Citation: | Shuai Zhang, Tingting Wang, Ye Feng, Fei Li, Aijuan Qu, Xiuchen Guan, Hui Wang, Dan Xu. Pregnenolone 16α-carbonitrile negatively regulates hippocampal cytochrome P450 enzymes and ameliorates phenytoin-induced hippocampal neurotoxicity[J]. Journal of Pharmaceutical Analysis, 2023, 13(12): 1510-1525. doi: 10.1016/j.jpha.2023.07.013 |
[1] |
P. Anzenbacher, E. Anzenbacherova, Cytochromes P450 and metabolism of xenobiotics, Cell. Mol. Life Sci. 58 (2001) 737-747.
|
[2] |
W. Kuban, W.A. Daniel, Cytochrome P450 expression and regulation in the brain, Drug Metab. Rev. 53 (2021) 1-29.
|
[3] |
B. Schilter, C.J. Omiecinski, Regional distribution and expression modulation of cytochrome P-450 and epoxide hydrolase mRNAs in the rat brain, Mol. Pharmacol. 44 (1993) 990-996.
|
[4] |
S.L. Miksys, R.F. Tyndale, Drug-metabolizing cytochrome P450s in the brain, J. Psychiatry Neurosci. 27 (2002) 406-415.
|
[5] |
A.G. Herzo, L.A. Levesque, F.W. Drislane, et al., Phenytoin-induced elevation of serum estradiol and reproductive dysfunction in men with epilepsy, Epilepsia 32 (1991) 550-553.
|
[6] |
J.I.T. Isojarvi, E. Tauboell, A.G. Herzog, Effect of antiepileptic drugs on reproductive endocrine function in individuals with epilepsy, CNS Drugs 19 (2005) 207-223.
|
[7] |
A. Quartier, L. Chatrousse, C. Redin, et al., Genes and pathways regulated by androgens in human neural cells, potential candidates for the male excess in autism spectrum disorder, Biol. Psychiatry 84 (2018) 239-252.
|
[8] |
M.I. Ransome, W.C. Boon, Testosterone-induced adult neurosphere growth is mediated by sexually-dimorphic aromatase expression, Front. Cell. Neurosci. 9 (2015), 253.
|
[9] |
M.D. Spritzer, L.A.M. Galea, Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats, Dev. Neurobiol. 67 (2007) 1321-1333.
|
[10] |
T.S. Benice, J. Raber, Castration and training in a spatial task alter the number of immature neurons in the hippocampus of male mice, Brain Res. 1329 (2010) 21-29.
|
[11] |
G. Corona, F. Guaraldi, G. Rastrelli, et al., Testosterone deficiency and risk of cognitive disorders in aging males, World J. Mens Health. 39 (2021) 9-18.
|
[12] |
F. Kurth, E. Luders, N.L. Sicotte, et al., Neuroprotective effects of testosterone treatment in men with multiple sclerosis, Neuroimage Clin. 4 (2014) 454-460.
|
[13] |
H. Wang, S. Faucette, R. Moore, et al., Human constitutive androstane receptor mediates induction of CYP2B6 gene expression by phenytoin, J. Biol. Chem. 279 (2004) 29295-29301.
|
[14] |
J.P. Jackson, S.S. Ferguson, R. Moore, et al., The constitutive active/androstane receptor regulates phenytoin induction of Cyp2c29, Mol. Pharmacol. 65 (2004) 1397-1404.
|
[15] |
P. Torres-Vergara, Y.S. Ho, F. Espinoza, et al., The constitutive androstane receptor and pregnane X receptor in the brain, Br. J. Pharmacol. 177 (2020) 2666-2682.
|
[16] |
W. Xie, J.L. Barwick, M. Downes, et al., Humanized xenobiotic response in mice expressing nuclear receptor SXR, Nature 406 (2000) 435-439.
|
[17] |
C.D. Applegate, G.M. Samoriski, K. Ozduman, Effects of valproate, phenytoin, and MK-801 in a novel model of epileptogenesis, Epilepsia 38 (1997) 631-636.
|
[18] |
S. Sudha, M.K. Lakshmana, N. Pradhan, Chronic phenytoin induced impairment of learning and memory with associated changes in brain acetylcholine esterase activity and monoamine levels, Pharmacol. Biochem. Behav. 52 (1995) 119-124.
|
[19] |
A. Mohan, K. Krishna, Memory impairment allied to temporal lobe epilepsy and its deterioration by phenytoin: A highlight on ameliorative effects of levetiracetam in mouse model, Int. J. Epilepsy 5 (2018) 19-27.
|
[20] |
V. Zoufal, S. Mairinger, M. Brackhan, et al., Imaging P-glycoprotein induction at the blood-brain barrier of a β-amyloidosis mouse model with 11C-metoclopramide PET, J. Nucl. Med. 61 (2020) 1050-1057.
|
[21] |
B. Bauer, A.M. Hartz, G. Fricker, et al., Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier, Mol. Pharmacol. 66 (2004) 413-419.
|
[22] |
T. Yilmaz, M. Akca, Y. Turan, et al., Efficacy of dexamethasone on penicillin-induced epileptiform activity in rats: An electrophysiological study, Brain Res. 1554 (2014) 67-72.
|
[23] |
Y. Zhang, W. Hu, B. Zhang, et al., Ginsenoside Rg1 protects against neuronal degeneration induced by chronic dexamethasone treatment by inhibiting NLRP-1 inflammasomes in mice, Int. J. Mol. Med. 40 (2017) 1134-1142.
