Citation: | Haochen Hui, Zhuoya Wang, Xuerong Zhao, Lina Xu, Lianhong Yin, Feifei Wang, Liping Qu, Jinyong Peng. Gut microbiome-based thiamine metabolism contributes to the protective effect of one acidic polysaccharide from Selaginella uncinata (Desv.) Spring against inflammatory bowel disease[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 177-195. doi: 10.1016/j.jpha.2023.08.003 |
[1] |
G.G. Kaplan, The global burden of IBD: from 2015 to 2025, Nat. Rev. Gastroenterol. Hepatol. 12 (2015) 720-727.
|
[2] |
G.P. Ramos, K.A. Papadakis, Mechanisms of disease: inflammatory bowel diseases, Mayo Clin. Proc. 94 (2019) 155-165.
|
[3] |
J. Ni, G.D. Wu, L. Albenberg, et al., Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14 (2017) 573-584.
|
[4] |
B. Al-Bawardy, R. Shivashankar, D.D. Proctor, Novel and emerging therapies for inflammatory bowel disease, Front. Pharmacol. 12 (2021), 651415.
|
[5] |
E.K. Wright, N.S. Ding, O. Niewiadomski, Management of inflammatory bowel disease, MJA (Med. J. Aust.). 209 (2018) 318-323.
|
[6] |
M.R. Kudelka, S.R. Stowell, R.D. Cummings, et al., Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD, Nat. Rev. Gastroenterol. Hepatol. 17 (2020) 597-617.
|
[7] |
J.R. Marchesi, D.H. Adams, F. Fava, et al., The gut microbiota and host health: a new clinical frontier, Gut. 65 (2016) 330-339.
|
[8] |
J.K. Nicholson, E. Holmes, J. Kinross, et al., Host-gut microbiota metabolic interactions, Science. 336 (2012) 1262-1267.
|
[9] |
G. Ye, J. Li, J. Zhang, et al., Structural characterization and antitumor activity of a polysaccharide from Dendrobium wardianum, Carbohydr. Polym. 269 (2021), 118253.
|
[10] |
S. Zhou, G. Huang, G. Chen, Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam, Food Chem. 361 (2021), 130089.
|
[11] |
Y. Liu, Y. Ye, X. Hu, et al., Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra, Carbohydr. Polym. 265 (2021), 118081.
|
[12] |
T. Xia, C.-S. Liu, Y.-N. Hu, et al., Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling, Food Res. Int. 150 (2021), 110717.
|
[13] |
G. Ma, Q. Xu, H. Du, et al., Characterization of polysaccharide from Pleurotus eryngii during simulated gastrointestinal digestion and fermentation, Food Chem. 370 (2022), 131303.
|
[14] |
L. Cui, X. Guan, W. Ding, et al., Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota, Int. J. Biol. Macromol. 166 (2021) 1035-1045.
|
[15] |
C. Guo, D. Guo, L. Fang, et al., Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon, Carbohydr. Polym. 267 (2021), 118231.
|
[16] |
C. Guo, Y. Wang, S. Zhang, et al., Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism, Int. J. Biol. Macromol. 181 (2021) 357-368.
|
[17] |
C. Liu, B. Hu, Y. Cheng, et al., In-depth analysis of the mechanisms of aloe polysaccharides on mitigating subacute colitis in mice via microbiota informatics, Carbohydr. Polym. 265 (2021), 118041.
|
[18] |
X.-N. Wu, Y. Yang, H.-H. Zhang, et al., Robustaflavone-4′-dimethyl ether from Selaginella uncinata attenuated lipopolysaccharide-induced acute lung injury via inhibiting FLT3-mediated neutrophil activation, Int. Immunopharm. 82 (2020), 106338.
|
[19] |
J. Xu, L. Yang, R. Wang, et al., The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action, Fitoterapia. 137 (2019), 104255.
|
[20] |
J. Zheng, Y. Zheng, H. Zhi, et al., Two new steroidal saponins from Selaginella uncinata (Desv.) Spring and their protective effect against anoxia, Fitoterapia. 88 (2013) 25-30.
|
[21] |
H. Hui, M. Gao, X. Zhao, et al., Three water soluble polysaccharides with anti-inflammatory activities from Selaginella uncinata (Desv.) Spring, Int. J. Biol. Macromol. 222 (2022) 1983-1995.
|
[22] |
Z. Wu, S. Huang, T. Li, et al., Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis, Microbiome. 9(1) (2021) 184-184.
|
[23] |
E.J. Want, I.D. Wilson, H. Gika, et al., Global metabolic profiling procedures for urine using UPLC-MS, Nat. Protoc. 5 (2010) 1005-1018.
|
[24] |
W.B. Dunn, D. Broadhurst, P. Begley, et al., Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat. Protoc. 6 (2011) 1060-1083.
|
[25] |
T. Kind, G. Wohlgemuth, D.Y. Lee, et al., FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry, Anal. Chem. 81 (2009) 10038-10048.
|
[26] |
J. Wang, T. Zhang, X. Shen, et al., Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS, Metabolomics. 12 (2016), 116.
|
[27] |
S. Wang, L. Ni, X. Fu, et al., A sulfated polysaccharide from saccharina japonica suppresses LPS-induced inflammation both in a macrophage cell model via blocking MAPK/NF-κB signal pathways in vitro and a zebrafish model of embryos and larvae in vivo, Mar. Drugs 18 (2020), 593.
