Volume 13 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Adewale Oluwaseun Fadaka, Taiwo Akinsoji, Ashwil Klein, Abram Madimabe Madiehe, Mervin Meyer, Marshall Keyster, Lucky Mashudu Sikhwivhilu, Nicole Remaliah Samantha Sibuyi. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1235-1251. doi: 10.1016/j.jpha.2023.07.008
Citation: Adewale Oluwaseun Fadaka, Taiwo Akinsoji, Ashwil Klein, Abram Madimabe Madiehe, Mervin Meyer, Marshall Keyster, Lucky Mashudu Sikhwivhilu, Nicole Remaliah Samantha Sibuyi. Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1235-1251. doi: 10.1016/j.jpha.2023.07.008

Stage-specific treatment of colorectal cancer: A microRNA-nanocomposite approach

doi: 10.1016/j.jpha.2023.07.008
Funds:

The study was funded by the Department of Science and Innovation/Mintek Nanotechnology Innovation Centre.

  • Received Date: Feb. 16, 2023
  • Accepted Date: Jul. 12, 2023
  • Rev Recd Date: Jul. 11, 2023
  • Publish Date: Jul. 17, 2023
  • Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
  • loading
  • A. Bhalla, M. Zulfiqar, M.H. Bluth, Molecular diagnostics in colorectal carcinoma: Advances and applications for 2018, Clin. Lab. Med. 38 (2018) 311-342.
    S. Harrison, H. Benziger, The molecular biology of colorectal carcinoma and its implications: A review, Surg. 9 (2011) 200-210.
    H. Sung, J. Ferlay, R.L. Siegel, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209-249.
    D. Basak, M.N. Uddin, J. Hancock, The role of oxidative stress and its counteractive utility in colorectal cancer (CRC), Cancers 12 (2020), 3336.
    J.-S. Wang, C.-Q. Jing, K.-S. Shan, et al., Semaphorin 4D and hypoxia-inducible factor-1α overexpression is related to prognosis in colorectal carcinoma, World J. Gastroenterol. 21 (2015) 2191-2198.
    A. Misawa, K.I. Takayama, S. Inoue, Long non-coding RNAs and prostate cancer, Cancer Sci. 108 (2017) 2107-2114.
    T.X. Lu, M.E. Rothenberg, microRNA, J. Allergy Clin. Immunol. 141 (2018) 1202-1207.
    R. Rupaimoole, F.J. Slack, microRNA therapeutics: Towards a new era for the management of cancer and other diseases, Nat. Rev. Drug Discov. 16 (2017) 203-222.
    J. Jiang, W. Chang, Y. Fu, et al., SAV1, regulated by microRNA-21, suppresses tumor growth in colorectal cancer, Biochem. Cell Biol. 97 (2019) 91-99.
    G. Stepanov, E. Zhuravlev, V. Shender, et al., Nucleotide modifications decrease innate immune response induced by synthetic analogs of snRNAs and snoRNAs, Genes 9 (2018), 531.
    C. Zhao, X. Sun, L. Li, Biogenesis and function of extracellular miRNAs, ExRNA 1 (2019), 38.
    S.R. Paliwal, R. Paliwal, S.P. Vyas, A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery, Drug Deliv. 22 (2015) 231-242.
    R. Denzler, S.E. McGeary, A.C. Title, et al., Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression, Mol. Cell 64 (2016) 565-579.
    Y. Fu, J. Chen, Z. Huang, Recent progress in microRNA-based delivery systems for the treatment of human disease, ExRNA 1 (2019), 24.
    Y. Chen, D.-Y. Gao, L. Huang, In vivo delivery of miRNAs for cancer therapy: Challenges and strategies, Adv. Drug Deliv. Rev. 81 (2015) 128-141.
    J. Li, H. Liang, J. Liu, et al., Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy, Int. J. Pharm. 546 (2018) 215-225.
    J. Majumder, O. Taratula, T. Minko, Nanocarrier-based systems for targeted and site specific therapeutic delivery, Adv. Drug Deliv. Rev. 144 (2019) 57-77.
