Volume 13 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
Changhong Nie, Ibrahim Shaw, Chuanpin Chen. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1429-1451. doi: 10.1016/j.jpha.2023.08.009
Citation: Changhong Nie, Ibrahim Shaw, Chuanpin Chen. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1429-1451. doi: 10.1016/j.jpha.2023.08.009

Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review

doi: 10.1016/j.jpha.2023.08.009
Funds:

This work was supported by the Natural Science Foundation of Hunan Province, China (Grant No.: 2021JJ80078).

  • Received Date: Mar. 27, 2023
  • Accepted Date: Aug. 10, 2023
  • Rev Recd Date: Aug. 02, 2023
  • Publish Date: Aug. 23, 2023
  • With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
  • loading
  • [1]
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA-Canc. 71 (2021) 209-249.
    [2]
    R. Haldavnekar, K. Venkatakrishnan, B. Tan, Cancer stem cell derived extracellular vesicles with self-functionalized 3D nanosensor for real-time cancer diagnosis: eliminating the roadblocks in liquid biopsy, ACS Nano 16 (2022) 12226-12243.
    [3]
    M. Constantinou, K. Hadjigeorgiou, S. Abalde-Cela, et al., Label-free sensing with metal nanostructure-based surface-enhanced Raman spectroscopy for cancer diagnosis, ACS Appl. Nano Mater. 5 (2022) 12276-12299.
    [4]
    F. Ferrara, S. Zoupanou, E. Primiceri, et al., Beyond liquid biopsy: toward non-invasive assays for distanced cancer diagnostics in pandemics, Biosens. Bioelectron. 196 (2022), 113698.
    [5]
    M. He, Y. Zeng, Microfluidic exosome analysis toward liquid biopsy for cancer, J. Lab. Autom. 21 (2016) 599-608.
    [6]
    G. De Rubis, S. Rajeev Krishnan, M. Bebawy, Liquid biopsies in cancer diagnosis, monitoring, and prognosis, Trends Pharmacol. Sci. 40 (2019) 172-186.
    [7]
    L. De Mattos-Arruda, G. Siravegna, How to use liquid biopsies to treat patients with cancer, ESMO Open 6 (2021), 100060.
    [8]
    M. Jiang, J. Zhou, X. Xie, et al., Single nanoparticle counting-based liquid biopsy for cancer diagnosis, Anal. Chem. 94 (2022) 15433-15439.
    [9]
    L. Wu, Y. Wang, L. Zhu, et al., Aptamer-based liquid biopsy, ACS Appl. Bio Mater. 3 (2020) 2743-2764.
    [10]
    E. Geeurickx, A. Hendrix, Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics, Mol. Aspect. Med. 72 (2020), 100828.
    [11]
    M. Zhao, D. Mi, B.E. Ferdows, et al., State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer, Nano Today 42 (2022), 101361.
    [12]
    Z. Tang, J. Huang, H. He, et al., Contributing to liquid biopsy: optical and electrochemical methods in cancer biomarker analysis, Coord. Chem. Rev. 415 (2020), 213317.
    [13]
    K.K. Jain, Biomarkers of cancer. The Handbook of Biomarkers. New York: Humana Press, 2017, pp. 273-462.
    [14]
    S. Bratulic, F. Gatto, J. Nielsen, The translational status of cancer liquid biopsies, Regen. Eng. Trans. Med. 7 (2021) 312-352.
    [15]
    S.H. Hussain, C.S. Huertas, A. Mitchell, et al., Biosensors for circulating tumor cells (CTCs)-biomarker detection in lung and prostate cancer: trends and prospects, Biosens. Bioelectron. 197 (2022), 113770.
    [16]
    X. Han, J. Wang, Y. Sun, Circulating tumor DNA as biomarkers for cancer detection, Dev. Reprod. Biol. 15 (2017) 59-72.
    [17]
    H.M. Heneghan, N. Miller, M.J. Kerin, MiRNAs as biomarkers and therapeutic targets in cancer, Curr. Opin. Pharmacol. 10 (2010) 543-550.
    [18]
    N.A. Hanjani, N. Esmaelizad, S. Zanganeh, et al., Emerging role of exosomes as biomarkers in cancer treatment and diagnosis, Crit. Rev. Oncol.-Hematol. 169 (2022), 103565.
    [19]
    R. Aebersold, L. Anderson, R. Caprioli, et al., Perspective: a program to improve protein biomarker discovery for cancer, J. Proteome Res. 4 (2005) 1104-1109.
    [20]
    A. Plumer, H. Duan, S. Subramaniam, et al., Development of fragment-specific osteopontin antibodies and ELISA for quantification in human metastatic breast cancer, BMC Cancer 8 (2008), 38.
    [21]
    M. Lim, P. Erdman, S. Cho, et al., Evaluation of CisBio ELISA for chromogranin A measurement, J. Appl. Lab. Med. 4 (2019) 11-18.
    [22]
    W.J. Fang, C.Z. Lin, H.H. Zhang, et al., Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China, J. Int. Med. Res. 35 (2007) 716-723.
    [23]
    P. Wang, F. Jing, G. Li, et al., Absolute quantification of lung cancer related microRNA by droplet digital PCR, Biosens. Bioelectron. 74 (2015) 836-842.
    [24]
    Q. Wu, Z. Lu, H. Li, et al., Next-generation sequencing of microRNAs for breast cancer detection, J. Biomed. Biotechnol. 2011 (2011), 597145.
    [25]
    H.-H. Tseng, Y.-K. Tseng, J.-J. You, et al., Next-generation sequencing for microRNA profiling: microRNA-21-3p promotes oral cancer metastasis, Anticancer Res. 37 (2017) 1059-1066.
    [26]
    Y. Li, Z. Huang, Z. Li, et al., Mass spectrometric multiplex detection of microRNA and protein biomarkers for liver cancer, Anal. Chem. 94 (2022) 17248-17254.
    [27]
    Y. Zhu, Y. Lian, J. Wang, et al., Ultrasensitive detection of protein biomarkers by MALDI-TOF mass spectrometry based on ZnFe2O4 nanoparticles and mass tagging signal amplification, Talanta 224 (2021), 121848.
    [28]
    V. Dugandzic, I.J. Hidi, K. Weber, et al., In situ hydrazine reduced silver colloid synthesis - enhancing SERS reproducibility, Anal. Chim. Acta 946 (2016) 73-79.4.
    [29]
    X. Cao, S. Ge, M. Chen, et al., LoC-SERS platform integrated with the signal amplification strategy toward Parkinson's disease diagnosis, ACS Appl. Mater. Interfaces 15 (2023) 21830-21842.
    [30]
    A. Marz, P. Rosch, T. Henkel, et al., Lab-on-a-chip surface-enhanced Raman spectroscopy. Optical Nano- and Microsystems for Bioanalytics. Berlin, Heidelberg: Springer, 2012, pp. 229-245.
    [31]
    J. Sun, Y. Xianyu, X. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics, Chem. Soc. Rev. 43 (2014) 6239-6253.
    [32]
    A. Manz, N. Graber, H.M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensor. Actuator. B 1 (1990) 244-248.
    [33]
    J. Zhuang, J. Yin, S. Lv, et al., Advanced “lab-on-a-chip” to detect viruses - current challenges and future perspectives, Biosens. Bioelectron. 163 (2020), 112291.
    [34]
    N. Venugopal Menon, S. Bin Lim, C.T. Lim, Microfluidics for personalized drug screening of cancer, Curr. Opin. Pharmacol. 48 (2019) 155-161.
    [35]
    L.-Y. Hung, H.-W. Wu, K. Hsieh, et al., Microfluidic platforms for discovery and detection of molecular biomarkers, Microfluid. Nanofluid. 16 (2014) 941-963.
    [36]
    N. Bargahi, S. Ghasemali, S. Jahandar-Lashaki, et al., Recent advances for cancer detection and treatment by microfluidic technology, review and update, Biol. Proced. Online 24 (2022), 5.
    [37]
    S.T. Sanjay, G. Fu, M. Dou, et al., Biomarker detection for disease diagnosis using cost-effective microfluidic platforms, Analyst 140 (2015) 7062-7081.
