Citation: | Shengyou Li, Xue Gao, Yi Zheng, Yujie Yang, Jianbo Gao, Dan Geng, Lingli Guo, Teng Ma, Yiming Hao, Bin Wei, Liangliang Huang, Yitao Wei, Bing Xia, Zhuojing Luo, Jinghui Huang. Hydralazine represses Fpn ubiquitination to rescue injured neurons via competitive binding to UBA52[J]. Journal of Pharmaceutical Analysis, 2024, 14(1): 86-99. doi: 10.1016/j.jpha.2023.08.006 |
[1] |
B. Yu, S. Zhou, S. Yi, et al., The regulatory roles of non-coding RNAs in nerve injury and regeneration, Prog. Neurobiol. 134 (2015) 122-139.
|
[2] |
T. Chung, K. Prasad, T.E. Lloyd, Peripheral neuropathy: Clinical and electrophysiological considerations, Neuroimaging Clin. N. Am. 24 (2014) 49-65.
|
[3] |
J. Huang, G. Zhang, S. Li, et al., Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration, J. Nanobiotechnology 21 (2023), 10.
|
[4] |
M.-M. Chen, J. Qin, S.-J. Chen, et al., Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice, J. Nutr. Biochem. 46 (2017) 57-67.
|
[5] |
R.F. Masgutov, G.A. Masgutova, M.N. Zhuravleva, et al., Human adipose-derived stem cells stimulate neuroregeneration, Clin. Exp. Med. 16 (2016) 451-461.
|
[6] |
Q. Zhang, P. Luo, L. Zheng, et al., 18beta-glycyrrhetinic acid induces ROS-mediated apoptosis to ameliorate hepatic fibrosis by targeting PRDX1/2 in activated HSCs, J. Pharm. Anal. 12 (2022) 570-582.
|
[7] |
B.R. Stockwell, J.P. Friedmann Angeli, H. Bayir, et al., Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease, Cell 171 (2017) 273-285.
|
[8] |
L. Xu, Y. Liu, X. Chen, et al., Ferroptosis in life: To be or not to be, Biomed. Pharmacother. 159 (2023), 114241.
|
[9] |
Q. Tang, L. Bai, Z. Zou, et al., Ferroptosis is newly characterized form of neuronal cell death in response to arsenite exposure, Neurotoxicology 67 (2018) 27-36.
|
[10] |
B.R. Cardoso, D.J. Hare, A.I. Bush, et al., Glutathione peroxidase 4: A new player in neurodegeneration? Mol. Psychiatry 22 (2017) 328-335.
|
[11] |
G. Shi, J. Shi, K. Liu, et al., Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury, Glia 61 (2013) 504-512.
|
[12] |
T.L. Phạm, C. Noh, C. Neupane, et al., MAO-B inhibitor, KDS2010, alleviates spinal nerve ligation-induced neuropathic pain in rats through competitively blocking the BDNF/TrkB/NR2B signaling, J. Pain 23 (2022) 2092-2109.
|
[13] |
Y. Qian, Q. Han, X. Zhao, et al., 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration, J. Pineal Res. 65 (2018), e12516.
|
[14] |
X. Gao, F. Chen, X. Xu, et al., Ro25-6981 alleviates neuronal damage and improves cognitive deficits by attenuating oxidative stress via the Nrf2/ARE pathway in ischemia/reperfusion rats, J. Stroke Cerebrovasc. Dis. 32 (2023), 106971.
|
[15] |
S.V. Demyanenko, M.A. Pitinova, Y.N. Kalyuzhnaya, et al., Human multipotent mesenchymal stromal cell-derived extracellular vesicles enhance neuroregeneration in a rat model of sciatic nerve crush injury, Int. J. Mol. Sci. 23 (2022), 8583.
|
[16] |
R. Li, J. Wu, Z. Lin, et al., Single injection of a novel nerve growth factor coacervate improves structural and functional regeneration after sciatic nerve injury in adult rats, Exp. Neurol. 288 (2017) 1-10.
|
[17] |
L. Huang, B. Xia, Z. Liu, et al., Superparamagnetic iron oxide nanoparticle-mediated forces enhance the migration of schwann cells across the astrocyte-schwann cell boundary in vitro, Front. Cell. Neurosci. 11 (2017), 83.
|
[18] |
B. Xia, J. Gao, S. Li, et al., Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p, Theranostics 10 (2020) 8974-8995.
|
[19] |
K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method, Methods 25 (2001) 402-408.
|
[20] |
Z. Bao, L. Fan, L. Zhao, et al., Silencing of A20 aggravates neuronal death and inflammation after traumatic brain injury: A potential trigger of necroptosis, Front. Mol. Neurosci. 12 (2019), 222.