    B. Mishra, B.B. Patel, S. Tiwari, Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery, Nanomed. 6 (2010) 9-24.
    G. Yang, Y. Liu, J. Chen, et al., Self-adaptive nanomaterials for rational drug delivery in cancer therapy, Acc. Mater. Res. 3 (2022) 1232-1247.
    M. Zhao, R. Wang, K. Yang, et al., Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis, Acta Pharm. Sin. B 13 (2023) 916-941.
    V. Baumann, J. Winkler, miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents, Future Med. Chem. 6 (2014) 1967-1984.
    Y. Peng, C.M. Croce, The role of microRNAs in human cancer, Signal Transduct. Target. Ther. 1 (2016), 15004.
    Y.-C. Lu, Y.-J. Chen, H.-M. Wang, et al., Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling, Cancer Prev. Res. 5 (2012) 665-674.
    S.T. Reis, J. Pontes-Junior, A.A. Antunes, et al., miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer, BMC Urol. 12 (2012) 1-7.
    J. Shen, G.W. Hruby, J.M. McKiernan, et al., Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer, Prostate 72 (2012) 1469-1477.
    B.N. Hannafon, A. Cai, C.L. Calloway, et al., miR-23b and miR-27b are oncogenic microRNAs in breast cancer: Evidence from a CRISPR/Cas9 deletion study, BMC Cancer 19 (2019), 642.
    O. Vaksman, C. Trope, B. Davidson, et al., Exosome-derived miRNAs and ovarian carcinoma progression, Carcinogenesis 35 (2014) 2113-2120.
    P. Qi, M.-D. Xu, X.-H. Shen, et al., Reciprocal repression between TUSC7 and miR-23b in gastric cancer, Int. J. Cancer 137 (2015) 1269-1278.
    L. Chen, K. Zhang, Z. Shi, et al., A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo, Oncol. Rep. 31 (2014) 1573-1580.
    S. O’Bryan, S. Dong, J.M. Mathis, et al., The roles of oncogenic miRNAs and their therapeutic importance in breast cancer, Eur. J. Cancer 72 (2017) 1-11.
    B. Zhang, X. Pan, G.P. Cobb, et al., microRNAs as oncogenes and tumor suppressors, Dev. Biol. 302 (2007) 1-12.
    A.O. Fadaka, N.R.S. Sibuyi, A.M. Madiehe, et al., microRNA-based regulation of Aurora A kinase in breast cancer, Oncotarget 11 (2020) 4306-4324.
    L.Z. Rassenti, V. Balatti, E.M. Ghia, et al., microRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 10731-10736.
    J.R. Pon, M.A. Marra, MEF2 transcription factors: Developmental regulators and emerging cancer genes, Oncotarget 7 (2016) 2297-2312.
    M.-Q. He, J.-F. Wan, H.-F. Zeng, et al., miR-133a-5p suppresses gastric cancer through TCF4 down-regulation, J. Gastrointest. Oncol. 12 (2021) 1007-1019.
    L. Zhang, Y. Liao, L. Tang, microRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer, J. Exp. Clin. Cancer Res. 38 (2019), 53.
    A.O. Fadaka, A. Pretorius, A. Klein, Biomarkers for stratification in colorectal cancer: microRNAs, Cancer Contr. 26 (2019), 1073274819862784.
    A.O. Fadaka, B.A. Ojo, O.B. Adewale, et al., Effect of dietary components on miRNA and colorectal carcinogenesis, Cancer Cell Int. 18 (2018) 130.
    A.O. Fadaka, A. Pretorius, A. Klein, Functional prediction of candidate microRNAs for CRC management using in silico approach, Int. J. Mol. Sci. 20 (2019), 5190.
    A.O. Fadaka, A. Klein, A. Pretorius, In silico identification of microRNAs as candidate colorectal cancer biomarkers, Tumor Biol. 41 (2019), 1010428319883721.
    A.O. Fadaka, O.O. Bakare, A. Pretorius, et al., Genomic profiling of microRNA target genes in colorectal cancer, Tumor Biol. 42 (2020), 1010428320933512.
    A.O. Fadaka, A. Pretorius, A. Klein, microRNA assisted gene regulation in colorectal cancer, Int. J. Mol. Sci. 20 (2019), 4899.