    [38]
    A.C.Q. Silva, C. Vilela, H.A. Santos, et al., Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology, Appl. Mater. Today 18 (2020), 100450.
    [39]
    M. Doherty, T. Wang, D.A. Lamprou, et al., Microfluidic technologies in tumour metabolism, Int. J. Pharm. 629 (2022), 122370.
    [40]
    J.R. Lake, K.C. Heyde, W.C. Ruder, Low-cost feedback-controlled syringe pressure pumps for microfluidics applications, PLoS One 12 (2017), e0175089.
    [41]
    X. Zhang, K. Xia, A. Ji, A portable plug-and-play syringe pump using passive valves for microfluidic applications, Sensor. Actuator. B 304 (2020), 127331.
    [42]
    S.M. Ha, W. Cho, Y. Ahn, Disposable thermo-pneumatic micropump for bio lab-on-a-chip application, Microelectron. Eng. 86 (2009) 1337-1339.
    [43]
    C.H. Liu, G.B. Lee, A micropump using amplified deformation of resilient membranes through oil hydraulics, Microfluid. Nanofluidics 17 (2014) 393-400.
    [44]
    A.R. Ameri, A. Imanparast, M. Passandideh-Fard, et al., A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications, Anal. Chim. Acta 1221 (2022), 340093.
    [45]
    T. Ma, S. Sun, B. Li, et al., Piezoelectric peristaltic micropump integrated on a microfluidic chip, Sensor. Actuator. A 292 (2019) 90-96.
    [46]
    H.H. Wang, T.J. Wu, S.J. Lin, et al., Dual light-activated microfluidic pumps based on an optopiezoelectric composite, J. Micromech. Microeng. 27 (2017), 125003.
    [47]
    C. Szydzik, R.J. Brazilek, F. Akbaridoust, et al., Active micropump-mixer for rapid antiplatelet drug screening in whole blood, Anal. Chem. 91 (2019) 10830-10839.
    [48]
    G. Cai, Y. Huang, B. Chen, et al., Modular design of centrifugal microfluidic system and its application in nucleic acid screening, Talanta 259 (2023), 124486.
    [49]
    J.C. Yeo, Z. Wang, C.T. Lim, Microfluidic size separation of cells and particles using a swinging bucket centrifuge, Biomicrofluidics 9 (2015), 54114.
    [50]
    S. Uhlig, M. Gaudet, S. Langa, et al., Electrostatically driven In-plane silicon micropump for modular configuration, Micromachines 9 (2018), 190.
    [51]
    L. Yang, T. Ye, X. Zhao, et al., Design and fabrication of a microfluidic chip for particle size-exclusion and enrichment, Micromachines 12 (2021), 1218.
    [52]
    B. Liu, M. Li, B. Tian, et al., A positive pressure-driven PDMS pump for fluid handling in microfluidic chips, Microfluid. Nanofluid. 22 (2018), 94.
    [53]
    X. Wang, D. Zhao, D.T.T. Phan, et al., A hydrostatic pressure-driven passive micropump enhanced with siphon-based autofill function, Lab Chip 18 (2018) 2167-2177.
    [54]
    H. Li, J.V. Soerensen, K.V. Gothelf, Quantitative detection of digoxin in plasma using small-molecule immunoassay in a recyclable gravity-driven microfluidic chip, Adv. Sci. 6 (2019), 1802051.
    [55]
    X. Xiang, Q. Ye, Y. Shang, et al., Quantitative detection of aflatoxin B1 using quantum dots-based immunoassay in a recyclable gravity-driven microfluidic chip, Biosens. Bioelectron. 190 (2021), 113394.
    [56]
    S. Mohammadi, L.S.A. Busa, M. Maeki, et al., Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates, Anal. Bioanal. Chem. 408 (2016) 7559-7563.
    [57]
    C. Sun, H. You, N. Gao, et al., Design and fabrication of a microfluidic chip to detect tumor markers, RSC Adv. 10 (2020) 39779-39785.
    [58]
    G.J. Amador, Z. Ren, A.F. Tabak, et al., Temperature gradients drive bulk flow within microchannel lined by fluid-fluid interfaces, Small 15 (2019), 1900472.
    [59]
    T.E. de Groot, K.S. Veserat, E. Berthier, et al., Surface-tension driven open microfluidic platform for hanging droplet culture, Lab Chip 16 (2016) 334-344.
    [60]
    Q. Song, J. Sun, Y. Mu, et al., A new method for polydimethylsiloxane (PDMS) microfluidic chips to maintain vacuum-driven power using Parylene C, Sensor. Actuator. B 256 (2018) 1122-1130.
    [61]
    C.-H. Lee, C.-C. Hong, A disposable emulsion droplet generation lab chips driven by vacuum module for manipulation of blood cells, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). August 25-29, 2015, Milan, Italy. IEEE, (2015) 8010-8013.
    [62]
    C. Chuang, Y. Chiang, Bio-O-Pump: a novel portable microfluidic device driven by osmotic pressure, Sensor. Actuator. B 284 (2019) 736-743.
    [63]
    Z. Xu, C. Yang, C. Liu, et al., An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture, Talanta 80 (2010) 1088-1093.
    [64]
    L. Ying, Q. Wang, Microfluidic chip-based technologies: emerging platforms for cancer diagnosis, BMC Biotechnol. 13 (2013), 76.
    [65]
    J. Zvirblyte, L. Mazutis, Microfluidics for cancer biomarker discovery, research, and clinical application. Microfluidics and Biosensors in Cancer Research. Cham: Springer, 2022, pp. 499-524.
    [66]
    X. Fang, Microfluidic chip. Clinical Molecular Diagnostics. Singapore: Springer, 2021, pp. 357-375.
    [67]
    C. Li, Special topic: point-of-care testing (POCT) and in vitro diagnostics (IVDs), J. Anal. Test. 3 (2019) 1-2.
    [68]
    E. Sarraf, D.M. Mathews, M.H. Tsai, et al., Optimizing the use of point of care testing devices for screening patients, J. Clin. Monit. Comput. 34 (2020) 411-419.
    [69]
    L. Bueno, W.R. de Araujo, T.R.L.C. Paixao, Point of care (POC) medical biosensors for cancer detection. Medical Biosensors for Point of Care (POC) Applications. Amsterdam: Elsevier, 2017, pp. 183-201.
    [70]
    W. Jung, J. Han, J.W. Choi, et al., Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies, Microelectron. Eng. 132 (2015) 46-57.
    [71]
    J.V. Pagaduan, V. Sahore, A.T. Woolley, Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis, Anal. Bioanal. Chem. 407 (2015) 6911-6922.
    [72]
    Z.A. Duca, N.C. Speller, M.E. Cato, et al., A miniaturized, low-cost lens tube based laser-induced fluorescence detection system for automated microfluidic analysis of primary amines, Talanta 241 (2022), 123227.
    [73]
    M. Hao, C. Li, R. Liu, et al., Detection of glutathione within single erythrocyte of different ages and pathological state using microfluidic chips coupled with laser induced fluorescence, Spectrochim. Acta 149 (2015) 600-606.
    [74]
    H. Bi, A.C. Fernandes, S. Cardoso, et al., Interference-blind microfluidic sensor for ascorbic acid determination by UV/Vis spectroscopy, Sensor. Actuator. B 224 (2016) 668-675.
    [75]
    X. Pang, L.J. Carpenter, A.C. Lewis, Microfluidic derivatisation technique for determination of gaseous molecular iodine with GC-MS, Talanta 137 (2015) 214-219.
    [76]
    P. Chen, W. Zhang, W. Chen, et al., Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs, Sensor. Actuator. B 350 (2022), 130888.
    [77]
    L.J.K. Weiss, G. Lubins, E. Music, et al., Single-impact electrochemistry in paper-based microfluidics, ACS Sens. 7 (2022) 884-892.
    [78]
    T. Sierra, I. Jang, E. Noviana, et al., Pump-free microfluidic device for the electrochemical detection of α1-acid glycoprotein, ACS Sens. 6 (2021) 2998-3005.
    [79]
    C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature 121 (1928) 501-502.
    [80]
    A. Shiohara, Y. Wang, L.M. Liz-Marzan, Recent approaches toward creation of hot spots for SERS detection, J. Photochem. Photobiol., C 21 (2014) 2-25.
