sun, B. Liu, Y. Chen, et al., Multi-omics prognostic signatures based on lipid metabolism for colorectal cancer, Front. Cell Dev. Biol. 9 (2021), 811957.
    [73]
    N. Hoffmann, G. Mayer, C. Has, et al., A current encyclopedia of bioinformatics tools, data formats and resources for mass spectrometry lipidomics, Metabolites 12 (2022), 584.
    [74]
    A. Mohamed, J. Molendijk, M.M. Hill, Lipidr: A software tool for data mining and analysis of lipidomics datasets, J. Proteome Res. 19 (2020) 2890-2897.
    [75]
    A. Mohamed, M.M. Hill, LipidSuite: Interactive web server for lipidomics differential and enrichment analysis, Nucleic Acids Res. 49 (2021) W346-W351.
    [76]
    Z. Pang, J. Chong, G. Zhou, et al., MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights, Nucleic Acids Res. 49 (2021) W388-W396.
    [77]
    D. Wolrab, R. Jirasko, E. Cifkova, et al., Lipidomic profiling of human serum enables detection of pancreatic cancer, Nat. Commun. 13 (2022), 124.
    [78]
    C. Zhao, L. Guo, J. Dong, et al., Mass spectrometry imaging-based multi-modal technique: Next-generation of biochemical analysis strategy, Innovation (Camb) 2 (2021), 100151.
    [79]
    C. Zhao, Z. Cai, Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism, Mass Spectrom. Rev. 41 (2022) 469-487.
    [80]
    C. Hu, W. Luo, J. Xu, et al., Recognition and avoidance of ion source-generated artifacts in lipidomics analysis, Mass Spectrom. Rev. 41 (2022) 15-31.
    [81]
    J. He, C. Sun, T. Li, et al., A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology, Adv. Sci. (Weinh) 5 (2018), 1800250.
    [82]
    J.Y. Han, H. Permentier, R. Bischoff, et al., Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge, Trac Trends Anal. Chem. 112 (2019) 13-28.
    [83]
    K. Eberhardt, C. Stiebing, C. Matthaus, et al., Advantages and limitations of Raman spectroscopy for molecular diagnostics: An update, Expert Rev. Mol. Diagn. 15 (2015) 773-787.
    [84]
    S. Egoshi, K. Dodo, M. Sodeoka, Deuterium Raman imaging for lipid analysis, Curr. Opin. Chem. Biol. 70 (2022), 102181.
    [85]
    M. Yao, M. Vaithiyanathan, N.L. Allbritton, Analytical techniques for single-cell biochemical assays of lipids, Annu. Rev. Biomed. Eng. 25 (2023) 281-309.
    [86]
    A.S. Klymchenko, Fluorescent probes for lipid membranes: From the cell surface to organelles, Acc. Chem. Res. 56 (2023) 1-12.
    [87]
    M.T. Snaebjornsson, S. Janaki-Raman, A. Schulze, Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer, Cell Metab. 31 (2020) 62-76.
    [88]
    F. Turati, I. Tramacere, C. La Vecchia, et al., A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma, Ann. Oncol. 24 (2013) 609-617.
    [89]
    S. Ma, B. Zhou, Q. Yang, et al., A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma, Cancer Res. 81 (2021) 1216-1229.
    [90]
    C. Rogerson, E. Britton, S. Withey, et al., Identification of a primitive intestinal transcription factor network shared between esophageal adenocarcinoma and its precancerous precursor state, Genome Res. 29 (2019) 723-736.
    [91]
    C. Rogerson, S. Ogden, E. Britton, et al., Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma, Elife 9 (2020), e57189.
    [92]
    H. Zhang, C. Zhao, Q. Liu, et al., Dysregulation of fatty acid metabolism associated with esophageal inflammation of ICR mice induced by nitrosamines exposure, Environ. Pollut. 297 (2022), 118680.
    [93]
    C.N. Serhan, Pro-resolving lipid mediators are leads for resolution physiology, Nature 510 (2014) 92-101.