    C. Li, Y. Feng, G. Coukos, et al., Therapeutic microRNA strategies in human cancer, AAPS J. 11 (2009) 747-757.
    A.J. Schetter, H. Okayama, C.C. Harris, The role of microRNAs in colorectal cancer, Cancer J. 18 (2012) 244-252.
    I.D. Nagtegaal, P. Quirke, H.-J. Schmoll, Has the new TNM classification for colorectal cancer improved care? Nat. Rev. Clin. Oncol. 9 (2012) 119-123.
    N. Zhang, X. Hu, Y. Du, et al., The role of miRNAs in colorectal cancer progression and chemoradiotherapy, Biomed. Pharmacother. 134 (2021), 111099.
    P. Pourdavoud, B. Pakzad, M. Mosallaei, et al., miR-196: Emerging of a new potential therapeutic target and biomarker in colorectal cancer, Mol. Biol. Rep. 47 (2020) 9913-9920.
    W. Sun, J. Li, L. Zhou, et al., The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer, Theranostics 10 (2020) 1981-1996.
    M.Z. Michael, S.M. O’Connor, N.G. van Holst Pellekaan, et al., Reduced accumulation of specific microRNAs in colorectal neoplasia, Mol Cancer Res. 1 (2003) 882-891.
    U. Drebber, M. Lay, I Wedemeyer, et al., Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy, Int. J. Oncol. 39 (2011) 409-415.
    N. Valeri, C. Braconi, P. Gasparini, et al., microRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer, Cancer Cell 25 (2014) 469-483.
    W.-T. Liao, Y.-P. Ye, N.-J. Zhang, et al., microRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2, J. Pathol. 232 (2014) 415-427.
    C. Guo, J.F. Sah, L. Beard, et al., The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers, Genes Chromosom. Cancer 47 (2008) 939-946.
    S.M. Johnson, H. Grosshans, J. Shingara, et al., RAS is regulated by the let-7 microRNA family, Cell 120 (2005) 635-647.
    M. Hiraki, J. Nishimura, H. Takahashi, et al., Concurrent targeting of KRAS and AKT by miR-4689 is a novel treatment against mutant KRAS colorectal cancer, Mol. Ther. Nucleic Acids 4 (2015), e231.
    L. Fang, H. Li, L. Wang, et al., microRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression, Oncotarget 5 (2014) 2974-2987.
    W. Wu, J. Yang, X. Feng, et al., microRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells, Mol. Cancer 12 (2013), 30.
    K. Hur, Y. Toiyama, M. Takahashi, et al., microRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis, Gut 62 (2013) 1315-1326.
    J. Wang, Y. Du, X. Liu, et al., microRNAs as regulator of signaling networks in metastatic colon cancer, Biomed Res. Int. 2015 (2015), 823620.
    P. Bu, L. Wang, K.-Y. Chen, et al., miR-1269 promotes metastasis and forms a positive feedback loop with TGF-1269, Nat. Commun. 6 (2015), 6879.
    A. Strillacci, M.C. Valerii, P. Sansone, et al., Loss of miR-101 expression promotes Wnt/β-catenin signalling pathway activation and malignancy in colon cancer cells, J. Pathol. 229 (2013) 379-389.
    T.-C. Chang, E.A. Wentzel, O.A. Kent, et al., Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis, Mol. Cell 26 (2007) 745-752.
    S. Kjaer-Frifeldt, T.F. Hansen, B.S. Nielsen, et al., The prognostic importance of miR-21 in stage II colon cancer: A population-based study, Br. J. Cancer 107 (2012) 1169-1174.
    T.F. Hansen, A.L. Carlsen, N.H.H. Heegaard, et al., Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer, Br. J. Cancer 112 (2015) 624-629.
    J. Xu, Q. Meng, X. Li, et al., Long noncoding RNA MIR17HG promotes colorectal cancer progression via miR-17-5p, Cancer Res. 79 (2019) 4882-4895.
    Y. Li, J. Xun, B. Wang, et al., miR-3065-3p promotes stemness and metastasis by targeting CRLF1 in colorectal cancer, J. Transl. Med. 19 (2021), 429.
    Y. Cheng, X. Han, F. Mo, et al., Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p, Phytomedicine 89 (2021), 153603.
    J.F. Reid, V. Sokolova, E. Zoni, et al., miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation, Mol. Cancer Res. 10 (2012) 504-515.