    [81]
    L. Long, W. Ju, H.-Y. Yang, et al., Dimensional design for surface-enhanced Raman spectroscopy, ACS Mater. Au 2 (2022) 552-575.
    [82]
    A. Tycova, J. Prikryl, F. Foret, Recent strategies toward microfluidic-based surface-enhanced Raman spectroscopy, Electrophoresis 38 (2017) 1977-1987.
    [83]
    Y. Jiang, D.-W. Sun, H. Pu, et al., Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues, Trends Food Sci. Technol. 75 (2018) 10-22.
    [84]
    M.M. Joseph, N. Narayanan, J.B. Nair, et al., Exploring the margins of SERS in practical domain: an emerging diagnostic modality for modern biomedical applications, Biomaterials 181 (2018) 140-181.
    [85]
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
    [86]
    Y. Yuan, N. Panwar, S.H.K. Yap, et al., SERS-based ultrasensitive sensing platform: an insight into design and practical applications, Coord. Chem. Rev. 337 (2017) 1-33.
    [87]
    Y. Qiu, C. Kuang, X. Liu, et al., Single-molecule surface-enhanced Raman spectroscopy, Sensors. 22 (2022), 4889.
    [88]
    N.E. Dina, M.A. Tahir, S.Z. Bajwa, et al., SERS-based antibiotic susceptibility testing: towards point-of-care clinical diagnosis, Biosens. Bioelectron. 219 (2022), 114843.
    [89]
    B. Sharma, R.R. Frontiera, A.I. Henry, et al., SERS: materials, applications, and the future, Mater. Today 15 (2012) 16-25.
    [90]
    X. Wang, Y. Wu, X. Wen, et al., Composite structure of Au film/PMMA grating coated with Au nanocubes for SERS substrate, Opt. Mater. 121 (2021), 111536.
    [91]
    R. Goodacre, D. Graham, K. Faulds, Recent developments in quantitative SERS: moving towards absolute quantification, Trac. Trends Anal. Chem. 102 (2018) 359-368.
    [92]
    M. Li, Y. Qiu, C. Fan, et al., Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures, Acta Pharm. Sin. B 8 (2018) 381-389.
    [93]
    B. Shan, Y. Pu, Y. Chen, et al., Novel SERS labels: rational design, functional integration and biomedical applications, Coord. Chem. Rev. 371 (2018) 11-37.
    [94]
    H. Tang, C. Zhu, G. Meng, et al., Review-surface-enhanced Raman scattering sensors for food safety and environmental monitoring, J. Electrochem. Soc. 165 (2018) B3098-B3118.
    [95]
    A. Jablonska, A. Jaworska, M. Kasztelan, et al., Graphene and graphene oxide applications for SERS sensing and imaging, Curr. Med. Chem. 26 (2019) 6878-6895.
    [96]
    L. Wang, Y. Zhang, Y. Yang, et al., Strong dependence of surface enhanced Raman scattering on structure of graphene oxide film, Materials 11 (2018), 1199.
    [97]
    G. Kim, M. Kim, C. Hyun, et al., Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy, ACS Nano 10 (2016) 11156-11162.
    [98]
    K. Ge, Q. Wu, Y. Li, et al., High and stable surface-enhanced Raman spectroscopy activity of h-BN nanosheet/Au1Ag3 nanoalloy hybrid membrane for melamine determination, Spectrochim. Acta 271 (2022), 120952.
    [99]
    Y. Liu, J. Zou, S. Chen, et al., Raman spectroscopy studies of black phosphorus, Spectrochim. Acta 271 (2022), 120861.
    [100]
    C. Lin, S. Liang, Y. Peng, et al., Visualized SERS imaging of single molecule by Ag/black phosphorus nanosheets, Nano-Micro Lett. 14 (2022), 75.
    [101]
    Z. Wu, D.-W. Sun, H. Pu, et al., Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection, Food Chem. 372 (2022), 131293.
    [102]
    Y. Peng, C. Lin, L. Long, et al., Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection, Nano-Micro Lett. 13 (2021), 52.
    [103]
    H. Wu, X. Sun, C. Hou, et al., Preparation of quasi-three-dimensional porous Ag and Ag-NiO nanofibrous mats for SERS application, Sensors 18 (2018), 2862.
    [104]
    Q. Zhou, G. Meng, Q. Huang, et al., Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates, Phys. Chem. Chem. Phys. 16 (2014) 3686-3692.
    [105]
    L. Yang, X. Qin, X. Jiang, et al., SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles, Phys. Chem. Chem. Phys. 17 (2015) 17809-17815.
    [106]
    X. Fu, G. Zhang, T. Wu, et al., Multifunctional gold-loaded TiO2 thin film: photocatalyst and recyclable SERS substrate, Can. J. Chem. 91 (2013) 1112-1116.
    [107]
    H. Zhang, S. Huang, X. Yang, et al., A SERS biosensor constructed by calcined ZnO substrate with high-efficiency charge transfer for sensitive detection of Pb2+, Sensor. Actuator. B 343 (2021), 130142.
    [108]
    X. Wang, W. Shi, Z. Jin, et al., Remarkable SERS activity observed from amorphous ZnO nanocages, Angew. Chem. Int. Ed. 56 (2017) 9851-9855.
    [109]
    I. Lettrichova, A. Laurencikova, D. Pudis, et al., 2D periodic structures patterned on 3D surfaces by interference lithography for SERS, Appl. Surf. Sci. 461 (2018) 171-174.
    [110]
    A.M. Polubotko, V.P. Chelibanov, Group-theoretical interpretation of surface-enhanced Raman scattering spectra of copper phthalocyanine adsorbed on Gallium phosphide, Opt. Spectrosc. 126 (2019) 181-183.
    [111]
    F. Yu, H. Huang, J. Shi, et al., A new gold nanoflower Sol SERS method for trace iodine ion based on catalytic amplification, Spectrochim. Acta 255 (2021), 119738.
    [112]
    Y. Luo, G. Wen, L. Ma, et al., A sensitive SERS quantitative analysis method for amino acids using Ruhemann's purple as molecular probe in triangle nanosilver sol substrate, Plasmonics 12 (2017) 299-308.
    [113]
    G. Shang, C. Li, G. Wen, et al., A new silver nanochain SERS analytical platform to detect trace hexametaphosphate with a rhodamine S molecular probe, Luminescence 31 (2016) 640-648.
    [114]
    X. Liang, G. Wen, Q. Liu, et al., Hydride generation-resonance Rayleigh scattering and SERS spectral determination of trace Bi, Spectrochim. Acta 166 (2016) 95-102.
    [115]
    Y. Luo, Q. Jing, C. Li, et al., Simple and sensitive SERS quantitative analysis of sorbic acid in highly active gold nanosol substrate, Sensor. Actuator. B 255 (2018) 3187-3193.
    [116]
    Z. Jiang, C. Li, Y. Liu, et al., A sensitive Galvanic replacement reaction-SERS method for Au(III) with Victoria blue B molecular probes in silver nanosol substrate, Sensor. Actuator. B 251 (2017) 404-409.
    [117]
    C. Li, Y. Qin, D. Li, et al., A highly sensitive enzyme catalytic SERS quantitative analysis method for ethanol with Victoria blue B molecular probe in the stable nanosilver sol substrate, Sensor. Actuator. B 255 (2018) 3464-3471.
    [118]
    K. Ponlamuangdee, C. Rattanabut, N. Viriyakitpattana, et al., Fabrication of paper-based SERS substrate using a simple vacuum filtration system for pesticides detection, Anal. Methods 14 (2022) 1765-1773.
    [119]
    I. Shaikh, M.A. Haque, H. Pathan, et al., Spin-coated Ag NPs SERS substrate: role of electromagnetic and chemical enhancement in trace detection of methylene blue and Congo red, Plasmonics 17 (2022) 1889-1900.
    [120]
    P. Zhang, G. Liu, S. Feng, et al., Engineering of flexible granular Au nanocap ordered array and its surface enhanced Raman spectroscopy effect, Nanotechnology 31 (2020), 35303.
