Citation: | Chang Qu, Qing-Qing Xu, Wen Yang, Mei Zhong, Qiuju Yuan, Yan-Fang Xian, Zhi-Xiu Lin. Gut dysbiosis aggravates cognitive deficits, amyloid pathology and lipid metabolism dysregulation in a transgenic mouse model of Alzheimer's disease[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1526-1547. doi: 10.1016/j.jpha.2023.07.014 |
[1] |
H.W. Querfurth, F.M. LaFerla, Alzheimer’s disease, N Engl J. Med. 362 (2010) 329-344.
|
[2] |
T.D. McKee, R.M. Loureiro, J.A. Dumin, et al., An improved cell-based method for determining the γ-secretase enzyme activity against both Notch and APP substrates, J. Neurosci. Meth. 213 (2013) 14-21.
|
[3] |
S. Liu, C. Wang, T. Jiang, et al., The role of Cdk5 in Alzheimer’s disease, Mol. Neurobiol. 53 (2016) 4328-4342.
|
[4] |
T. Lu, C. Wan, W. Yang, et al., Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease, Curr. Alzheimer Res. 16 (2019) 1206-1215.
|
[5] |
Y. Wen, E. Planel, M. Herman, et al., Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing, J. Neurosci. 28 (2008) 2624-2632.
|
[6] |
A.K. Fu, W.Y. Fu, A.K. Ng, et al., Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 6728-6733.
|
[7] |
J. Wan, A.K. Fu, F.C. Ip, et al., Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: Implications in Alzheimer’s disease, J. Neurosci. 30 (2010) 6873-6881.
|
[8] |
X. Hu, T. Wang, F. Jin, Alzheimer’s disease and gut microbiota, Sci. China Life Sci. 59 (2016) 1006-1023.
|
[9] |
N.M. Vogt, R.L. Kerby, K.A. Dill-McFarland, et al., Gut microbiome alterations in Alzheimer’s disease, Sci. Rep. 7 (2017), 13537.
|
[10] |
P. Tognini, Gut microbiota: A potential regulator of neurodevelopment, Front. Cell. Neurosci. 11 (2017), 25.
|
[11] |
Q.-Q. Xu, W. Yang, M. Zhong, et al., Animal models of Alzheimer’s disease: Preclinical insights and challenges. Acta Mater. Med. 2 (2023) 192-215.
|
[12] |
H. Li, S.P. Ip, Q. Yuan, et al., Isorhynchophylline ameliorates cognitive impairment via modulating amyloid pathology, tau hyperphosphorylation and neuroinflammation: Studies in a transgenic mouse model of Alzheimer’s disease, Brain Behav. Immun. 82 (2019) 264-278.
|
[13] |
C. Qu, Q. Li, Z. Su, et al., Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota, J. Adv. Res. 35 (2022) 231-243.
|
[14] |
Q. Xu, Z. Su, W. Yang, et al., Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer’s disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway, J. Neuroinflammation 20 (2023), 19.
|
[15] |
L. Zhao, Y. Huang, L. Lu, et al., Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats, Microbiome 6 (2018), 107.
|
[16] |
Q. Wang, Y. Shen, X. Wang, et al., Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice, Aging 12 (2020) 628-649.
|
[17] |
Y. Xian, S.P. Ip, H. Li, et al., Isorhynchophylline exerts antidepressant-like effects in mice via modulating neuroinflammation and neurotrophins: Involvement of the PI3K/Akt/GSK-3β signaling pathway, FASEB J. 33 (2019) 10393-10408.
|
[18] |
Y. Xian, D. Fan, S.P. Ip, et al., Antidepressant-like effect of isorhynchophylline in mice, Neurochem. Res. 42 (2017) 678-685.
|
[19] |
J.C. Cruz, H.C. Tseng, J.A. Goldman, et al., Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles, Neuron 40 (2003) 471-483.
|
[20] |
C. Chen, E.H. Ahn, S.S. Kang, et al., Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model, Sci. Adv. 6 (2020), eaba0466.
|
[21] |
P. Liu, G. Peng, N. Zhang, et al., Crosstalk between the gut microbiota and the brain: An update on neuroimaging findings, Front. Neurol. 10 (2019), 883.
|
[22] |
W. Chen, X. Zhang, W. Huang, Role of neuroinflammation in neurodegenerative diseases (review), Mol. Med. Rep. 13 (2016) 3391-3396.
