Volume 13 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Yulian Chen, Huanguo Jiang, Zhikun Zhan, Jindi Lu, Tanwei Gu, Ping Yu, Weimin Liang, Xi Zhang, Shilong Zhong, Lan Tang. Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1281-1295. doi: 10.1016/j.jpha.2023.08.010
Citation: Yulian Chen, Huanguo Jiang, Zhikun Zhan, Jindi Lu, Tanwei Gu, Ping Yu, Weimin Liang, Xi Zhang, Shilong Zhong, Lan Tang. Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1281-1295. doi: 10.1016/j.jpha.2023.08.010

Oridonin restores hepatic lipid homeostasis in an LXRα-ATGL/EPT1 axis-dependent manner

doi: 10.1016/j.jpha.2023.08.010
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No.: 81973388), Marine Economy Development Project of Guangdong Province (Project No.: GDNRC[2021]52), and the Key Research and Development Program of Guangdong Province (Program No.: 2020B1111030005).

  • Received Date: Mar. 01, 2023
  • Accepted Date: Aug. 10, 2023
  • Rev Recd Date: Aug. 01, 2023
  • Publish Date: Aug. 21, 2023
  • Hepatosteatosis is characterized by abnormal accumulation of triglycerides (TG), leading to prolonged and chronic inflammatory infiltration. To date, there is still a lack of effective and economical therapies for hepatosteatosis. Oridonin (ORI) is a major bioactive component extracted from the traditional Chinese medicinal herb Rabdosia rubescens. In this paper, we showed that ORI exerted significant protective effects against hepatic steatosis, inflammation and fibrosis, which was dependent on LXRα signaling. It is reported that LXRα regulated lipid homeostasis between triglyceride (TG) and phosphatidylethanolamine (PE) by promoting ATGL and EPT1 expression. Therefore, we implemented the lipidomic strategy and luciferase reporter assay to verify that ORI contributed to the homeostasis of lipids via the regulation of the ATGL gene associated with TG hydrolysis and the EPT1 gene related to PE synthesis in a LXRα-dependent manner, and the results showed the TG reduction and PE elevation. In detail, hepatic TG overload and lipotoxicity were reversed after ORI treatment by modulating the ATGL and EPT1 genes, respectively. Taken together, the data provide mechanistic insights to explain the bioactivity of ORI in attenuating TG accumulation and cytotoxicity and introduce exciting opportunities for developing novel natural activators of the LXRα-ATGL/EPT1 axis for pharmacologically treating hepatosteatosis and metabolic disorders.
  • loading
  • B. Swinburn, G. Sacks, E. Ravussin, Increased food energy supply is more than sufficient to explain the US epidemic of obesity, Am. J. Clin. Nutr. 90 (2009) 1453-1456.
    F. Seebacher, A. Zeigerer, N. Kory, et al., Hepatic lipid droplet homeostasis and fatty liver disease, Semin. Cell Dev. Biol. 108 (2020) 72-81.
    A. Cano, C. Alonso, Deciphering non-alcoholic fatty liver disease through metabolomics, Biochem. Soc. Trans. 42 (2014) 1447-1452.
    V. Manne, P. Handa, K.V. Kowdley, Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis, Clin. Liver Dis. 22 (2018) 23-37.
    G.A. Michelotti, M.V. Machado, A.M. Diehl, NAFLD, NASH and liver cancer, Nat Rev Gastroenterol. Hepatol. 10 (2013) 656-665.
    M. Trauner, M. Arrese, M. Wagner, Fatty liver and lipotoxicity, Biochim. Biophys. Acta 1801 (2010) 299-310.
    M.E. Ertunc, G.S. Hotamisligil, Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment, J. Lipid Res. 57 (2016) 2099-2114.
    T. Li, W. Guo, Z. Zhou, Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology, Biomolecules 12 (2021), 57.
    R. Schreiber, H. Xie, M. Schweiger, Of mice and men: The physiological role of adipose triglyceride lipase (ATGL), Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 880-899.
    C. Yang, X. Wang, J. Wang, et al., Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration, Neuron. 105 (2020) 276-292.e275.
    A. Selathurai, G.M. Kowalski, M.L. Burch, et al., The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity, Cell Metab. 21 (2015) 718-730.
    Y. Horibata, O. Elpeleg, A. Eran, et al., EPT1 (selenoprotein I) is critical for the neural development and maintenance of plasmalogen in humans, J. Lipid Res. 59 (2018) 1015-1026.
    C. Ma, V. Martinez-Rodriguez, P.R. Hoffmann, Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation, Int. J. Mol. Sci. 22 (2021), 11174.
    J.N. van der Veen, J.P. Kennelly, S. Wan, et al., The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease, Biochim. Biophys. Acta Biomembr. 1859(9 Pt B) (2017) 1558-1572.
    M.Y. Ahmed, A. Al-Khayat, F. Al-Murshedi, et al., A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway phospholipid biosynthesis, Brain 140 (2017) 547-554.
    H. Yoon, J.L. Shaw, M.C. Haigis, et al., Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity, Mol. Cell 81 (2021) 3708-3730.
    P.A. Edwards, M.A. Kennedy, P.A. Mak, LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis, Vascul. Pharmacol. 38 (2002) 249-256.