    [121]
    R. Wang, Y. Xu, R. Wang, et al., A microfluidic chip based on an ITO support modified with Ag-Au nanocomposites for SERS based determination of melamine, Microchim. Acta 184 (2017) 279-287.
    [122]
    K. Sivashanmugan, V.-H. Nguyen, B.-S. Nguyen, Tailoring a novel Au nanodot arrays on graphene substrate for a highly active surface-enhanced Raman scattering (SERS), Mater. Lett. 271 (2020), 127807.
    [123]
    X. Zhang, S. Xu, S. Jiang, et al., Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering, Appl. Surf. Sci. 353 (2015) 63-70.
    [124]
    S. Zhang, J. Xu, Z. Liu, et al., Rapid and scalable preparation of flexible Ag nanoparticle-decorated nanocellulose SERS sensors by magnetron sputtering for trace detection of toxic materials, Cellulose 29 (2022) 9865-9879.
    [125]
    C. Lai, G. Chen, L. Chen, et al., Gold nanoparticle-coated silicon cone array for surface-enhanced Raman spectroscopy, Spectrosc. Lett. 49 (2016) 51-55.
    [126]
    H.Y. Wu, H.C. Lin, G.Y. Hung, et al., High sensitivity SERS substrate of a few nanometers single-layer silver thickness fabricated by DC magnetron sputtering technology, Nanomaterials 12 (2022), 2742.
    [127]
    D. Han, B. Li, S. Yang, et al., Facile synthesis of Fe3O4@Au core-shell nanocomposites as a SERS substrate for the detection of thiram, Chem. Res. Chin. Univ. 40 (2019) 2067-2074.
    [128]
    Z. Wang, S. Zong, L. Wu, et al., SERS-activated platforms for immunoassay: probes, encoding methods, and applications, Chem. Rev. 117 (2017) 7910-7963.
    [129]
    J. Perumal, Y. Wang, A.B.E. Attia, et al., Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: a review of recent advancements, Nanoscale 13 (2021) 553-580.
    [130]
    M. Barreiros dos Santos, L. Rodriguez-Lorenzo, R. Queiros, et al., Fundamentals of Biosensors and Detection Methods. Microfluidics and Biosensors in Cancer Research. Cham: Springer, 2022, pp. 3-29.
    [131]
    S.S. Panikar, D. Cialla-May, E. De la Rosa, et al., Towards translation of surface-enhanced Raman spectroscopy (SERS) to clinical practice: progress and trends, Trac. Trends Anal. Chem. 134 (2021), 116122.
    [132]
    H. Zhao, Y. Xu, C. Wang, et al., Design and fabrication of a microfluidic SERS chip with integrated Ag film@nanoAu, RSC Adv. 6 (2016) 14105-14111.
    [133]
    I.J. Jahn, O. Zukovskaja, X.-S. Zheng, et al., Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications, Analyst. 142 (2017) 1022-1047.
    [134]
    H. Samawi, D.-G. Chen, J. Yin, et al., Performance of diagnostic tests based on continuous bivariate markers, J. Appl. Stat. (2022) 1-18.
    [135]
    J. Hua, L. Tian, Combining multiple biomarkers to linearly maximize the diagnostic accuracy under ordered multi-class setting, Stat. Methods Med. Res. 30 (2021) 1101-1118.
    [136]
    Z. Liao, Y. Zhang, Y. Li, et al., Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: a review, Biosens. Bioelectron. 126 (2019) 697-706.
    [137]
    A.I. Savinon-Flores, F. Savinon-Flores, G. Trejo, et al., A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: under the spotlight of point-of-care testing, Front. Chem. 10 (2022), 1017305.
    [138]
    R.A. Crocombe, Portable spectroscopy, Appl. Spectrosc. 72 (2018) 1701-1751.
    [139]
    Y. Li, X. Liu, J. Guo, et al., Simultaneous detection of inflammatory biomarkers by SERS nanotag-based lateral flow assay with portable cloud Raman spectrometer, Nanomaterials 11 (2021), 1496.
    [140]
    T. Mu, S. Li, H. Feng, et al., High-sensitive smartphone-based Raman system based on cloud network architecture, IEEE J. Sel. Top. Quant. Electron. 25 (2019) 1-6.
    [141]
    F. Zeng, T. Mou, C. Zhang, et al., Paper-based SERS analysis with smartphones as Raman spectral analyzers, Analyst 144 (2019) 137-142.
    [142]
    N. Bellassai, R. D'Agata, V. Jungbluth, et al., Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis, Front. Chem. 7 (2019), 570.
    [143]
    H. Huang, Y. Yang, Y. Zhu, et al., Blood protein biomarkers in lung cancer, Cancer Lett. 551 (2022), 215886.
    [144]
    H. Khan, M.R. Shah, J. Barek, et al., Cancer biomarkers and their biosensors: a comprehensive review, Trac. Trends Anal. Chem. 158 (2023), 116813.
    [145]
    N. Soda, K. Clack, M.J.A. Shiddiky, Recent advances in liquid biopsy technologies for cancer biomarker detection, Sens. Diagn. 1 (2022) 343-375.
    [146]
    D. Mwanza, O. Adeniyi, S. Tesfalidet, et al., Capacitive label-free ultrasensitive detection of PSA on a covalently attached monoclonal anti-PSA antibody gold surface, J. Electroanal. Chem. 927 (2022), 116983.
    [147]
    A. Usman, Nanoparticle enhanced optical biosensing technologies for prostate specific antigen biomarker detection, IEEE Rev. Biomed. Eng. 15 (2022) 122-137.
    [148]
    G. Luo, K. Jin, S. Deng, et al., Roles of CA19-9 in pancreatic cancer: biomarker, predictor and promoter, Biochim. Biophys. Acta Rev. Canc 1875 (2021), 188409.
    [149]
    H.J. Song, E.S. Yang, J.D. Kim, et al., Best serum biomarker combination for ovarian cancer classification, Biomed. Eng. Online 17 (2018),152.
    [150]
    J. Heylen, K. Punie, A. Smeets, et al., Elevated CA 15.3 in newly diagnosed breast cancer: a retrospective study, Clin. Breast Cancer 22 (2022) 579-587.
    [151]
    J.D. Cohen, A.A. Javed, C. Thoburn, et al., Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers, Proc. Natl. Acad. Sci. U. S. A 114 (2017) 10202-10207.
    [152]
    A.L. Jones, L. Dhanapala, T.A. Baldo, et al., Prostate cancer diagnosis in the clinic using an 8-protein biomarker panel, Anal. Chem. 93 (2021) 1059-1067.
    [153]
    G. Kumarasamy, G. Kaur, Protein biomarkers in gynecological cancers: the need for translational research towards clinical applications, Clinica E Investig. Ginecolog. Obstet. 49 (2022), 100735.
    [154]
    L. Wu, X. Qu, Cancer biomarker detection: recent achievements and challenges, Chem. Soc. Rev. 44 (2015) 2963-2997.
    [155]
    H. Xiong, J. Yan, S. Cai, et al., Cancer protein biomarker discovery based on nucleic acid aptamers, Int. J. Biol. Macromol. 132 (2019) 190-202.
    [156]
    K.L. Singampalli, J. Li, P.B. Lillehoj, Rapid magneto-enzyme-linked immunosorbent assay for ultrasensitive protein detection, Anal. Chim. Acta 1225 (2022), 340246.
    [157]
    T. Chatterjee, A. Knappik, E. Sandford, et al., Direct kinetic fingerprinting and digital counting of single protein molecules, Proc. Natl. Acad. Sci. U. S. A 117 (2020) 22815-22822.
    [158]
    Y.-T Chen, L.-P. Tuan, H.-W. Chen, et al., Quantitative analysis of prostate specific antigen isoforms using immunoprecipitation and stable isotope labeling mass spectrometry, Anal. Chem. 87 (2015) 545-553.
    [159]
    A. Zhang, C. Yin, Z. Wang, et al., Development and application of a fluorescence protein microarray for detecting serum alpha-fetoprotein in patients with hepatocellular carcinoma, J. Int. Med. Res. 44 (2016) 1414-1423.
    [160]
    X. Min, S. Huang, C. Yuan, Dual-color quantum dots nanobeads based suspension microarray for simultaneous detection of dual prostate specific antigens, Anal. Chim. Acta 1204 (2022), 339704.
