Citation: | Yulian Chen, Huanguo Jiang, Zhikun Zhan, Jindi Lu, Tanwei Gu, Ping Yu, Weimin Liang, Xi Zhang, Shilong Zhong, Lan Tang. Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1281-1295. doi: 10.1016/j.jpha.2023.08.010 |
B. Swinburn, G. Sacks, E. Ravussin, Increased food energy supply is more than sufficient to explain the US epidemic of obesity, Am. J. Clin. Nutr. 90 (2009) 1453-1456.
|
F. Seebacher, A. Zeigerer, N. Kory, et al., Hepatic lipid droplet homeostasis and fatty liver disease, Semin. Cell Dev. Biol. 108 (2020) 72-81.
|
A. Cano, C. Alonso, Deciphering non-alcoholic fatty liver disease through metabolomics, Biochem. Soc. Trans. 42 (2014) 1447-1452.
|
V. Manne, P. Handa, K.V. Kowdley, Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis, Clin. Liver Dis. 22 (2018) 23-37.
|
G.A. Michelotti, M.V. Machado, A.M. Diehl, NAFLD, NASH and liver cancer, Nat Rev Gastroenterol. Hepatol. 10 (2013) 656-665.
|
M. Trauner, M. Arrese, M. Wagner, Fatty liver and lipotoxicity, Biochim. Biophys. Acta 1801 (2010) 299-310.
|
M.E. Ertunc, G.S. Hotamisligil, Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment, J. Lipid Res. 57 (2016) 2099-2114.
|
T. Li, W. Guo, Z. Zhou, Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology, Biomolecules 12 (2021), 57.
|
R. Schreiber, H. Xie, M. Schweiger, Of mice and men: The physiological role of adipose triglyceride lipase (ATGL), Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 880-899.
|
C. Yang, X. Wang, J. Wang, et al., Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration, Neuron. 105 (2020) 276-292.e275.
|
A. Selathurai, G.M. Kowalski, M.L. Burch, et al., The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity, Cell Metab. 21 (2015) 718-730.
|
Y. Horibata, O. Elpeleg, A. Eran, et al., EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans, J. Lipid Res. 59 (2018) 1015-1026.
|
C. Ma, V. Martinez-Rodriguez, P.R. Hoffmann, Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation, Int. J. Mol. Sci. 22 (2021), 11174.
|
J.N. van der Veen, J.P. Kennelly, S. Wan, et al., The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease, Biochim. Biophys. Acta Biomembr. 1859(9 Pt B) (2017) 1558-1572.
|
M.Y. Ahmed, A. Al-Khayat, F. Al-Murshedi, et al., A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis, Brain 140 (2017) 547-554.
|
H. Yoon, J.L. Shaw, M.C. Haigis, et al., Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity, Mol. Cell 81 (2021) 3708-3730.
|
P.A. Edwards, M.A. Kennedy, P.A. Mak, LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis, Vascul. Pharmacol. 38 (2002) 249-256.
|
B. Wang, P. Tontonoz, Liver X receptors in lipid signalling and membrane homeostasis, Nat. Rev. Endocrinol. 14 (2018) 452-463.
|
C. Hong, P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors, Curr. Opin. Genet. Dev. 18 (2008) 461-467.
|
Y. Chen, H. Jiang, Z. Zhan, et al., Restoration of lipid homeostasis between TG and PE by the LXRα-ATGL/EPT1 axis ameliorates hepatosteatosis, Cell Death Dis.14 (2023) 85.
|
A. Sahebkar, Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia, Biochim. Biophys. Acta 1831 (2013) 887-893.
|
S. Kadota, P. Basnet, E. Ishii, et al., Antibacterial activity of trichorabdal A from Rabdosia trichocarpa against Helicobacter pylori, Zentralbl. Bakteriol. 286 (1997) 63-67.
|
Y. Ding, C. Ding, N. Ye, et al., Discovery and development of natural product oridonin-inspired anticancer agents, Eur. J. Med. Chem. 122 (2016) 102-117.
|
X. Li, C.T. Zhang, W. Ma, et al., Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity, Front. Pharmacol. 12 (2021), 645824.
