Citation: | Yanhua Liu, Xin Zhang, Shu Yang, Zhi Zhou, Lu Tian, Wanfang Li, Jinfeng Wei, Zeper Abliz, Zhonghua Wang. Integrated mass spectrometry imaging reveals spatial-metabolic alteration in diabetic cardiomyopathy and the intervention effects of ferulic acid[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1496-1509. doi: 10.1016/j.jpha.2023.08.011 |
[1] |
J. Bene, K. Hadzsiev, B. Melegh, Role of carnitine and its derivatives in the development and management of type 2 diabetes, Nutr. Diabetes 8 (2018), 8.
|
[2] |
G.E. Gilca, G. Stefanescu, O. Badulescu, et al., Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets, J. Diabetes Res. 2017 (2017) 1-7.
|
[3] |
M. Nakamura, J. Sadoshima, Cardiomyopathy in obesity, insulin resistance and diabetes, J. Physiol. 598 (2020) 2977-2993.
|
[4] |
M. Tate, D. Prakoso, A.M. Willis, et al., Characterising an alternative murine model of diabetic cardiomyopathy, Front. Physiol. 10 (2019), 1395.
|
[5] |
H.Tsutsui, S. Kinugawa, S. Matsushima, Oxidative stress and heart failure, Am. J. Physiol. Heart Circ. Physiol. 301 (2011) H2181-H2190.
|
[6] |
W. Li, M. Yao, R. Wang, et al., Profile of cardiac lipid metabolism in STZ-induced diabetic mice, Lipids Health Dis. 17 (2018), 231.
|
[7] |
E. Anderson, J.L. Durstine, Physical activity, exercise, and chronic diseases: a brief review, Sports. Med. Health. Sci. 1 (2019) 3-10.
|
[8] |
G.D. Lopaschuk, Q.G. Karwi, R. Tian, et al., Cardiac energy metabolism in heart failure, Circ. Res. 128 (2021) 1487-1513.
|
[9] |
C.B. Lietz, E. Gemperline, L. Li, Qualitative and quantitative mass spectrometry imaging of drugs and metabolites, Adv. Drug Deliv. Rev. 65 (2013) 1074-1085.
|
[10] |
H. Jiang, Y. Zhang, Z. Liu, et al., Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines, J. Ethnopharmacol. 284 (2022), 114760.
|
[11] |
J.L. Norris, R.M. Caprioli, Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research, Chem. Rev. 113 (2013) 2309-2342.
|
[12] |
R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 69 (1997) 4751-4760.
|
[13] |
K.Y. Garza, C.L. Feider, D.R. Klein, et al., Desorption electrospray ionization mass spectrometry imaging of proteins directly from biological tissue sections, Anal. Chem. 90 (2018) 7785-7789.
|
[14] |
Y. Li, B. Shrestha, A. Vertes, Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry, Anal. Chem. 79 (2007) 523-532.
|
[15] |
A. Nordstrom, E. Want, T. Northen, et al., Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics, Anal. Chem. 80 (2008) 421-429.
|
[16] |
R. Shroff, L. Rulisek, J. Doubsky, et al., Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics, Proc. Natl. Acad. Sci. U S A 106 (2009) 10092-10096.
|
[17] |
T. Muller, S. Oradu, D.R. Ifa, et al., Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry, Anal. Chem. 83 (2011) 5754-5761.
|
[18] |
K.A. Douglass, A.R. Venter, Protein analysis by desorption electrospray ionization mass spectrometry and related methods, J. Mass Spectrom. 48 (2013) 553-560.
|
[19] |
Y. Zhu, Q. Zang, Z. Luo, et al., An organ-specific metabolite annotation approach for ambient mass spectrometry imaging reveals spatial metabolic alterations of a whole mouse body, Anal. Chem. 94 (2022) 7286-7294.
|
[20] |
V.L. Brown, L. He, Current status and future prospects of mass spectrometry imaging of small molecules. Mass Spectrometry Imaging of Small Molecules, Vol. 1203, Humana Press, New York, 2015, pp 1–7.
|
[21] |
R.F. Menger, W.L. Stutts, D.S. Anbukumar, et al., MALDI mass spectrometric imaging of cardiac tissue following myocardial infarction in a rat coronary artery ligation model, Anal. Chem. 84 (2012) 1117-1125.
|
[22] |
K. Margulis, Z. Zhou, Q. Fang, et al., Combining desorption electrospray ionization mass spectrometry imaging and machine learning for molecular recognition of myocardial infarction, Anal. Chem. 90 (2018) 12198-12206.