    [161]
    Y. Yu, Q. Zhang, J. Buscaglia, et al., Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting, Analyst 141 (2016) 4424-4431.
    [162]
    Y. Wang, Z. Zhang, V. Jain, et al., Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses, Sensor. Actuator. B 146 (2010) 381-387.
    [163]
    B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, et al., Electrochemical immunosensors for detection of cancer protein biomarkers, ACS Nano 6 (2012) 6546-6561.
    [164]
    H.J. Lee, A.W. Wark, R.M. Corn, Microarray methods for protein biomarker detection, Analyst 133 (2008) 975-983.
    [165]
    F. Zhou, M. Wang, L. Yuan, et al., Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection, Analyst. 137 (2012) 1779-1784.
    [166]
    R.L. Woodbury, S.M. Varnum, R.C. Zangar, Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA, J. Proteome Res. 1 (2002) 233-237.
    [167]
    Z. Cheng, N. Choi, R. Wang, et al., Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer, ACS Nano 11 (2017) 4926-4933.
    [168]
    W. Wang, W. Wang, L. Liu, et al., Nanoshell-enhanced Raman spectroscopy on a microplate for staphylococcal enterotoxin B sensing, ACS Appl. Mater. Interfaces 8 (2016) 15591-15597.
    [169]
    H. Chon, C. Lim, S.M. Ha, et al., On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres, Anal. Chem. 82 (2010) 5290-5295.
    [170]
    B. Tang, J. Wang, J.A. Hutchison, et al., Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media, ACS Nano 10 (2016) 871-879.
    [171]
    X. Li, L. Li, Y. He, Preparation of a sandwich-like complex “MIPs-target molecule-magnetic SERS probe” and SERS determination of immunoglobulin G, Anal. Sci. 36 (2020) 1025-1030.
    [172]
    W. Liang, H. Lin, J. Chen, et al., Utilization of nanoparticles in microfluidic systems for optical detection, Microsyst. Technol. 22 (2016) 2363-2370.
    [173]
    E.E. Ahi, H. Torul, A. Zengin, et al., A capillary driven microfluidic chip for SERS based hCG detection, Biosens. Bioelectron. 195 (2022), 113660.
    [174]
    R.K. Iles, P.J. Delves, S.A. Butler, Does hCG or hCGβ play a role in cancer cell biology? Mol. Cell. Endocrinol. 329 (2010) 62-70.
    [175]
    J. Rodrigues, S.O. Pereira, N.F. Santos, et al., Insights on luminescence quenching of ZnO tetrapods in the detection of hCG, Appl. Surf. Sci. 527 (2020), 146813.
    [176]
    R. Gao, Z. Cheng, A.J. de Mello, et al., Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics, Lab Chip 16 (2016) 1022-1029.
    [177]
    Z. Zheng, L. Wu, L. Li, et al., Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip, Talanta 188 (2018) 507-515.
    [178]
    Q. Liao, C. Mu, D.-S. Xu, et al., Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering, Langmuir 25 (2009) 4708-4714.
    [179]
    Q. Fu, Z. Zhan, J. Dou, et al., Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique, ACS Appl. Mater. Interfaces 7 (2015) 13322-13328.
    [180]
    W. Leng, P.J. Vikesland, Nanoclustered gold honeycombs for surface-enhanced Raman scattering, Anal. Chem. 85 (2013) 1342-1349.
    [181]
    Y. Gu, Z. Li, S. Ge, et al., A microfluidic chip using Au@SiO2 array-based highly SERS-active substrates for ultrasensitive detection of dual cervical cancer-related biomarkers, Anal. Bioanal. Chem. 414 (2022) 7659-7673.
    [182]
    D. Cialla-May, X.S. Zheng, K. Weber, et al., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics, Chem. Soc. Rev. 46 (2017) 3945-3961.
    [183]
    T. Hillig, P. Horn, A.B. Nygaard, et al., In vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods, Tumor Biol. 36 (2015) 4597-4601.
    [184]
    K. Jibin, R. Babu V, R.S. Jayasree, Graphene-gold nanohybrid-based surface-enhanced Raman scattering platform on a portable easy-to-use centrifugal prototype for liquid biopsy detection of circulating breast cancer cells, ACS Sustainable Chem. Eng. 9 (2021) 15496-15505.
    [185]
    X. Xu, J. Lin, Y. Guo, et al., TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter, Biosens. Bioelectron. 210 (2022), 114305.
    [186]
    J. Loh, L. Jovanovic, M. Lehman, et al., Circulating tumor cell detection in high-risk non-metastatic prostate cancer, J. Cancer Res. Clin. Oncol. 140 (2014) 2157-2162.
    [187]
    L. Dirix, A. Buys, S. Oeyen, et al., Circulating tumor cell detection: a prospective comparison between CellSearch® and RareCyte® platforms in patients with progressive metastatic breast cancer, Breast Cancer Res. Treat. 193 (2022) 437-444.
    [188]
    E. Le Rhun, Q. Tu, M. De Carvalho Bittencourt, et al., Detection and quantification of CSF malignant cells by the CellSearch® technology in patients with melanoma leptomeningeal metastasis, Med. Oncol. 30 (2013), 538.
    [189]
    X. Huang, P. Gao, Y. Song, et al., Meta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch System in colorectal cancer, BMC Cancer 15 (2015), 202.
    [190]
    S. Xu, L. Wu, Y. Qin, et al., Sequential ensemble-decision aliquot ranking isolation and fluorescence in situ hybridization identification of rare cells from blood by using concentrated peripheral blood mononuclear cells, Anal. Chem. 93 (2021) 3196-3201.
    [191]
    J. Han, C. Lu, M. Shen, et al., Fast, reusable, cell uniformly distributed membrane filtration device for separation of circulating tumor cells, ACS Omega 7 (2022) 20761-20767.
    [192]
    M. Aghaamoo, A. Aghilinejad, X. Chen, et al., On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells, Electrophoresis 40 (2019) 1486-1493.
    [193]
    A. Alazzam, B. Mathew, F. Alhammadi, Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis, J. Separ. Sci. 40 (2017) 1193-1200.
    [194]
    S.P. Duffy, H. Ma, Morphological characteristics of CTCs and the potential for deformability-based separation. Z.H. Fan, Ed. Circulating Tumor Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016,pp. 147-172.
    [195]
    G.E. Hvichia, Z. Parveen, C. Wagner, et al., A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells, Int. J. Cancer 138 (2016) 2894-2904.
    [196]
    S. He, J. Wei, L. Ding, et al., State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell, Talanta 239 (2022), 123024.
    [197]
    L. Zhu, X. Feng, S. Yang, et al., Colorimetric detection of immunomagnetically captured rare number CTCs using mDNA-wrapped single-walled carbon nanotubes, Biosens. Bioelectron. 172 (2021), 112780.
    [198]
    X. Wu, Z. Lin, C. Zhao, et al., Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells, Biosens. Bioelectron. 213 (2022), 114425.
    [199]
    Z. Wang, Z. Wu, P. Ding, et al., Selective capture of circulating tumor cells by antifouling nanostructure substrate made of hydrogel nanoparticles, Colloids Surf., B 202 (2021), 111669.
    [200]
    X. Zhou, D. Bai, H. Yu, et al., Detection of rare CTCs by electrochemical biosensor built on quaternary PdPtCuRu nanospheres with mesoporous architectures, Talanta 253 (2023), 123955.
    [201]
    S. Ju, C. Chen, J. Zhang, et al., Detection of circulating tumor cells: opportunities and challenges, Biomark. Res. 10 (2022), 58.
    [202]
    T. Palmela Leitao, M. Miranda, J. Polido, et al., Circulating tumor cell detection methods in renal cell carcinoma: a systematic review, Crit. Rev. Oncol.-Hematol. 161 (2021), 103331.
    [203]
    R.E. Wilson Jr, R. O'Connor, C.E. Gallops, et al., Immunomagnetic capture and multiplexed surface marker detection of circulating tumor cells with magnetic multicolor surface-enhanced Raman scattering nanotags, ACS Appl. Mater. Interfaces 12 (2020) 47220-47232.