    Y. Lu, X. Zhao, Q. Liu, et al., lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling, Nat. Med. 23 (2017) 1331-1341.
    J. Hanna, G.S. Hossain, J. Kocerha, The potential for microRNA therapeutics and clinical research, Front. Genet. 10 (2019), 478.
    J. Yang, Patisiran for the treatment of hereditary transthyretin-mediated amyloidosis, Expert Rev. Clin. Pharmacol. 12 (2019) 95-99.
    Businesswire, miRNA therapeutics halts phase 1 clinical study of MRX34. https://www.businesswire.com/news/home/20160920006814/en/Mirna-Therapeutics-Halts-Phase-1-Clinical-Study-of-MRX34. (Accessed March 2022).
    M. Segal, F.J. Slack, Challenges identifying efficacious miRNA therapeutics for cancer, Expert Opin. Drug Discov. 15 (2020) 987-991.
    J.F. Lima, L. Cerqueira, C. Figueiredo, et al., Anti-miRNA oligonucleotides: A comprehensive guide for design, RNA Biol. 15 (2018) 338-352.
    F.U. Din, W. Aman, I. Ullah, et al., Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors, Int. J. Nanomedicine 12 (2017) 7291-7309.
    H.L. Wong, R. Bendayan, A.M. Rauth, et al., Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles, Adv. Drug Deliv. Rev. 59 (2007) 491-504.
    N. Maghsoudnia, R.B. Eftekhari, A.N. Sohi, et al., Application of nano-based systems for drug delivery and targeting: A review, J. Nanopart. Res. 22 (2020), 245.
    A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med. 63 (2012) 185-198.
    M.R. Shah, M. Imran, S. Ullah, Ligand-functionalized nanocarrier-based active drugs targeting for liver cancer therapy. Nanocarriers for Cancer Diagnosis and Targeted Chemotherapy. Amsterdam: Elsevier, (2019) 79-106.
    K. Madaan, S. Kumar, N. Poonia, et al., Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues, J. Pharm. Bioallied Sci. 6 (2014) 139-150.
    A.P. Sherje, M. Jadhav, B.R. Dravyakar, et al., Dendrimers: A versatile nanocarrier for drug delivery and targeting, Int. J. Pharm. 548 (2018) 707-720.
    P. Kesharwani, K. Jain, N.K. Jain, Dendrimer as nanocarrier for drug delivery, Prog. Polym. Sci. 39 (2014) 268-307.
    D.M. Shadrack, H.S. Swai, J.J.E. Munissi, et al., Polyamidoamine dendrimers for enhanced solubility of small molecules and other desirable properties for site specific delivery: Insights from experimental and computational studies, Molecules 23 (2018), 1419.
    P.S. Kowalski, A. Rudra, L. Miao, et al., Delivering the messenger: Advances in technologies for therapeutic mRNA delivery, Mol. Ther. 27 (2019) 710-728.
    T. Xiao, D. Li, X. Shi, et al., PAMAM dendrimer-based nanodevices for nuclear medicine applications, Macromol. Biosci. 20 (2020), 1900282.
    Y. Kim, E.J. Park, D.H. Na, Recent progress in dendrimer-based nanomedicine development, Arch. Pharmacal Res. 41 (2018) 571-582.
    M. Yu, X. Jie, L. Xu, et al., Recent advances in dendrimer research for cardiovascular diseases, Biomacromolecules 16 (2015) 2588-2598.
    S. Hossen, M.K. Hossain, M.K. Basher, et al., Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review, J. Adv. Res. 15 (2018) 1-18.
    M. Hussein Kamareddine, Y. Ghosn, A. Tawk, et al., Organic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myeloid leukemia, Technol. Cancer Res. Treat. 18 (2019), 1533033819879902.
    P.-S Lai, P.-J. Lou, C.-L. Peng, et al., Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy, J. Control. Release 122 (2007) 39-46.
    Y. Duan, Z. Xing, J. Yang, et al., Chondroitin sulfate-functionalized polyamidoamine-mediated miR-34a delivery for inhibiting the proliferation and migration of pancreatic cancer, RSC Adv. 6 (2016) 70870-70876.