|
[24] |
B.W. Peeters, J.A. Tonnaer, M.B. Groen, et al., Glucocorticoid receptor antagonists: New tools to investigate disorders characterized by cortisol hypersecretion, Stress 7 (2004) 233-241.
|
[25] |
J. Shu, G. Qiu, I. Mohammad, A semi-automatic image analysis tool for biomarker detection in immunohistochemistry analysis, 2013 Seventh International Conference on Image and Graphics. July 26-28, 2013, Qingdao, China. IEEE, 2013, 937-942.
|
[26] |
A.T.M. Konkle, M.M. McCarthy, Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain, Endocrinology 152 (2011) 223-235.
|
[27] |
B.N. DuBois, F. Amirrad, R. Mehvar, A comparison of calcium aggregation and ultracentrifugation methods for the preparation of rat brain microsomes for drug metabolism studies, Pharmacology 106 (2021) 687-692.
|
[28] |
P.M. Jeavons, Letter: Behavioural effects of anti-epileptic drugs, Dev. Med. Child Neurol. 18 (1976), 394.
|
[29] |
R.P. Meyer, C.E. Hagemeyer, R. Knoth, et al., Anti-epileptic drug phenytoin enhances androgen metabolism and androgen receptor expression in murine hippocampus, J. Neurochem. 96 (2006) 460-472.
|
[30] |
C. Ghosh, M. Hossain, A. Spriggs, et al., Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: An in vitro study, Epilepsia 56 (2015) 439-449.
|
[31] |
T. Niwa, N. Murayama, Y. Imagawa, et al., Regioselective hydroxylation of steroid hormones by human cytochromes P450, Drug Metab. Rev. 47 (2015) 89-110.
|
[32] |
Y.-Q. Ping, C. Mao, P. Xiao, et al., Structures of the glucocorticoid-bound adhesion receptor GPR97-Go complex, Nature 589 (2021) 620-626.
|
[33] |
C. Kara, A. Ucakturk, O.F. Aydin, et al., Adverse effect of phenytoin on glucocorticoid replacement in a child with adrenal insufficiency, J. Pediatr. Endocrinol. Metab. 23 (2010) 963-966.
|
[34] |
J.B. Chalk, K. Ridgeway, T. Brophy, et al., Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients, J. Neurol. Neurosurg. Psychiatry 47 (1984) 1087-1090.
|
[35] |
W. Jubiz, A.W. Meikle, Alterations of glucocorticoid actions by other drugs and disease states, Drugs 18 (1979) 113-121.
|
[36] |
S.R. Hunter, A. Vonk, A.K. Mullen Grey, et al., Role of glucocorticoid receptor and pregnane X receptor in dexamethasone induction of rat hepatic aryl hydrocarbon receptor nuclear translocator and NADPH-cytochrome P450 oxidoreductase, Drug. Metab. Dispos. 45 (2017) 118-129.
|
[37] |
E. Haberlandt, C. Weger, S.B. Sigl, et al., Adrenocorticotropic hormone versus pulsatile dexamethasone in the treatment of infantile epilepsy syndromes, Pediatr. Neurol. 42 (2010) 21-27.
|
[38] |
S. Shorvon, M. Ferlisi, The treatment of super-refractory status epilepticus: A critical review of available therapies and a clinical treatment protocol, Brain 134 (2011) 2802-2818.
|
[39] |
K. Thelen, J.B. Dressman, Cytochrome P450-mediated metabolism in the human gut wall, J. Pharm. Pharmacol. 61 (2009) 541-558.
|
[40] |
A.M. Kanner, M.M. Bicchi, Antiseizure medications for adults with epilepsy: A review, JAMA 327 (2022) 1269-1281.
|
[41] |
J. Patocka, Q. Wu, E. Nepovimova, et al., Phenytoin - An anti-seizure drug: overview of its chemistry, pharmacology and toxicology, Food. Chem. Toxicol. 142 (2020), 111393.
|
[42] |
J.D. Cardoso-Vera, L.M. Gomez-Olivan, H. Islas-Flores, et al., Multi-biomarker approach to evaluate the neurotoxic effects of environmentally relevant concentrations of phenytoin on adult zebrafish Danio rerio, Sci. Total Environ. 834 (2022), 155359.
|
[43] |
M.M. Nagib, M.G. Tadros, R.M. Rahmo, et al., Ameliorative effects of α-tocopherol and/or coenzyme Q10 on phenytoin-induced cognitive impairment in rats: role of VEGF and BDNF-TrkB-CREB pathway, Neurotox. Res. 35 (2019) 451-462.
|
[44] |
B.S. McEwen, How do sex and stress hormones affect nerve cells? Ann. N. Y. Acad. Sci. 743 (1994) 1-18.
|
[45] |
A.G. Herzog, K.M. Fowler, Sexual hormones and epilepsy: threat and opportunities, Curr. Opin. Neurol. 18 (2005) 167-172.
|
[46] |
C.A. Frye, Role of androgens in epilepsy, Expert Rev. Neurother. 6 (2006) 1061-1075.
|
[47] |
N. Killer, M. Hock, M. Gehlhaus, et al., Modulation of androgen and estrogen receptor expression by antiepileptic drugs and steroids in hippocampus of patients with temporal lobe epilepsy, Epilepsia 50 (2009) 1875-1890.
|
[48] |
E.G. Schuetz, W. Schmid, G. Schutz, et al., The glucocorticoid receptor is essential for induction of cytochrome P-4502B by steroids but not for drug or steroid induction of CYP3A or P-450 reductase in mouse liver, Drug Metab. Dispos. 28 (2000) 268-278.
|