Citation: | Mariola Olkowicz, Khaled Ramadan, Hernando Rosales-Solano, Miao Yu, Aizhou Wang, Marcelo Cypel, Janusz Pawliszyn. Mapping the metabolic responses to oxaliplatin-based chemotherapy with in vivo spatiotemporal metabolomics[J]. Journal of Pharmaceutical Analysis, 2024, 14(2): 196-210. doi: 10.1016/j.jpha.2023.08.001 |
[1] |
E. Dekker, P.J. Tanis, J.L.A. Vleugels, et al., Colorectal cancer, Lancet 394 (2019) 1467-1480.
|
[2] |
F. Di Nicolantonio, P.P. Vitiello, S. Marsoni, et al., Precision oncology in metastatic colorectal cancer - from biology to medicine, Nat. Rev. Clin. Oncol. 18 (2021) 506-525.
|
[3] |
H. Wang, X. Shan, M. Zhang, et al., Homogeneous and heterogeneous risk and prognostic factors for lung metastasis in colorectal cancer patients, BMC Gastroenterol. 22 (2022), 193.
|
[4] |
H. Vogelsang, S. Haas, C. Hierholzer, et al., Factors influencing survival after resection of pulmonary metastases from colorectal cancer, Br. J. Surg. 91 (2004) 1066-1071.
|
[5] |
C. Carvajal Fierro, H. Facundo-Navia, P. Puerto, et al., Lung metastasectomy from colorectal cancer, 10-year experience in a South American Cancer Center, Front. Surg. 9 (2022), 913678.
|
[6] |
Y. Okazaki, M. Shibutani, E. Wang, et al., Efficacy of adjuvant chemotherapy after complete resection of pulmonary metastasis from colorectal cancer, Mol. Clin. Oncol. 15 (2021), 205.
|
[7] |
C. Rapicetta, F. Lococo, F. Davini, et al., Is adjuvant chemotherapy worthwhile after radical resection for single lung metastasis from colorectal cancer? A multicentric analysis evaluating the risk of recurrence, Front. Oncol. 9 (2019), 00763.
|
[8] |
L. Cui, H. Lu, Y.H. Lee, Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases, Mass Spectrom. Rev. 37 (2018) 772-792.
|
[9] |
R.K. Azad, V. Shulaev, Metabolomics technology and bioinformatics for precision medicine, Brief. Bioinform. 20 (2019) 1957-1971.
|
[10] |
Y. Hu, Z. Wang, L. Liu, et al., Mass spectrometry-based chemical mapping and profiling toward molecular understanding of diseases in precision medicine, Chem. Sci. 12 (2021) 7993-8009.
|
[11] |
D.S. Wishart, Emerging applications of metabolomics in drug discovery and precision medicine, Nat. Rev. Drug Discov. 15 (2016) 473-484.
|
[12] |
V. Kantae, E.H.J. Krekels, M.J. Van Esdonk, et al., Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: Towards personalized drug therapy, Metabolomics 13 (2017), 9.
|
[13] |
M. Jacob, A.L. Lopata, M. Dasouki, et al., Metabolomics toward personalized medicine, Mass Spectrom. Rev. 38 (2019) 221-238.
|
[14] |
L.M. Nascentes Melo, N.P. Lesner, M. Sabatier, et al., Emerging metabolomic tools to study cancer metastasis, Trends Cancer 8 (2022) 988-1001.
|
[15] |
N. Reyes-Garces, E. Gionfriddo, G.A. Gomez-Rios, et al., Advances in solid phase microextraction and perspective on future directions, Anal. Chem. 90 (2018) 302-360.
|
[16] |
H. Piri-Moghadam, M.N. Alam, J. Pawliszyn, Review of geometries and coating materials in solid phase microextraction: Opportunities, limitations, and future perspectives, Anal. Chim. Acta 984 (2017) 42-65.
|
[17] |
G. Ouyang, D. Vuckovic, J. Pawliszyn, Nondestructive sampling of living systems using in vivo solid-phase microextraction, Chem. Rev. 111 (2011) 2784-2814.
|
[18] |
B. Bojko, K. Gorynski, G.A. Gomez-Rios, et al., Low invasive in vivo tissue sampling for monitoring biomarkers and drugs during surgery, Lab. Investig. 94 (2014) 586-594.
|
[19] |
N. Reyes-Garces, E. Gionfriddo, Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics, Trac Trends Anal. Chem. 113 (2019) 172-181.
|
[20] |
E.G. Armitage, A.D. Southam, Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics, Metabolomics 12 (2016), 146.
|
[21] |
S. Lendor, S.A. Hassani, E. Boyaci, et al., Solid phase microextraction-based miniaturized probe and protocol for extraction of neurotransmitters from brains in vivo, Anal. Chem. 91 (2019) 4896-4905.
|
[22] |
P. Reck dos Santos, J. Sakamoto, M. Chen, et al., Modified in vivo lung perfusion for local chemotherapy: A preclinical study with doxorubicin, Ann. Thorac. Surg. 101 (2016) 2132-2140.
|
[23] |
K. Ramadan, B. Gomes, M. Pipkin, et al., A model to assess acute and delayed lung toxicity of oxaliplatin during in vivo lung perfusion, J. Thorac. Cardiovasc. Surg. 161 (2021) 1626-1635.