|
[21] |
T. Ma, Y. Hao, S. Li, et al., Sequential oxygen supply system promotes peripheral nerve regeneration by enhancing Schwann cells survival and angiogenesis, Biomaterials 289 (2022), 121755.
|
[22] |
G. Huang, M. Hu, D. Lu, et al., Protective effect and potential mechanism of Schwann cell-derived exosomes on mechanical damage of rat dorsal root ganglion cells, J. Obstet. Gynaecol. Res. 47 (2021) 3691-3701.
|
[23] |
A. Hervera, F. De Virgiliis, I. Palmisano, et al., Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons, Nat. Cell Biol. 20 (2018) 307-319.
|
[24] |
S. Doll, B. Proneth, Y.Y. Tyurina, et al., ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition, Nat. Chem. Biol. 13 (2017) 91-98.
|
[25] |
I. Ingold, C. Berndt, S. Schmitt, et al., Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis, Cell 172 (2018) 409-422.e21.
|
[26] |
H. Wang, P. An, E. Xie, et al., Characterization of ferroptosis in murine models of hemochromatosis, Hepatology 66 (2017) 449-465.
|
[27] |
H. Wang, C. Zeng, G. Luo, et al., Macrophage ferroportin serves as a therapeutic target against bacteria-induced acute lung injury by promoting barrier restoration, iScience 25 (2022), 105698.
|
[28] |
Y. Wu, W. Li, M. Yuan, et al., The synthetic pyrethroid deltamethrin impairs zebrafish (Danio rerio) swim bladder development, Sci. Total Environ. 701 (2020), 134870.
|
[29] |
C.A.K. Lundgren, D. Sjostrand, O. Biner, et al., Scavenging of superoxide by a membrane-bound superoxide oxidase, Nat. Chem. Biol. 14 (2018) 788-793.
|
[30] |
B. Chang, H. Guan, X. Wang, et al., Cox4i2 triggers an increase in reactive oxygen species, leading to ferroptosis and apoptosis in HHV7 infected schwann cells, Front. Mol. Biosci. 8 (2021), 660072.
|
[31] |
R. Tian, A. Abarientos, J. Hong, et al., Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis, Nat. Neurosci. 24 (2021) 1020-1034.
|
[32] |
P. Yu, K. Yang, M. Jiang, RXRα blocks nerve regeneration after spinal cord injury by targeting p66shc, Oxid. Med. Cell. Longev. 2021 (2021), 8253742.
|
[33] |
M. Caillaud, B. Chantemargue, L. Richard, et al., Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress, Neuropharmacology 139 (2018) 98-116.
|
[34] |
L.-B. Li, R. Chai, S. Zhang, et al., Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice, Cells 8 (2019), 198.
|
[35] |
Y. Zuo, B. Li, J. Xie, et al., Sevoflurane anesthesia during pregnancy in mice induces cognitive impairment in the offspring by causing iron deficiency and inhibiting myelinogenesis, Neurochem. Int. 135 (2020), 104693.
|
[36] |
Y. Nishito, T. Kambe, Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels, J. Biol. Chem. 294 (2019) 15686-15697.
|
[37] |
T. Sato, J.S. Shapiro, H.C. Chang, et al., Aging is associated with increased brain iron through cortex-derived hepcidin expression, eLife 11 (2022), e73456.
|
[38] |
J. Lavie, H. De Belvalet, S. Sonon, et al., Ubiquitin-dependent degradation of mitochondrial proteins regulates energy metabolism, Cell Rep. 23 (2018) 2852-2863.
|
[39] |
S. Tiwari, A. Singh, P. Gupta, et al., UBA52 is crucial in HSP90 ubiquitylation and neurodegenerative signaling during early phase of Parkinson’s disease, Cells 11 (2022), 3770.
|
[40] |
X. Quan, C. Yu, Z. Fan, et al., Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury, Exp. Neurol. 363 (2023), 114367.
|
[41] |
S. Agthong, A. Kaewsema, V. Chentanez, Inhibition of p38 MAPK reduces loss of primary sensory neurons after nerve transection, Neurol. Res. 34 (2012) 714-720.
|
[42] |
M.L. Leong, R. Speltz, M. Wessendorf, Effects of chronic constriction injury and spared nerve injury, two models of neuropathic pain, on the numbers of neurons and glia in the rostral ventromedial medulla, Neurosci. Lett. 617 (2016) 82-87.
|
[43] |
M. Mu, X. Liang, N. Zhao, et al., Boosting ferroptosis and microtubule inhibition for antitumor therapy via a carrier-free supermolecule nanoreactor, J. Pharm. Anal. 13 (2023) 99-109.
|
[44] |
B.R. Stockwell, Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications, Cell 185 (2022) 2401-2421.
|
[45] |
X. Jiang, B.R. Stockwell, M. Conrad, Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol. Cell Biol. 22 (2021) 266-282.
|