    [204]
    W. Xia, H. Li, Y. Li, et al., In vivo coinstantaneous identification of hepatocellular carcinoma circulating tumor cells by dual-targeting magnetic-fluorescent nanobeads, Nano Lett. 21 (2021) 634-641.
    [205]
    L. Nie, F. Li, X. Huang, et al., Folic acid targeting for efficient isolation and detection of ovarian cancer CTCs from human whole blood based on two-step binding strategy, ACS Appl. Mater. Interfaces 10 (2018) 14055-14062.
    [206]
    C. Wan, B. Zhou, Research progress on circulating tumor cells of hepatocellular carcinoma, J. Interv. Med. 4 (2021) 181-183.
    [207]
    L. Zhu, H. Lin, S. Wan, et al., Efficient isolation and phenotypic profiling of circulating hepatocellular carcinoma cells via a combinatorial-antibody-functionalized microfluidic synergetic-chip, Anal. Chem. 92 (2020) 15229-15235.
    [208]
    J.M. Park, J.Y. Lee, J.G. Lee, et al., Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood, Anal. Chem. 84 (2012) 7400-7407.
    [209]
    T. Mei, X. Lu, N. Sun, et al., Real-time quantitative PCR detection of circulating tumor cells using tag DNA mediated signal amplification strategy, J. Pharm. Biomed. Anal. 158 (2018) 204-208.
    [210]
    J. Guo, B. Xiao, X. Zhang, et al., Combined use of positive and negative immunomagnetic isolation followed by real-time RT-PCR for detection of the circulating tumor cells in patients with colorectal cancers, J. Mol. Med. 82 (2004) 768-774.
    [211]
    M. Guo, X. Li, S. Zhang, et al., Real-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patients, Int. J. Oncol. 46 (2015) 281-289.
    [212]
    F. Li, Q. Li, H. Zhou, et al., Detection of circulating tumor cells in breast cancer with a refined immunomagnetic nanoparticle enriched assay and nested-RT-PCR, Nanomed. 9 (2013) 1106-1113.
    [213]
    L. Hu, X. Chen, M. Chen, et al., Enrichment and detection of circulating tumor cells by immunomagnetic beads and flow cytometry, Biotechnol. Lett. 43 (2021) 25-34.
    [214]
    Y. Lu, H. Liang, T. Yu, et al., Isolation and characterization of living circulating tumor cells in patients by immunomagnetic negative enrichment coupled with flow cytometry, Cancer 121 (2015) 3036-3045.
    [215]
    T.G. Ntouroupi, S.Q. Ashraf, S.B. McGregor, et al., Detection of circulating tumour cells in peripheral blood with an automated scanning fluorescence microscope, Br. J. Cancer 99 (2008) 789-795.
    [216]
    D.E. Sabath, M.E. Perrone, A. Clein, et al., Clinical validation of a circulating tumor cell assay using density centrifugation and automated immunofluorescence microscopy, Am. J. Clin. Pathol. 158 (2022) 270-276.
    [217]
    Y. Chong, Y.C. Jung, E. Hwang, et al., Circulating tumor cell detection in lung cancer animal model, J. Chest Surg. 54 (2021) 460-465.
    [218]
    X. Jie, M. Zhang, M. Du, et al., Detection of circulating tumor cells and evaluation of epithelial-mesenchymal transition patterns of circulating tumor cells in ovarian cancer, Transl. Cancer Res. 11 (2022) 2636-2646.
    [219]
    R. Gao, C. Zhan, C. Wu, et al., Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using a SERS-aptamer based microfluidic chip, Lab Chip 21 (2021) 3888-3898.
    [220]
    Y. Xu, J. Lin, X. Wu, et al., A TiO2-based bioprobe enabling excellent SERS activity in the detection of diverse circulating tumor cells, J. Mater. Chem. B 10 (2022) 3808-3816.
    [221]
    P. Zhang, R. Zhang, M. Gao, et al., Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging, ACS Appl. Mater. Interfaces 6 (2014) 370-376.
    [222]
    C. Sun, R. Zhang, M. Gao, et al., A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging, Anal. Bioanal. Chem. 407 (2015) 8883-8892.
    [223]
    S. Dey, R. Vaidyanathan, K.K. Reza, et al., A microfluidic-SERS platform for isolation and immuno-phenotyping of antigen specific T-cells, Sensor. Actuator. B 284 (2019) 281-288.
    [224]
    J. Lin, J. Zheng, A. Wu, An efficient strategy for circulating tumor cell detection: surface-enhanced Raman spectroscopy, J. Mater. Chem. B 8 (2020) 3316-3326.
    [225]
    X. Wu, L. Luo, S. Yang, et al., Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood, ACS Appl. Mater. Interfaces 7 (2015) 9965-9971.
    [226]
    Y. Pang, C. Wang, R. Xiao, et al., Dual-selective and dual-enhanced SERS nanoprobes strategy for circulating hepatocellular carcinoma cells detection, Chem. Eur J. 24 (2018) 7060-7067.
    [227]
    J. Li, Y. Yuan, H. Gan, et al., Double-tetrahedral DNA probe functionalized Ag nanorod biointerface for effective capture, highly sensitive detection, and nondestructive release of circulating tumor cells, ACS Appl. Mater. Interfaces 14 (2022) 32869-32879.
    [228]
    Z. Liu, R. Chen, Y. Li, et al., Integrated microfluidic chip for efficient isolation and deformability analysis of circulating tumor cells, Adv. Biosys. 2 (2018), 1800200.
    [229]
    S.F. Berlanda, M. Breitfeld, C.L. Dietsche, et al., Recent advances in microfluidic technology for bioanalysis and diagnostics, Anal. Chem. 93 (2021) 311-331.
    [230]
    Y. Zhang, Z. Wang, L. Wu, et al., Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip, Small 14 (2018), 1704433.
    [231]
    T.R. Szymborski, M. Czaplicka, A.B. Nowicka, et al., Dielectrophoresis-based SERS sensors for the detection of cancer cells in microfluidic chips, Biosensors 12 (2022), 681.
    [232]
    J. Rezaie, T. Etemadi, M. Feghhi, The distinct roles of exosomes in innate immune responses and therapeutic applications in cancer, Eur. J. Pharmacol. 933 (2022), 175292.
    [233]
    G. Babaei, M. Asghari Vostakolaei, M. Rajabi Bazl, et al., The role of exosomes in the molecular mechanisms of metastasis: focusing on EMT and cancer stem cells, Life Sci. 310 (2022), 121103.
    [234]
    P. Li, X. Yu, W. Han, et al., Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis, ACS Sens. 4 (2019) 1433-1441.
    [235]
    J. Liu, L. Ren, S. Li, et al., The biology, function, and applications of exosomes in cancer, Acta Pharm. Sin. B 11 (2021) 2783-2797.
    [236]
    C. He, L. Li, L. Wang, et al., Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation, Cancer Biol. Med. 18 (2021) 21-33.
    [237]
    Z. Tang, D. Li, S. Hou, et al., The cancer exosomes: clinical implications, applications and challenges, Int. J. Cancer 146 (2020) 2946-2959.
    [238]
    T.-D. Li, R. Zhang, H. Chen, et al., An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer, Chem. Sci. 9 (2018) 5372-5382.
    [239]
    L.M. Channon, V.M. Tyma, Z. Xu, et al., Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: key roles in the hallmarks of cancer, Biochim. Biophys. Acta Rev. Canc 1877 (2022), 188728.
    [240]
    H. Mirzaei, A. Sahebkar, M.R. Jaafari, et al., Diagnostic and therapeutic potential of exosomes in cancer: the beginning of a new tale? J. Cell. Physiol. 232 (2017) 3251-3260.
    [241]
    S.D. Ibsen, J. Wright, J.M. Lewis, et al., Rapid isolation and detection of exosomes and associated biomarkers from plasma, ACS Nano 11 (2017) 6641-6651.
    [242]
    Y. Xiao, Y. Li, Y. Yuan, et al., The potential of exosomes derived from colorectal cancer as a biomarker, Clin. Chim. Acta 490 (2019) 186-193.