    [94]
    H. Zhang, C. Zhao, Y. Zhang, et al., Multi-omics analysis revealed NMBA induced esophageal carcinoma tumorigenesis via regulating PPARα signaling pathway, Environ. Pollut. 324 (2023), 121369.
    [95]
    J. Molendijk, C.M. Kolka, H. Cairns, et al., Elevation of fatty acid desaturase 2 in esophageal adenocarcinoma increases polyunsaturated lipids and may exacerbate bile acid-induced DNA damage, Clin. Transl. Med. 12 (2022), e810.
    [96]
    T. Yoshida, T. Yokobori, H. Saito, et al., CD36 expression is associated with cancer aggressiveness and energy source in esophageal squamous cell carcinoma, Ann. Surg. Oncol. 28 (2021) 1217-1227.
    [97]
    J. Wang, R. Ling, Y. Zhou, et al., SREBP1 silencing inhibits the proliferation and motility of human esophageal squamous carcinoma cells via the Wnt/β-catenin signaling pathway, Oncol. Lett. 20 (2020) 2855-2869.
    [98]
    G.C. Zhang, X.N. Yu, H.Y. Guo, et al., PRP19 enhances esophageal squamous cell carcinoma progression by reprogramming SREBF1-dependent fatty acid metabolism, Cancer Res. 83 (2023) 521-537.
    [99]
    T. Song, Y. Yang, H. Wei, et al., Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation, Nucleic Acids Res. 47 (2019) 6130-6144.
    [100]
    X. Deng, R. Su, H. Weng, et al., RNA N6-methyladenosine modification in cancers: Current status and perspectives, Cell Res. 28 (2018) 507-517.
    [101]
    X. Duan, L. Yang, L. Wang, et al., m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer, Cell Biosci. 12 (2022), 60.
    [102]
    N.L. Alderson, B.M. Rembiesa, M.D. Walla, et al., The human FA2H gene encodes a fatty acid 2-hydroxylase, J. Biol. Chem. 279 (2004) 48562-48568.
    [103]
    R. Liu, K. Cao, Y. Tang, et al., C16:0 ceramide effect on melanoma malignant behavior and glycolysis depends on its intracellular or exogenous location, Am. J. Transl. Res. 12 (2020) 1123-1135.
    [104]
    X. Zhou, F. Huang, G. Ma, et al., Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis, Signal Transduct. Target. Ther. 7 (2022), 370.
    [105]
    M. Tao, J. Luo, T. Gu, et al., LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma, Cell Death Dis. 12 (2021), 845.
    [106]
    J. Xu, Y. Chen, R. Zhang, et al., Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers, Mol. Cell. Proteom. 12 (2013) 1306-1318.
    [107]
    Z.J. Zhu, Z. Qi, J. Zhang, et al., Untargeted metabolomics analysis of esophageal squamous cell carcinoma discovers dysregulated metabolic pathways and potential diagnostic biomarkers, J. Cancer 11 (2020) 3944-3954.
    [108]
    H. Li, C. Zhang, M. Zhang, et al., Angustoline inhibited esophageal tumors through regulating LKB1/AMPK/ELAVL1/LPACT2 pathway and phospholipid remodeling, Front. Oncol. 10 (2020), 1094.
    [109]
    M.L. Edin, C. Duval, G. Zhang, et al., Role of linoleic acid-derived oxylipins in cancer, Cancer Metastasis Rev. 39 (2020) 581-582.
    [110]
    T. Yang, R. Hui, J. Nouws, et al., Untargeted metabolomics analysis of esophageal squamous cell cancer progression, J. Transl. Med. 20 (2022), 127.
    [111]
    N. Abbassi-Ghadi, S.S. Antonowicz, J.S. McKenzie, et al., De novo lipogenesis alters the phospholipidome of esophageal adenocarcinoma, Cancer Res. 80 (2020) 2764-2774.
    [112]
    N. Abbassi-Ghadi, O. Golf, S. Kumar, et al., Imaging of esophageal lymph node metastases by desorption electrospray ionization mass spectrometry, Cancer Res. 76 (2016) 5647-5656.