|
[28] |
Li T, Bai J, Du Y, Tan P, et al., Thiamine pretreatment improves endotoxemia-related liver injury and cholestatic complications by regulating galactose metabolism and inhibiting macrophage activation, Int. Immunopharm. 108 (2022), 108892.
|
[29] |
S.F. Barbieri, S. da Costa Amaral, E. Mazepa, et al., Isolation, NMR characterization and bioactivity of a (4-O-methyl-α-D-glucurono)-β-D-xylan from Campomanesia xanthocarpa Berg fruits, Int. J. Biol. Macromol. 207 (2022) 893-904.
|
[30] |
T. Komatsu, J. Kikuchi, Comprehensive signal assignment of 13C-labeled lignocellulose using multidimensional solution NMR and 13C chemical shift comparison with solid-state NMR, Anal. Chem. 85 (2013) 8857-8865.
|
[31] |
Z. Sheng, L. Wen, B. Yang, Structure identification of a polysaccharide in mushroom Lingzhi spore and its immunomodulatory activity, Carbohydr. Polym. 278 (2022), 118939.
|
[32] |
K. Zhao, B. Li, D. He, et al., Chemical characteristic and bioactivity of hemicellulose-based polysaccharides isolated from Salvia miltiorrhiza, Int. J. Biol. Macromol. 165 (2020) 2475-2483.
|
[33] |
A.A.S. de Sousa, N.M.B. Benevides, A. de Freitas Pires, et al., A report of a galactan from marine alga Gelidium crinale with in vivo anti-inflammatory and antinociceptive effects, Fund. Clin. Pharmacol. 27 (2013) 173-180.
|
[34] |
M. Zou, X. Hu, Y. Wang, et al., Structural characterization and anti-inflammatory activity of a pectin polysaccharide HBHP-3 from Houttuynia cordata, Int. J. Biol. Macromol. 210 (2022) 161-171.
|
[35] |
M. Argollo, D. Gilardi, C. Peyrin-Biroulet, et al., Comorbidities in inflammatory bowel disease: a call for action, Lancet Gastroenterol. Hepatol. 4 (2019) 643-654.
|
[36] |
B. Chami, N.J.J. Martin, J.M. Dennis, et al., Myeloperoxidase in the inflamed colon: a novel target for treating inflammatory bowel disease, Arch. Biochem. Biophys. 645 (2018) 61-71.
|
[37] |
A. dos Santos Ramos, G.C.S. Viana, M. de Macedo Brigido, et al., Neutrophil extracellular traps in inflammatory bowel diseases: implications in pathogenesis and therapeutic targets, Pharmacol. Res. 171 (2021), 105779.
|
[38] |
K. Matsuoka, T. Kanai, The gut microbiota and inflammatory bowel disease, Semin. Immunopathol. 37(1) (2015) 47-55.
|
[39] |
P.D. Cani, C. Depommier, M. Derrien, et al., Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms, Nat. Rev. Gastroenterol. Hepatol. 19 (2022) 625-637.
|
[40] |
C. Belzer, L.W. Chia, S. Aalvink, et al., Microbial metabolic networks at the Mucus Layer lead to diet-independent butyrate and vitamin B(12) production by intestinal symbionts, mBio. 8 (2017), e00770.
|
[41] |
R. Caesar, V. Tremaroli, P. Kovatcheva-Datchary, et al., Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling, Cell Metabol. 22 (2015) 658-668.
|
[42] |
Y. Zhao, H. Chen, W. Li, et al., Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota, Int. J. Biol. Macromol. 209 (2022) 356-366.
|
[43] |
Y. Ren, Y. Geng, Y. Du, et al., Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota, J. Nutr. Biochem. 57 (2018) 67-76.
|
[44] |
M.M. Rinschen, J. Ivanisevic, M. Giera, et al., Identification of bioactive metabolites using activity metabolomics, Nat. Rev. Mol. Cell Biol. 20 (2019) 353-367.
|
[45] |
L. Su, C. Mao, X. Wang, et al., The anti-colitis effect of Schisandra chinensis polysaccharide is associated with the regulation of the composition and metabolism of gut microbiota, Front. Cell. Infect. Microbiol. 10 (2020), 519479.
|
[46] |
Y. Sun, L. Fan, W. Mian, et al., Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis, Int. J. Biol. Macromol. 120 (2018) 1387-1395.
|
[47] |
Y. Wang, N. Zhang, J. Kan, et al., Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice, Carbohydr. Polym. 213 (2019) 89-99.
|
[48] |
B. Dalile, L. Van Oudenhove, B. Vervliet, et al., The role of short-chain fatty acids in microbiota-gut-brain communication, Nat. Rev. Gastroenterol. Hepatol. 16 (2019) 461-478.
|
[49] |
D. Parada Venegas, M.K. De la Fuente, G. Landskron, et al., Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol. 10 (2019), 277.
|
[50] |
K.L. Ford, D.J. Jorgenson, E.J.L. Landry, et al., Vitamin and mineral supplement use in medically complex, community-living, older adults, Appl. Physiol. Nutr. Metabol. 44 (2019) 450-453.
|
[51] |
L. Chavez-Galan, M.L. Olleros, D. Vesin, et al., Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages, Front. Immunol. 6 (2015), 263.
|