|
[23] |
X. Li, J. Wu, F. Xu, et al., Use of ferulic acid in the management of diabetes mellitus and its complications, Molecules 27 (2022), 6010.
|
[24] |
S. Anjali, N.P. Padmakumari Soumya, S. Mondal, et al., Cardioprotective effects of ferulic acid in streptozotocin-induced diabetic rats, Bioact. Compd. Heath. Dis. 5 (2022), 149.
|
[25] |
L. Ye, P. Hu, L. Feng, et al., Protective effects of ferulic acid on metabolic syndrome: a comprehensive review, Molecules 28 (2022), 281.
|
[26] |
H. Liu, R. Chen, J. Wang, et al., 1,5-Diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia, Anal. Chem. 86 (2014) 10114-10121.
|
[27] |
M. Huo, Z. Wang, W. Fu, et al., Spatially resolved metabolomics based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging reveals region-specific metabolic alterations in diabetic encephalopathy, J. Proteome Res. 20 (2021) 3567-3579.
|
[28] |
Z. Wang, W. Fu, M. Huo, et al., Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging, Acta Pharm. Sin. B 11 (2021) 3665-3677.
|
[29] |
D.S. Wishart, Y.D. Feunang, A. Marcu, et al., HMDB 4.0: the human metabolome database for 2018, Nucleic Acids Res. 46 (2018) D608-D617.
|
[30] |
C.A. Smith, G. O'Maille, E.J. Want, et al., METLIN: a metabolite mass spectral database, Ther. Drug Monit. 27 (2005) 747-751.
|
[31] |
M. Sud, E. Fahy, D. Cotter, et al., LMSD: LIPID MAPS structure database, Nucleic Acids Res. 35 (2007) D527-D532.
|
[32] |
P.A. Gorski, D.K. Ceholski, R.J. Hajjar, Altered myocardial calcium cycling and energetics in heart failure: a rational approach for disease treatment, Cell Metab. 21 (2015) 183-194.
|
[33] |
D.J. Hamilton, Mechanisms of disease: is mitochondrial function altered in heart failure? Methodist DeBakey Cardiovasc. J. 9 (2013) 44-48.
|
[34] |
S. Alvarez, T. Vico, V. Vanasco, Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis, Int. J. Biochem. Cell Biol. 81 (2016) 307-314.
|
[35] |
L.J. De Meirleir, M. Brivet, A. Garcia-Cazorla, Disorders of pyruvate metabolism and the tricarboxylic acid cycle. Inborn Metabolic Diseases, Springer, Berlin, 2012, pp. 187–200.
|
[36] |
P. Rustin, A. Munnich, A. Rotig, Succinate dehydrogenase and human diseases: new insights into a well-known enzyme, Eur. J. Hum. Genet. 10 (2002) 289-291.
|
[37] |
K. YuYe, T.O. Yastreb, V. Karpets Yu, et al., Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L., J. Stress Physiol. Biochem. 7 (2011) 154-163.
|
[38] |
H.C. Yoo, Y. Yu, Y. Sung, et al., Glutamine reliance in cell metabolism, Exp. Mol. Med. 52 (2020) 1496-1516.
|
[39] |
G. Marazzi, S. Rosanio, G. Caminiti, et al., The role of amino acids in the modulation of cardiac metabolism during ischemia and heart failure, Curr. Pharm. Des. 14 (2008) 2592-2604.
|
[40] |
F. Triposkiadis, G. Karayannis, G. Giamouzis, et al., The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications, J. Am. Coll. Cardiol. 54 (2009) 1747-1762.
|
[41] |
H. Nakamura, S. Matoba, E. Iwai-Kanai, et al., p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation, Circ. Heart Fail. 5 (2012) 106-115.
|
[42] |
L.Salvado, T. Coll, A.M. Gomez-Foix, et al., Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism, Diabetologia 56 (2013) 1372-1382.
|
[43] |
Y. Wei, D. Wang, F. Topczewski, et al., Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells, Am. J. Physiol. Endocrinol. Metab. 291 (2006) E275-E281.
|
[44] |
R.S. Khan, A. Chokshi, K. Drosatos, et al., Fish oil selectively improves heart function in a mouse model of lipid-induced cardiomyopathy, J. Cardiovasc. Pharmacol. 61 (2013) 345-354.
|
[45] |
L.M. Alaeddine, F. Harb, M. Hamza, et al., Pharmacological regulation of cytochrome P450 metabolites of arachidonic acid attenuates cardiac injury in diabetic rats, Transl. Res. 235 (2021) 85-101.