    [113]
    A. Buck, V.M. Prade, T. Kunzke, et al., Metabolic tumor constitution is superior to tumor regression grading for evaluating response to neoadjuvant therapy of esophageal adenocarcinoma patients, J. Pathol. 256 (2022) 202-213.
    [114]
    L. Mi, Y. Zhou, D. Wu, et al., ACSS2/AMPK/PCNA pathway-driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress, Mol. Med. Rep. 20 (2019) 5286-5296.
    [115]
    H. Luo, X. Wang, S. Song, et al., Targeting stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic cell death in esophageal squamous cell carcinoma, Oncoimmunology 11 (2022), 2101769.
    [116]
    F. Shao, X. Bian, H. Jiang, et al., Association of phosphoenolpyruvate carboxykinase 1 protein kinase activity-dependent sterol regulatory element-binding protein 1 activation with prognosis of oesophageal carcinoma, Eur. J. Cancer 142 (2021) 123-131.
    [117]
    W. Chang, Q. Luo, X. Wu, et al., OTUB2 exerts tumor-suppressive roles via STAT1-mediated CALML3 activation and increased phosphatidylserine synthesis, Cell Rep. 41 (2022), 111561.
    [118]
    Q. Zhu, L. Huang, Q. Yang, et al., Metabolomic analysis of exosomal-markers in esophageal squamous cell carcinoma, Nanoscale 13 (2021) 16457-16464.
    [119]
    R. Xu, A. Rai, M. Chen, et al., Extracellular vesicles in cancer - implications for future improvements in cancer care, Nat. Rev. Clin. Oncol. 15 (2018) 617-638.
    [120]
    T.C. Johnstone, K. Suntharalingam, S.J. Lippard, The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs, Chem. Rev. 116 (2016) 3436-3486.
    [121]
    J. Li, D. Cheng, M. Zhu, et al., OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer, Theranostics 9 (2019) 179-195.
    [122]
    Z. Zhang, J. Du, S. Wang, et al., OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ, Mol. Cell 73 (2019) 7-21.e7.
    [123]
    S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, et al., Ferroptosis: An iron-dependent form of nonapoptotic cell death, Cell 149 (2012) 1060-1072.
    [124]
    X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
    [125]
    G. Lei, Y. Zhang, P. Koppula, et al., The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression, Cell Res. 30 (2020) 146-162.
    [126]
    D. Li, Y. Li, The interaction between ferroptosis and lipid metabolism in cancer, Signal Transduct. Target. Ther. 5 (2020), 108.
    [127]
    J.M. Ubellacker, A. Tasdogan, V. Ramesh, et al., Lymph protects metastasizing melanoma cells from ferroptosis, Nature 585 (2020) 113-118.
    [128]
    W. Jiang, J.W. Hu, X.R. He, et al., Statins: A repurposed drug to fight cancer, J. Exp. Clin. Cancer Res. 40 (2021), 241.
    [129]
    Y. Jin, K. Xu, Q. Chen, et al., Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway, Exp. Cell Res. 362 (2018) 362-369.
    [130]
    Y. Chen, L.B. Li, J. Zhang, et al., Simvastatin, but not pravastatin, inhibits the proliferation of esophageal adenocarcinoma and squamous cell carcinoma cells: A cell-molecular study, Lipids Health Dis. 17 (2018), 290.
    [131]
    R. Ventura, K. Mordec, J. Waszczuk, et al., Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression, EBioMedicine 2 (2015) 808-824.
    [132]
    Y. Wang, W. Yu, S. Li, et al., Acetyl-CoA carboxylases and diseases, Front. Oncol. 12 (2022), 836058.
    [133]
    C.M. Huang, C.S. Huang, T.N. Hsu, et al., Disruption of cancer metabolic SREBP1/miR-142-5p suppresses epithelial-mesenchymal transition and stemness in esophageal carcinoma, Cells 9 (2019), 7.
    [134]
    Y. Jun, Z. Tang, C. Luo, et al., Leukocyte-mediated combined targeted chemo and gene therapy for esophageal cancer, ACS Appl. Mater. Interfaces 12 (2020) 47330-47341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (299) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return