|
[24] |
M. Olkowicz, H. Rosales-Solano, K. Ramadan, et al., The metabolic fate of oxaliplatin in the biological milieu investigated during in vivo lung perfusion using a unique miniaturized sampling approach based on solid-phase microextraction coupled with liquid chromatography-mass spectrometry, Front. Cell. Dev. Biol. 10 (2022), 928152.
|
[25] |
B. Bojko, N. Looby, M. Olkowicz, et al., Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion, J. Pharm. Anal. 11 (2021) 37-47.
|
[26] |
E. Boyaci, N. Reyes-Garces, Applying green sample preparation techniques to in vivo analysis and metabolomics. Green Approaches for Chemical Analysis. Amsterdam: Elsevier, (2023) 205-239.
|
[27] |
S. Alseekh, A. Aharoni, Y. Brotman, et al., Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices, Nat. Methods 18 (2021) 747-756.
|
[28] |
J. Kirwan, H. Gika, R. Beger, et al., Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management, Metabolomics. 18 (2022) 70.
|
[29] |
M.C. Chambers, B. MacLean, R. Burke, et al., A cross-platform toolkit for mass spectrometry and proteomics, Nat. Biotechnol. 30 (2012) 918-920.
|
[30] |
G. Libiseller, M. Dvorzak, U. Kleb, et al., IPO: A tool for automated optimization of XCMS parameters, BMC Bioinform. 16 (2015) 1-10.
|
[31] |
M. Yu, M. Olkowicz, J. Pawliszyn, Structure/reaction directed analysis for LC-MS based untargeted analysis, Anal. Chim. Acta 1050 (2019) 16-24.
|
[32] |
Z. Pang, G. Zhou, J. Ewald, et al., Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data, Nat. Protoc. 17 (2022) 1735-1761.
|
[33] |
K. Uppal, D.I. Walker, D.P. Jones, xMSannotator: An R package for network-based annotation of high-resolution metabolomics data, Anal. Chem. 89 (2017) 1063-1067.
|
[34] |
T. Kind, H. Tsugawa, T. Cajka, et al., Identification of small molecules using accurate mass MS/MS search, Mass Spectrom. Rev. 37 (2018) 513-532.
|
[35] |
W. Bittremieux, M. Wang, P.C. Dorrestein, The critical role that spectral libraries play in capturing the metabolomics community knowledge, Metabolomics 18 (2022), 94.
|
[36] |
N.F. de Jonge, K. Mildau, D. Meijer, et al., Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools, Metabolomics 18 (2022), 103.
|
[37] |
P.R. dos Santos, I. Iskender, T. Machuca, et al., Modified in vivo lung perfusion allows for prolonged perfusion without acute lung injury, J. Thorac. Cardiovasc. Surg. 147 (2014) 774-782.
|
[38] |
K.A. Stringer, R.T. McKay, A. Karnovsky, et al., Metabolomics and Its Application to Acute Lung Diseases, Front. Immunol. 7 (2016), 00044.
|
[39] |
C.T. Robb, K.H. Regan, D.A. Dorward, et al., Key mechanisms governing resolution of lung inflammation, Semin. Immunopathol. 38 (2016) 425-448.
|
[40] |
G. Liu, R. Summer, Cellular metabolism in lung health and disease, Annu. Rev. Physiol. 81 (2019) 403-428.
|
[41] |
A.B. Fisher, H. Steinberg, M.D. David Bassett, Energy utilization by the lung, Am. J. Med. 57 (1974) 437-446.
|
[42] |
A.B. Fisher, Intermediary metabolism of the lung, Environ. Health Perspect. 55 (1984) 149-158.
|
[43] |
R.J.A. Wanders, J. Komen, S. Kemp, Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans, Febs J. 278 (2011) 182-194.
|
[44] |
D. de A.F. Caldeira, D.J. Weiss, P.R.M. Rocco, et al. Mitochondria in focus: From function to therapeutic strategies in chronic lung diseases, Front. Immunol. 12 (2021), 782074.
|
[45] |
P.J. Garlick, I. Grant, Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids, Biochem. J. 254 (1988) 579-584.
|
[46] |
T. Wiggins, S. Kumar, S.R. Markar, et al., Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review, Cancer Epidemiol. Biomark. Prev. 24 (2015) 32-38.
|
[47] |
G. Neurauter, A.V. Grahmann, M. Klieber, et al., Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8, Cancer Lett. 272 (2008) 141-147.
|
[48] |
M. Gulcev, C. Reilly, T.J. Griffin, et al., Tryptophan catabolism in acute exacerbations of chronic obstructive pulmonary disease, Int. J. Chron. Obstruct. Pulmon. Dis. 11 (2016) 2435-2446.
|
[49] |
F. Rossi, R. Miggiano, D.M. Ferraris, et al., The synthesis of kynurenic acid in mammals: An updated kynurenine aminotransferase structural KATalogue, Front. Mol. Biosci. 6 (2019), 00007.
|
[50] |
J. Wang, L. Chen, B. Chen, et al., Chronic activation of the renin-angiotensin system induces lung fibrosis, Sci. Rep. 5 (2015), 15561.
|
[51] |
D. Gupta, A. Kumar, A. Mandloi, et al., Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities, Pharmacol. Res. 174 (2021), 105924.
|
[52] |
N. Looby, A. Roszkowska, M. Yu, et al., In vivo solid phase microextraction for therapeutic monitoring and pharmacometabolomic fingerprinting of lung during in vivo lung perfusion of FOLFOX, J. Pharm. Anal. (2023) [in press].
|