    [243]
    F.Z. Farhana, M. Umer, A. Saeed, et al., Isolation and detection of exosomes using Fe2O3 nanoparticles, ACS Appl. Nano Mater. 4 (2021) 1175-1186.
    [244]
    L. Zheng, H. Wang, P. Zuo, et al., Rapid on-chip isolation of cancer-associated exosomes and combined analysis of exosomes and exosomal proteins, Anal. Chem. 94 (2022) 7703-7712.
    [245]
    K. Boriachek, M.K. Masud, C. Palma, et al., Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes, Anal. Chem. 91 (2019) 3827-3834.
    [246]
    H. Xu, C. Liao, P. Zuo, et al., Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes, Anal. Chem. 90 (2018) 13451-13458.
    [247]
    J. Chen, Y. Xu, Y. Lu, et al., Isolation and visible detection of tumor-derived exosomes from plasma, Anal. Chem. 90 (2018) 14207-14215.
    [248]
    P. Zhang, M. He, Y. Zeng, Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating, Lab Chip 16 (2016) 3033-3042.
    [249]
    L. Wang, M.-M. Pan, L. Xu, et al., Recent advances of emerging microfluidic chips for exosome mediated cancer diagnosis, Smart Mater. Med. 2 (2021) 158-171.
    [250]
    P. Zhang, X. Zhou, Y. Zeng, Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer, Chem. Sci. 10 (2019) 5495-5504.
    [251]
    S. Hassanpour Tamrin, A. Sanati Nezhad, A. Sen, Label-free isolation of exosomes using microfluidic technologies, ACS Nano 15 (2021) 17047-17079.
    [252]
    Z. Zhao, Y. Yang, Y. Zeng, et al., A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis, Lab Chip 16 (2016) 489-496.
    [253]
    L. Zhao, H. Wang, J. Fu, et al., Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis, Biosens. Bioelectron. 214 (2022), 114487.
    [254]
    Q. Zhou, A. Rahimian, K. Son, et al., Development of an aptasensor for electrochemical detection of exosomes, Methods 97 (2016) 88-93.
    [255]
    L. Kashefi-Kheyrabadi, J. Kim, S. Chakravarty, et al., Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes, Biosens. Bioelectron. 169 (2020), 112622.
    [256]
    X. Lv, Z. Geng, Y. Su, et al., Label-free exosome detection based on a low-cost plasmonic biosensor array integrated with microfluidics, Langmuir 35 (2019) 9816-9824.
    [257]
    C. Wang, C.H. Huang, Z. Gao, et al., Nanoplasmonic sandwich immunoassay for tumor-derived exosome detection and exosomal PD-L1 profiling, ACS Sens. 6 (2021) 3308-3319.
    [258]
    D. Kwong Hong Tsang, T.J. Lieberthal, C. Watts, et al., Chemically functionalised graphene FET biosensor for the label-free sensing of exosomes, Sci. Rep. 9 (2019), 13946.
    [259]
    W. Zhao, J. Hu, J. Liu, et al., Si nanowire Bio-FET for electrical and label-free detection of cancer cell-derived exosomes, Microsyst. Nanoeng. 8 (2022), 57.
    [260]
    F. Song, C. Wang, C. Wang, et al., Enrichment-detection integrated exosome profiling biosensors promising for early diagnosis of cancer, Anal. Chem. 93 (2021) 4697-4706.
    [261]
    S. Dong, Y. Wang, Z. Liu, et al., Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma, ACS Appl. Mater. Interfaces 12 (2020) 5136-5146.
    [262]
    X. Zhao, C. Luo, Q. Mei, et al., Aptamer-cholesterol-mediated proximity ligation assay for accurate identification of exosomes, Anal. Chem. 92 (2020) 5411-5418.
    [263]
    Y. Wang, Q. Li, H. Shi, et al., Microfluidic Raman biochip detection of exosomes: a promising tool for prostate cancer diagnosis, Lab Chip 20 (2020) 4632-4637.
    [264]
    Z. Han, X. Peng, Y. Yang, et al., Integrated microfluidic-SERS for exosome biomarker profiling and osteosarcoma diagnosis, Biosens. Bioelectron. 217 (2022), 114709.
    [265]
    P. Mandel, P. Metais, Nuclear acids in human blood plasma, C. R. Seances Soc. Biol. Fil. 142 (1948) 241-243.
    [266]
    S.A. Leon, B. Shapiro, D.M. Sklaroff, et al., Free DNA in the serum of cancer patients and the effect of therapy, Cancer Res. 37 (1977) 646-650.
    [267]
    J. Bredno, O. Venn, X. Chen, et al., Circulating tumor DNA allele fraction: a candidate biological signal for multicancer early detection tests to assess the clinical significance of cancers, Am. J. Pathol. 192 (2022) 1368-1378.
    [268]
    Y.K. Chae, M.S. Oh, Detection of minimal residual disease using ctDNA in lung cancer: current evidence and future directions, J. Thorac. Oncol. 14 (2019) 16-24.
    [269]
    A. Bent, S. Raghavan, A. Dasari, et al., The future of ctDNA-defined minimal residual disease: personalizing adjuvant therapy in colorectal cancer, Clin. Colorectal Cancer 21 (2022) 89-95.
    [270]
    S. Khakoo, A. Georgiou, M. Gerlinger, et al., Circulating tumour DNA, a promising biomarker for the management of colorectal cancer, Crit. Rev. Oncol.-Hematol. 122 (2018) 72-82.
    [271]
    M. Morais, D.M. Pinto, J.C. Machado, et al., ctDNA on liquid biopsy for predicting response and prognosis in locally advanced rectal cancer: a systematic review, Eur. J. Surg. Oncol. 48 (2022) 218-227.
    [272]
    A. Campos-Carrillo, J.N. Weitzel, P. Sahoo, et al., Circulating tumor DNA as an early cancer detection tool, Pharmacol. Ther. 207 (2020), 107458.
    [273]
    U. Malapelle, M. Buono, P. Pisapia, et al., Circulating tumor DNA in cancer: predictive molecular pathology meets mathematics, Crit. Rev. Oncol.-Hematol. 163 (2021), 103394.
    [274]
    F.N. Al-Shaheri, M.S.S. Alhamdani, A.S. Bauer, et al., Blood biomarkers for differential diagnosis and early detection of pancreatic cancer, Cancer Treat Rev. 96 (2021), 102193.
    [275]
    L. Valihrach, P. Androvic, M. Kubista, Circulating miRNA analysis for cancer diagnostics and therapy, Mol. Aspect. Med. 72 (2020), 100825.
    [276]
    F.M. Orlandella, A.E. De Stefano, M. Braile, et al., Unveiling the miRNAs responsive to physical activity/exercise training in cancer: a systematic review, Crit. Rev. Oncol.-Hematol. 180 (2022), 103844.
    [277]
    M. Bilal, A. Javaid, F. Amjad, et al., An overview of prostate cancer (PCa) diagnosis: potential role of miRNAs, Transl. Oncol. 26 (2022), 101542.
    [278]
    Y.-H. Zhang, M. Jin, J. Li, et al., Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer, Biochim. Biophys. Acta, Mol. Basis Dis. 1866 (2020), 165847.
    [279]
    Z. Chong, S.K. Yeap, W.Y. Ho, Roles of circulating microRNA(s) in human breast cancer, Arch. Biochem. Biophys. 695 (2020), 108583.
    [280]
    D. Kashyap, H. Kaur, Cell-free miRNAs as non-invasive biomarkers in breast cancer: significance in early diagnosis and metastasis prediction, Life Sci. 246 (2020), 117417.
    [281]
    M.A. Mori, R.G. Ludwig, R. Garcia-Martin, et al., Extracellular miRNAs: from biomarkers to mediators of physiology and disease, Cell Metabol. 30 (2019) 656-673.
    [282]
    M.P. Dragomir, E. Knutsen, G.A. Calin, Classical and noncanonical functions of miRNAs in cancers, Trends Genet. 38 (2022) 379-394.
    [283]
    G.M. Dar, S. Agarwal, A. Kumar, et al., A non-invasive miRNA-based approach in early diagnosis and therapeutics of oral cancer, Crit. Rev. Oncol.-Hematol. 180 (2022), 103850.