    B. Wang, P. Tontonoz, Liver X receptors in lipid signalling and membrane homeostasis, Nat. Rev. Endocrinol. 14 (2018) 452-463.
    C. Hong, P. Tontonoz, Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors, Curr. Opin. Genet. Dev. 18 (2008) 461-467.
    Y. Chen, H. Jiang, Z. Zhan, et al., Restoration of lipid homeostasis between TG and PE by the LXRα-ATGL/EPT1 axis ameliorates hepatosteatosis, Cell Death Dis.14 (2023) 85.
    A. Sahebkar, Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia, Biochim. Biophys. Acta 1831 (2013) 887-893.
    S. Kadota, P. Basnet, E. Ishii, et al., Antibacterial activity of trichorabdal A from Rabdosia trichocarpa against Helicobacter pylori, Zentralbl. Bakteriol. 286 (1997) 63-67.
    Y. Ding, C. Ding, N. Ye, et al., Discovery and development of natural product oridonin-inspired anticancer agents, Eur. J. Med. Chem. 122 (2016) 102-117.
    X. Li, C.T. Zhang, W. Ma, et al., Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity, Front. Pharmacol. 12 (2021), 645824.
    Z. Ma, C. Hu, Y. Zhang, Therapeutic effect of Rabdosia rubescens aqueous extract on chronic pharyngitis and its safety, Zhong Nan Da Xue Xue Bao Yi Xue Ban 36 (2011) 170-173.
    S. Chen, J. Liu, H. Zhang, Efficacy of rabdosia rubescens in the treatment of gingivitis, J. Huazhong Univ. Sci. Technolog. Med. Sci. 29 (2009) 659-663.
    H. He, H. Jiang, Y. Chen, et al., Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity, Nat. Commun. 9 (2018) 2550.
    Y. Zhu, S. Ruan, H. Shen, et al., Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB, Int. Immunopharmacol. 101 (2021), 108290.
    T. Zhang, Y. Chen, Z. Zhan, et al., Oridonin alleviates d-GalN/LPS-induced acute liver injury by inhibiting NLRP3 inflammasome, Drug Dev. Res. 82 (2021) 575-580.
    T.T. Sham, C.O. Chan, Y.H. Wang, et al., A review on the traditional Chinese medicinal herbs and formulae with hypolipidemic effect, Biomed. Res. Int. 2014 (2014), 925302.
    Z. Zhan, F. Dai, T. Zhang, et al., Oridonin alleviates hyperbilirubinemia through activating LXRα-UGT1A1 axis, Pharmacol. Res. 178 (2022), 106188.
    Z. Yao, F. Xie, M. Li, et al., Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells, Cell Death Dis. 8 (2017), e2633.
    Z. Gui, F. Luo, Y. Yang, et al., Oridonin inhibition and miR-200b-3p/ZEB1 axis in human pancreatic cancer, Int. J. Oncol. 50 (2017) 111-120.
    X. Li, X. Li, J. Wang, et al., Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells, Int. J. Biol. Sci. 8 (2012) 901-912.
    G.B. Zhou, H. Kang, L. Wang, et al., Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo, Blood 109 (2007) 3441-3450.
    K. Brejchova, F.P.W. Radner, Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides, Proc. Natl. Acad. Sci. U S A. 118 (2021), e2020999118.
    C.L. Chen, Y.C. Lin, Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target, Int. J. Mol. Sci. 23 (2022) 10055.
    F. Chiappini, A. Coilly, H. Kadar, et al., Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients, Sci. Rep. 7 (2017) 46658.
    E. Calzada, O. Onguka, S.M. Claypool, Phosphatidylethanolamine Metabolism in Health and Disease, Int. Rev. Cell Mol. Biol. 321 (2016) 29-88.
    J.S. Cohn, E. Wat, A. Kamili, et al., Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease, Curr. Opin. Lipidol. 19 (2008) 257-262.
    T. Xu, C. Hu, Q. Xuan, et al., Recent advances in analytical strategies for mass spectrometry-based lipidomics, Anal. Chim. Acta. 1137 (2020) 156-169.
    Z. Liu, L. Ouyang, H. Peng, et al., Oridonin: targeting programmed cell death pathways as an anti-tumour agent, Cell Prolif. 45 (2012) 499-507.
    R.C. Huang, L.J. Beilin, O. Ayonrinde, et al., Importance of cardiometabolic risk factors in the association between nonalcoholic fatty liver disease and arterial stiffness in adolescents, Hepatology 58 (2013) 1306-1314.
    M. Ruscica, N. Ferri, M. Banach, et al., Side effects of statins-from pathophysiology and epidemiology to diagnostic and therapeutic implications, Cardiovasc. Res. 118 (2023) 3288-3304.
    S.M. Grundy, J.I. Cleeman, C.N. Merz, et al., Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines, Circulation 110 (2004) 227-239.
    R. Balasubramanian, N.M.P. Maideen, HMG-CoA Reductase Inhibitors (Statins) and their Drug Interactions Involving CYP Enzymes, P-glycoprotein and OATP Transporters-An Overview, Curr. Drug Metab. 22 (2021) 328-341.
    S.U. Naik, X. Wang, J.S. Da Silva, et al., Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo, Circulation 113 (2006) 90-97.
    Y.W. Zhang, M.H. Bao, L. Hu, et al., Dose-response of oridonin on hepatic cytochromes P450 mRNA expression and activities in mice, J Ethnopharmacol 155 (2014) 714-720.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (257) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return