|
[46] |
X. Liu, J. Gao, J. Chen, et al., Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach, Sci. Rep. 6 (2016), 30785.
|
[47] |
A. Gnoni, S. Longo, G.V. Gnoni, et al., Carnitine in human muscle bioenergetics: can carnitine supplementation improve physical exercise? Molecules 25 (2020), 182.
|
[48] |
N. Longo, M. Frigeni, M. Pasquali, Carnitine transport and fatty acid oxidation, Biochim. Biophys. Acta BBA Mol. Cell Res. 1863 (2016) 2422-2435.
|
[49] |
L.A. Calo, E. Pagnin, P.A. Davis, et al., Antioxidant effect of l-carnitine and its short chain esters, Int. J. Cardiol. 107 (2006) 54-60.
|
[50] |
J.N. van der Veen, S. Lingrell, R.P. da Silva, et al., The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice, Diabetes 63 (2014) 2620-2630.
|
[51] |
X. Yang, J. Liang, L. Ding, et al., Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms, PLoS Genet. 15 (2019), e1008548.
|
[52] |
X. Xu, Z. Luo, Y. He, et al., Application of untargeted lipidomics based on UHPLC-high resolution tandem MS analysis to profile the lipid metabolic disturbances in the heart of diabetic cardiomyopathy mice, J. Pharm. Biomed. Anal. 190 (2020), 113525.
|
[53] |
A. Vecchini, F. Del Rosso, L. Binaglia, et al., Molecular defects in sarcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy, J. Mol. Cell. Cardiol. 32 (2000) 1061-1074.
|
[54] |
E. Ramos-Tovar, P. Muriel, Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver, Antioxidants 9 (2020), 1279.
|
[55] |
P. Cheresh, S.J. Kim, S. Tulasiram, et al., Oxidative stress and pulmonary fibrosis, Biochim. Biophys. Acta BBA Mol. Basis Dis. 1832 (2013) 1028-1040.
|
[56] |
D.G. Hardie, AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function, Genes Dev. 25 (2011) 1895-1908.
|
[57] |
C. Lyons, H. Roche, Nutritional modulation of AMPK-impact upon metabolic-inflammation, Int. J. Mol. Sci. 19 (2018), 3092.
|
[58] |
S. Bhattacharya, Reactive oxygen species and cellular defense system. Free Radic. Hum. Health Dis., Springer, New Delhi, 2015, pp. 17-29.
|
[59] |
F.A. Matough, S.B. Budin, Z.A. Hamid, et al., The role of oxidative stress and antioxidants in diabetic complications, Sultan Qaboos Univ. Med. J. 12(2012)5-18.
|
[60] |
R. Guzun, N. Timohhina, K. Tepp, et al., Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function, Amino Acids 40 (2011) 1333-1348.
|
[61] |
K.S. Kim, D.H. Oh, J.Y. Kim, et al., Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes, Exp. Mol. Med. 44 (2012) 665-673.
|
[62] |
H.J. Pan, Y. Lin, Y.E. Chen, et al., Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: Relation to dysregulated phosphatidylcholine metabolism, Vasc. Pharmacol. 45 (2006) 65-71.
|
[63] |
L. Mandelker, Oxidative stress, free radicals, and cellular damage. Studies on Veterinary Medicine, Humana Press, Totowa, 2011, pp. 1–17.
|
[64] |
Z. Xu, K.P. Patel, G.J. Rozanski, Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats, Am. J. Physiol. Heart Circ. Physiol. 271 (1996) H2190-H2196.
|
[65] |
D.A. Cesario, R. Brar, K. Shivkumar, Alterations in ion channel physiology in diabetic cardiomyopathy, Endocrinol Metab. Clin. N. Am. 35 (2006) 601-610.
|
[66] |
J.K. Kim, S.U. Park, A recent overview on the biological and pharmacological activities of ferulic acid, Excli J. 18 (2019) 132-138.
|
[67] |
Y. Song, T. Wu, Q. Yang, et al., Ferulic acid alleviates the symptoms of diabetes in obese rats, J. Funct. Foods 9 (2014) 141-147.
|
[68] |
S. Chowdhury, S. Ghosh, K. Rashid, et al., Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats, Food Chem. Toxicol. 97 (2016) 187-198.
|
[69] |
S. Roy, S.K. Metya, S. Sannigrahi, et al., Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell, Endocrine 44 (2013) 369-379.
|