Citation: | Ying Xu, Yan Xia, Qinhui Liu, Xiandan Jing, Qin Tang, Jinhang Zhang, Qingyi Jia, Zijing Zhang, Jiahui Li, Jiahao Chen, Yimin Xiong, Yanping Li, Jinhan He. Glutaredoxin-1 alleviates acetaminophen-induced liver injury by decreasing its toxic metabolites[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1548-1561. doi: 10.1016/j.jpha.2023.08.004 |
[1] |
W. Bernal, G. Auzinger, A. Dhawan, et al., Acute liver failure, Lancet 376 (2010) 190-201.
|
[2] |
A. Reuben, H. Tillman, R.J. Fontana, et al., Outcomes in adults with acute liver failure between 1998 and 2013: An observational cohort study, Ann. Intern. Med. 164 (2016) 724-732.
|
[3] |
A. Long, M. Magrath, M. Mihalopoulos, et al., Changes in epidemiology of acetaminophen overdoses in an urban county hospital after 20 years, Am. J. Gastroenterol. 117 (2022) 1324-1328.
|
[4] |
A. Bertolini, I.P. van de Peppel, F.A.J.A Bodewes, et al., Abnormal liver function tests in patients with COVID-19: Relevance and potential pathogenesis, Hepatology 72 (2020) 1864-1872.
|
[5] |
R.E. Moss, E.H. Hertzberg, H. Person, et al., Increase in rate of hospitalizations for pediatric intentional acetaminophen ingestion at a single center during the COVID-19 pandemic, Clin. Pediatr. 62 (2023) 295-300.
|
[6] |
M.R. McGill, H. Jaeschke, Metabolism and disposition of acetaminophen: Recent advances in relation to hepatotoxicity and diagnosis, Pharm. Res. 30 (2013) 2174-2187.
|
[7] |
K. Du, A. Ramachandran, H. Jaeschke, Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential, Redox Biol. 10 (2016) 148-156.
|
[8] |
A. Ramachandran, H. Jaeschke, Acetaminophen hepatotoxicity, Semin. Liver Dis. 39 (2019) 221-234.
|
[9] |
B.H. Rumack, D.N. Bateman, Acetaminophen and acetylcysteine dose and duration: Past, present and future, Clin. Toxicol. 50 (2012) 91-98.
|
[10] |
A. Licata, M.G. Minissale, S. Stankevičiūtė, et al., N-acetylcysteine for preventing acetaminophen-induced liver injury: A comprehensive review, Front. Pharmacol. 13 (2022), 828565.
|
[11] |
J.C.Y. Chan, A.C.K. Soh, D.Y.Q. Kioh, et al., Reactive metabolite-induced protein glutathionylation: A potentially novel mechanism underlying acetaminophen hepatotoxicity, Mol. Cell. Proteom. 17 (2018) 2034-2050.
|
[12] |
X. Yang, J. Greenhaw, A. Ali, et al., Changes in mouse liver protein glutathionylation after acetaminophen exposure, J. Pharmacol. Exp. Ther. 340 (2012) 360-368.
|
[13] |
D.J. McGarry, P. Chakravarty, C.R. Wolf, et al., Altered protein S-glutathionylation identifies a potential mechanism of resistance to acetaminophen-induced hepatotoxicity, J. Pharmacol. Exp. Ther. 355 (2015) 137-144.
|
[14] |
A. Musaogullari, Y.C. Chai, Redox regulation by protein S-glutathionylation: From molecular mechanisms to implications in health and disease, Int. J. Mol. Sci. 21 (2020), 8113.
|
[15] |
R. Matsui, B. Ferran, A. Oh, et al., Redox regulation via glutaredoxin-1 and protein S-glutathionylation, Antioxid. Redox Signal. 32 (2020) 677-700.
|
[16] |
J.J. Mieyal, M.M. Gallogly, S. Qanungo, et al., Molecular mechanisms and clinical implications of reversible protein S-glutathionylation, Antioxid. Redox Signal. 10 (2008) 1941-1988.
|
[17] |
Y. Xi, Y. Li, P. Xu, et al., The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1, Sci. Adv. 7 (2021), eabg9241.
|
[18] |
D. Shao, J. Han, X. Hou, et al., Glutaredoxin-1 deficiency causes fatty liver and dyslipidemia by inhibiting sirtuin-1, Antioxid. Redox Sign. 27 (2017) 313-327.
|
[19] |
M.I. Ahmad, M.U. Ijaz, M. Hussain, et al., High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1-/- mice, Food Funct. 11 (2020) 236-252.
|
[20] |
X. Sun, C. Ye, Q. Deng, et al., Contribution of glutaredoxin-1 to Fas S-glutathionylation and inflammation in ethanol-induced liver injury, Life Sci. 264 (2021), 118678.
|
[21] |
K. Seidel, X. Wan, M. Zhang, et al., Alcohol binge drinking selectively stimulates protein S-glutathionylation in aorta and liver of ApoE-/- mice, Front. Cardiovasc. Med. 8 (2021), 649813.
|
[22] |
S. Pu, L. Ren, Q. Liu, et al., Loss of 5-lipoxygenase activity protects mice against paracetamol- induced liver toxicity, Br. J. Pharmacol. 173 (2016) 66-76.
|
[23] |
J. Yan, Q. Liu, Q. Tang, et al., Mesencephalic astrocyte-derived neurotrophic factor alleviates non-alcoholic steatohepatitis induced by Western diet in mice, FASEB J. 36 (2022), e22349.