|
Z. Ma, C. Hu, Y. Zhang, Therapeutic effect of Rabdosia rubescens aqueous extract on chronic pharyngitis and its safety, Zhong Nan Da Xue Xue Bao Yi Xue Ban 36 (2011) 170-173.
|
S. Chen, J. Liu, H. Zhang, Efficacy of rabdosia rubescens in the treatment of gingivitis, J. Huazhong Univ. Sci. Technolog. Med. Sci. 29 (2009) 659-663.
|
H. He, H. Jiang, Y. Chen, et al., Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity, Nat. Commun. 9 (2018) 2550.
|
Y. Zhu, S. Ruan, H. Shen, et al., Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB, Int. Immunopharmacol. 101 (2021), 108290.
|
T. Zhang, Y. Chen, Z. Zhan, et al., Oridonin alleviates d-GalN/LPS-induced acute liver injury by inhibiting NLRP3 inflammasome, Drug Dev. Res. 82 (2021) 575-580.
|
T.T. Sham, C.O. Chan, Y.H. Wang, et al., A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect, Biomed. Res. Int. 2014 (2014), 925302.
|
Z. Zhan, F. Dai, T. Zhang, et al., Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis, Pharmacol. Res. 178 (2022), 106188.
|
Z. Yao, F. Xie, M. Li, et al., Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells, Cell Death Dis. 8 (2017), e2633.
|
Z. Gui, F. Luo, Y. Yang, et al., Oridonin inhibition and miR-200b-3p/ZEB1 axis in human pancreatic cancer, Int. J. Oncol. 50 (2017) 111-120.
|
X. Li, X. Li, J. Wang, et al., Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells, Int. J. Biol. Sci. 8 (2012) 901-912.
|
G.B. Zhou, H. Kang, L. Wang, et al., Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo, Blood 109 (2007) 3441-3450.
|
K. Brejchova, F.P.W. Radner, Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides, Proc. Natl. Acad. Sci. U S A. 118 (2021), e2020999118.
|
C.L. Chen, Y.C. Lin, Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target, Int. J. Mol. Sci. 23 (2022) 10055.
|
F. Chiappini, A. Coilly, H. Kadar, et al., Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients, Sci. Rep. 7 (2017) 46658.
|
E. Calzada, O. Onguka, S.M. Claypool, Phosphatidylethanolamine Metabolism in Health and Disease, Int. Rev. Cell Mol. Biol. 321 (2016) 29-88.
|
J.S. Cohn, E. Wat, A. Kamili, et al., Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease, Curr. Opin. Lipidol. 19 (2008) 257-262.
|
T. Xu, C. Hu, Q. Xuan, et al., Recent advances in analytical strategies for mass spectrometry-based lipidomics, Anal. Chim. Acta. 1137 (2020) 156-169.
|
Z. Liu, L. Ouyang, H. Peng, et al., Oridonin: targeting programmed cell death pathways as an anti-tumour agent, Cell Prolif. 45 (2012) 499-507.
|
R.C. Huang, L.J. Beilin, O. Ayonrinde, et al., Importance of cardiometabolic risk factors in the association between nonalcoholic fatty liver disease and arterial stiffness in adolescents, Hepatology 58 (2013) 1306-1314.
|
M. Ruscica, N. Ferri, M. Banach, et al., Side effects of statins-from pathophysiology and epidemiology to diagnostic and therapeutic implications, Cardiovasc. Res. 118 (2023) 3288-3304.
|
S.M. Grundy, J.I. Cleeman, C.N. Merz, et al., Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines, Circulation 110 (2004) 227-239.
|
R. Balasubramanian, N.M.P. Maideen, HMG-CoA Reductase Inhibitors (Statins) and their Drug Interactions Involving CYP Enzymes, P-glycoprotein and OATP Transporters-An Overview, Curr. Drug Metab. 22 (2021) 328-341.
|
S.U. Naik, X. Wang, J.S. Da Silva, et al., Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo, Circulation 113 (2006) 90-97.
|
Y.W. Zhang, M.H. Bao, L. Hu, et al., Dose-response of oridonin on hepatic cytochromes P450 mRNA expression and activities in mice, J Ethnopharmacol 155 (2014) 714-720.
|