|
[23] |
I. Morales, L. Guzman-Martinez, C. Cerda-Troncoso, et al., Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches, Front. Cell. Neurosci. 8 (2014), 112.
|
[24] |
J.W. Kinney, S.M. Bemiller, A.S. Murtishaw, et al., Inflammation as a central mechanism in Alzheimer’s disease, Alzheimers Dement. 4 (2018) 575-590.
|
[25] |
H.C. Brigas, M. Ribeiro, J.E. Coelho, et al., IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease, Cell Rep. 36 (2021), 109574.
|
[26] |
H. Akiyama, S. Barger, S. Barnum, et al., Inflammation and Alzheimer’s disease, Neurobiol. Aging 21 (2000) 383-421.
|
[27] |
F. Pistollato, S.S. Cano, I. Elio, et al., Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease, Nutr. Rev. 74 (2016) 624-634.
|
[28] |
S. Liu, J. Gao, M. Zhu, et al., Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment, Mol. Neurobiol. 57 (2020) 5026-5043.
|
[29] |
T. Doifode, V.V. Giridharan, J.S. Generoso, et al., The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology, Pharmacol. Res. 164 (2021), 105314.
|
[30] |
S. Westfall, D.M. Dinh, G.M. Pasinetti, Investigation of potential brain microbiome in Alzheimer’s disease: Implications of study bias, J. Alzheimers Dis. 75 (2020) 559-570.
|
[31] |
J.F. Cryan, K.J. O'Riordan, C.S.M. Cowan, et al., The microbiota-gut-brain axis, Physiol. Rev. 99 (2019) 1877-2013.
|
[32] |
S. Isaiah, D.T. Loots, R. Solomons, et al., Overview of brain-to-gut axis exposed to chronic CNS bacterial infection(s) and a predictive urinary metabolic profile of a brain infected by Mycobacterium tuberculosis, Front. Neurosci. 14 (2020), 296.
|
[33] |
Z. Wang, E. Klipfell, B.J. Bennett, et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature 472 (2011) 57-63.
|
[34] |
C. Roncal, E. Martinez-Aguilar, J. Orbe, et al., Trimethylamine-N-oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease, Sci. Rep. 9 (2019), 15580.
|
[35] |
M. Dambrova, G. Latkovskis, J. Kuka, et al., Diabetes is associated with higher trimethylamine N-oxide plasma levels, and 124 (2016) 251-256.
|
[36] |
C.W.H. Chan, B.M.H. Law, M.M.Y. Waye, et al., Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer - where we are and where shall we go? J. Cancer 10 (2019) 5874-5882.
|
[37] |
R. Xu, Q. Wang, Towards understanding brain-gut-microbiome connections in Alzheimer’s disease, BMC Syst. Biol. 10 Suppl 3 (2016), 63.
|
[38] |
Q. Ma, C. Xing, W. Long, et al., Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis, J. Neuroinflammation 16 (2019), 53.
|
[39] |
D. Li, Y. Ke, R. Zhan, et al., Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice, Aging Cell 17 (2018), e12768.
|
[40] |
N.M. Vogt, K.A. Romano, B.F. Darst, et al., The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease, Alzheimers. Res. Ther. 10 (2018), 124.
|
[41] |
Food and Nutrition Board, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Panthotenic Acid, Biotin, and Cholin, National Academy Press, Washington, 1998.
|
[42] |
S.C. Garner, M.H. Mar, S.H. Zeisel, Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet, J. Nutr. 125 (1995) 2851-2858.
|
[43] |
S.H. Zeisel, K.A. da Costa, P.D. Franklin, et al., Choline, an essential nutrient for humans, FASEB J. 5 (1991) 2093-2098.
|
[44] |
K.A. da Costa, M. Badea, L.M. Fischer, et al., Elevated serum creatine phosphokinase in choline-deficient humans: Mechanistic studies in C2C12 mouse myoblasts, Am. J. Clin. Nutr. 80 (2004) 163-170.
|
[45] |
K.A. da Costa, M.D. Niculescu, C.N. Craciunescu, et al., Choline deficiency increases lymphocyte apoptosis and DNA damage in humans, Am. J. Clin. Nutr. 84 (2006) 88-94.
|