|
[24] |
J. Guo, Y. Xu, L. Chen, et al., Gut microbiota and host Cyp450s co-contribute to pharmacokinetic variability in mice with non-alcoholic steatohepatitis: Effects vary from drug to drug, J. Adv. Res. 39 (2022) 319-332.
|
[25] |
E. Seki, D.A. Brenner, M. Karin, A liver full of JNK: Signaling in regulation of cell function and disease pathogenesis, and clinical approaches, Gastroenterology 143 (2012) 307-320.
|
[26] |
B.L. Woolbright, H. Jaeschke, Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure, J. Hepatol. 66 (2017) 836-848.
|
[27] |
F.A. Schuran, C. Lommetz, A. Steudter, et al., Aryl hydrocarbon receptor activity in hepatocytes sensitizes to hyperacute acetaminophen-induced hepatotoxicity in mice, Cell. Mol. Gastroenterol. Hepatol. 11 (2021) 371-388.
|
[28] |
Y. Wang, P. Wang, Y. Zhang, et al., Decreased expression of the host long-noncoding RNA-GM facilitates viral escape by inhibiting the kinase activity TBK1 via S-glutathionylation, Immunity 53 (2020) 1168-1181.
|
[29] |
M. Okuda, N. Inoue, H. Azumi, et al., Expression of glutaredoxin in human coronary arteries, Arterioscler. Thromb. Vasc. Biol. 21 (2001) 1483-1487.
|
[30] |
N. Rouhier, J. Couturier, M.K. Johnson, et al., Glutaredoxins: Roles in iron homeostasis, Trends Biochem. Sci. 35 (2010) 43-52.
|
[31] |
C. Saito, C. Zwingmann, H. Jaeschke, Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine, Hepatology 51 (2010) 246-254.
|
[32] |
S. Win, T.A. Than, R.W.M Min, et al., C-Jun N-terminal kinase mediates mouse liver injury through a novel Sab (SH3BP5)-dependent pathway leading to inactivation of intramitochondrial Src, Hepatology 63 (2016) 1987-2003.
|
[33] |
A. Ramachandran, H. Jaeschke, A mitochondrial journey through acetaminophen hepatotoxicity, Food Chem. Toxicol. 140 (2020), 111282.
|
[34] |
A.A. Widjaja, J. Dong, E. Adami, et al., Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury, Sci. Transl. Med. 13 (2021), eaba8146.
|
[35] |
L.P. James, P.R. Mayeux, J.A. Hinson, Acetaminophen-induced hepatotoxicity, Drug Metab. Dispos. 31 (2003) 1499-1506.
|
[36] |
E. Yoon, A. Babar, M. Choudhary, et al., Acetaminophen-induced hepatotoxicity: A comprehensive update, J. Clin. Transl. Hepatol. 4 (2016) 131-142.
|
[37] |
P. Xu, Y. Xi, P. Wang, et al., Inhibition of p53 sulfoconjugation prevents oxidative hepatotoxicity and acute liver failure, Gastroenterology 162 (2022) 1226-1241.
|
[38] |
Y.An, P. Wang, P. Xu, et al., An unexpected role of cholesterol sulfotransferase and its regulation in sensitizing mice to acetaminophen-induced liver injury, Mol. Pharmacol. 95 (2019) 597-605.
|
[39] |
T. Zhang, F. Yu, L. Guo, et al., Small heterodimer partner regulates circadian cytochromes p450 and drug-induced hepatotoxicity, Theranostics 8 (2018) 5246-5258.
|
[40] |
A. Vonada, A. Tiyaboonchai, S. Nygaard, et al., Therapeutic liver repopulation by transient acetaminophen selection of gene-modified hepatocytes, Sci. Transl. Med. 13 (2021), eabg3047.
|
[41] |
S. Vrettou, B. Wirth, S-glutathionylation and S-nitrosylation in mitochondria: Focus on homeostasis and neurodegenerative diseases, Int. J. Mol. Sci. 23 (2022), 15849.
|
[42] |
R.J. Mailloux, J.R. Treberg, Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria, Redox Biol. 8 (2016) 110-118.
|
[43] |
J. Li, P. Cheng, S. Li, et al., Selenium status in diet affects acetaminophen-induced hepatotoxicity via interruption of redox environment, Antioxid. Redox Signal. 34 (2021) 1355-1367.
|
[44] |
F.T. Ogata, V. Branco, F.F. Vale, et al., Glutaredoxin: Discovery, redox defense and much more, Redox Biol. 43 (2021), 101975.
|
[45] |
V. Anathy, S.W. Aesif, A.S. Guala, et al., Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas, J. Cell Biol. 184 (2009) 241-252.
|
[46] |
K. Dong, M. Wu, X. Liu, et al., Glutaredoxins concomitant with optimal ROS activate AMPK through S-glutathionylation to improve glucose metabolism in type 2 diabetes, Free Radic. Biol. Med. 101 (2016) 334-347.
|
[47] |
G. Sgalla, E. Cocconcelli, R. Tonelli, et al., Novel drug targets for idiopathic pulmonary fibrosis, Expert Rev. Respir. Med. 10 (2016) 393-405.
|
[48] |
L.H. Lancaster, J.A. de Andrade, J.D. Zibrak, et al., Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis, Eur. Respir. Rev. 26 (2017), 170057.
|