    [284]
    V. De Guire, R. Robitaille, N. Tetreault, et al., Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges, Clin. Biochem. 46 (2013) 846-860.
    [285]
    A. Ismail, H.A. El-Mahdy, A.I. Abulsoud, et al., Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: a comprehensive review, Int. J. Biol. Macromol. 224 (2023) 1541-1565.
    [286]
    K.N. Seale, K.H.R. Tkaczuk, Circulating biomarkers in breast cancer, Clin. Breast Cancer 22 (2022) e319-e331.
    [287]
    J. Zhang, H. Zhao, Y. Gao, et al., Secretory miRNAs as novel cancer biomarkers, Biochim. Biophys. Acta Rev. Canc 1826 (2012) 32-43.
    [288]
    N.G. Elhelbawy, I.F. Zaid, A.A. Khalifa, et al., miRNA-148a and miRNA-30c expressions as potential biomarkers in breast cancer patients, Biochem. Biophys. Rep. 27 (2021), 101060.
    [289]
    M.A. Abbas, I. El Tantawy El Sayed, A.M. Kamel Abdu-Allah, et al., Expression of miRNA-29b and miRNA-31 and their diagnostic and prognostic values in Egyptian females with breast cancer, Non Coding RNA Res. 7 (2022) 248-257.
    [290]
    A. Adam-Artigues, I. Garrido-Cano, S. Simon, et al., Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer, ESMO Open 6 (2021), 100039.
    [291]
    H. Si, X. Sun, Y. Chen, et al., Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer, J. Cancer Res. Clin. Oncol. 139 (2013) 223-229.
    [292]
    H.J. Seok, Y.E. Choi, J.Y. Choi, et al., Novel miR-5088-5p promotes malignancy of breast cancer by inhibiting DBC2, Mol. Ther. Nucleic Acids 25 (2021) 127-142.
    [293]
    J. Wei, Y. Wang, J. Gao, et al., Detection of BRAFV600E mutation of thyroid cancer in circulating tumor DNA by an electrochemical-enrichment assisted ARMS-qPCR assay, Microchem. J. 179 (2022), 107452.
    [294]
    J. Yin, L. Xia, Z. Zou, et al., A direct and multiplex digital PCR chip for EGFR mutation, Talanta 250 (2022), 123725.
    [295]
    Z. Geng, S. Li, L. Zhu, et al., “Sample-to-Answer” detection of rare ctDNA mutation from 2 mL plasma with a fully integrated DNA extraction and digital droplet PCR microdevice for liquid biopsy, Anal. Chem. 92 (2020) 7240-7248.
    [296]
    H. Yuan, W. Gao, J. Yin, et al., Detection of EGFR gene with a droplet digital PCR chip integrating a double-layer glass reservoir, Anal. Biochem. 656 (2022), 114877.
    [297]
    C. Hu, L. Zhang, Z. Yang, et al., Graphene oxide-based qRT-PCR assay enables the sensitive and specific detection of miRNAs for the screening of ovarian cancer, Anal. Chim. Acta 1174 (2021), 338715.
    [298]
    T. Yoshinami, N. Kagara, D. Motooka, et al., Detection of ctDNA with personalized molecular barcode NGS and its clinical significance in patients with early breast cancer, Transl. Oncol. 13 (2020), 100787.
    [299]
    M.A. Emelyanova, E.N. Telysheva, K.V. Orlova, et al., Microarray-based analysis of the BRAF V600 mutations in circulating tumor DNA in melanoma patients, Cancer Genet. 250 (2021) 25-35.
    [300]
    F. Damin, S. Galbiati, N. Soriani, et al., Analysis of KRAS, NRAS and BRAF mutational profile by combination of in-tube hybridization and universal tag-microarray in tumor tissue and plasma of colorectal cancer patients, PLoS One 13 (2018), e0207876.
    [301]
    N. Nishida, M. Nagahara, T. Sato, et al., Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters, Clin. Cancer Res. 18 (2012) 3054-3070.
    [302]
    W. Ma, L. Liu, X. Zhang, et al., A microfluidic-based SERS biosensor with multifunctional nanosurface immobilized nanoparticles for sensitive detection of microRNA, Anal. Chim. Acta 1221 (2022), 340139.
    [303]
    J. Dai, C. Xing, Y. Lin, et al., Localized DNA catalytic hairpin assembly reaction on DNA origami for tumor-associated microRNA detection and imaging in live cells, Sensor. Actuator. B 344 (2021), 130195.
    [304]
    L. Li, X. Fang, J. Le, et al., Highly sensitive detection and intracellular imaging of microRNAs based on target-triggered cascade catalytic hairpin assembly, Talanta 250 (2022), 123753.
    [305]
    M. Yang, H. Li, X. Li, et al., Catalytic hairpin self-assembly regulated chameleon silver nanoclusters for the ratiometric detection of CircRNA, Biosens. Bioelectron. 209 (2022), 114258.
    [306]
    X. Cao, Y. Mao, Y. Gu, et al., Highly sensitive and simultaneous detection of ctDNAs related to non-small cell lung cancer in serum using a catalytic hairpin assembly strategy in a SERS microfluidic chip, J. Mater. Chem. B 10 (2022) 6194-6206.
    [307]
    X. Cao, S. Ge, X. Zhou, et al., A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum, Biosens. Bioelectron. 205 (2022), 114110.
    [308]
    Y. Gu, D. Cao, Y. Mao, et al., A SERS microfluidic chip based on hpDNA-functioned Au-Ag nanobowl array for efficient simultaneous detection of non-small cell lung cancer-related microRNAs, Microchem. J. 182 (2022), 107836.
    [309]
    Z. Wang, S. Zong, Z. Wang, et al., Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques, Nanotechnology 28 (2017), 105501.
    [310]
    R. Lampignano, V. Kloten, T. Krahn, et al., Integrating circulating miRNA analysis in the clinical management of lung cancer: present or future? Mol. Aspect. Med. 72 (2020), 100844.
    [311]
    V.D. Phung, W.S. Jung, T.A. Nguyen, et al., Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate, Nanoscale 10 (2018) 22493-22503.
    [312]
    Y. Wang, C. Yu, H. Ji, et al., Label-free therapeutic drug monitoring in human serum by the 3-step surface enhanced Raman spectroscopy and multivariate analysis, Chem. Eng. J. 452 (2023), 139588.
    [313]
    Y. Zhang, Y. Zou, F. Liu, et al., Stable graphene-isolated-Au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis, Anal. Chem. 88 (2016) 10611-10616.
    [314]
    Y. Wang, M. Guan, C. Hu, et al., High-sensitivity biosensor based on SERS integrated with dendrimer-assisted boronic acid-functionalized magnetic nanoparticles for IL-6 detection in human serum, Nanotechnology 34 (2023), 355701.
    [315]
    K. Chen, H. Chen, S. Liang, et al., A background-free SERS strategy for sensitive detection of hydrogen peroxide, Molecules 27 (2022), 7918.
    [316]
    D. Zhu, A. Li, Y. Di, et al., Interference-free SERS nanoprobes for labeling and imaging of MT1-MMP in breast cancer cells, Nanotechnology 33 (2022), 115702.
    [317]
    K.W. Kho, U.S. Dinish, A. Kumar, et al., Frequency shifts in SERS for biosensing, ACS Nano 6 (2012) 4892-4902.
    [318]
    W. Zhu, J.A. Hutchison, M. Dong, et al., Frequency shift surface-enhanced Raman spectroscopy sensing: an ultrasensitive multiplex assay for biomarkers in human health, ACS Sens. 6 (2021) 1704-1716.
    [319]
    H. Ma, X. Sun, L. Chen, et al., Multiplex immunochips for high-accuracy detection of AFP-L3% based on surface-enhanced Raman scattering: implications for early liver cancer diagnosis, Anal. Chem. 89 (2017) 8877-8883.
    [320]
    L. Wang, M. Pumera, Recent advances of 3D printing in analytical chemistry: focus on microfluidic, separation, and extraction devices, Trac. Trends Anal. Chem. 135 (2021), 116151.
    [321]
    J. Parisi, Q. Dong, Y. Lei, In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing, RSC Adv. 5 (2015) 14081-14089.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (358) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return