    X. Liu, G. Li, Z. Su, et al., Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells, Oncol. Rep. 29 (2013) 1387-1394.
    X. Liu, P. Rocchi, L. Peng, Dendrimers as non-viral vectors for siRNA delivery, New J. Chem. 36 (2012) 256-263.
    O. Taratula, O.B. Garbuzenko, P. Kirkpatrick, et al., Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery, J. Control. Release 140 (2009) 284-293.
    O. Taratula, O. Garbuzenko, R. Savla, et al., Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes, Curr. Drug Deliv. 8 (2011) 59-69.
    Y. Omidi, A.J. Hollins, R.M. Drayton, et al., Polypropylenimine dendrimer-induced gene expression changes: The effect of complexation with DNA, dendrimer generation and cell type, J. Drug Target. 13 (2005) 431-443.
    H. Acar, S. Srivastava, E.J. Chung, et al., Self-assembling peptide-based building blocks in medical applications, Adv. Drug Deliv. Rev. 110-111 (2017) 65-79.
    S. Yadav, A.K. Sharma, P. Kumar, Nanoscale self-assembly for therapeutic delivery, Front. Bioeng. Biotechnol. 8 (2020), 127.
    H. Wang, Z. Feng, B. Xu, Supramolecular assemblies of peptides or nucleopeptides for gene delivery, Theranostics 9 (2019) 3213-3222.
    J. Tomich, E. Wessel, J. Choi, et al., Chapter 8 Nonviral gene therapy: Peptiplexes. M. Filice, J. Ruiz-Cabello, Nucleic Acid Nanotheranostics: Biomedical Applications, A volume in micro and nano technologies. Elsevier, 2019, pp. 247-276.
    G. Osman, J. Rodriguez, S.Y. Chan, et al., PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy, J. Control. Release 285 (2018) 35-45.
    A.-L. Robson, P.C. Dastoor, J. Flynn, et al., Advantages and limitations of current imaging techniques for characterizing liposome morphology, Front. Pharmacol. 9 (2018), 80.
    H. Daraee, A. Etemadi, M. Kouhi, et al., Application of liposomes in medicine and drug delivery, Artif. Cells Nanomed. Biotechnol. 44 (2016) 381-391.
    S.C. White, P. Lorigan, G.P. Margison, et al., Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer, Br. J. Cancer 95 (2006) 822-828.
    K.J. Harrington, C.R. Lewanski, A.D. Northcote, et al., Phase I-II study of pegylated liposomal cisplatin (SPI-077TM) in patients with inoperable head and neck cancer, Ann. Oncol. 12 (2001) 493-496.
    N. Seetharamu, E. Kim, H. Hochster, et al., Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer, Anticancer Res. 30 (2010) 541-545.
    U. Bulbake, S. Doppalapudi, N. Kommineni, et al., Liposomal formulations in clinical use: An updated review, Pharmaceutics 9 (2017), 12.
    X. Cui, K. Song, X. Lu, et al., Liposomal delivery of microRNA-7 targeting EGFR to inhibit the growth, invasion, and migration of ovarian cancer, ACS Omega 6 (2021) 11669-11678.
    A.M. Jhaveri, V.P. Torchilin, Multifunctional polymeric micelles for delivery of drugs and siRNA, Front. Pharmacol. 5 (2014), 77.
    Y. Zhang, Y. Huang, S. Li, Polymeric micelles: Nanocarriers for cancer-targeted drug delivery, AAPS PharmSciTech 15 (2014) 862-871.
    R.R. Sawant, A.M. Jhaveri, V.P. Torchilin, Immunomicelles for advancing personalized therapy, Adv. Drug Deliv. Rev. 64 (2012) 1436-1446.
    Z. Fei, M. Yoosefian, Design and development of polymeric micelles as nanocarriers for anti-cancer Ribociclib drug, J. Mol. Liq. 329 (2021), 115574.
    M.Y. Marzbali, A.Y. Khosroushahi, Polymeric micelles as mighty nanocarriers for cancer gene therapy: A review, Cancer Chemother. Pharmacol. 79 (2017) 637-649.
    R.J. Christie, Y. Matsumoto, K. Miyata, et al., Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection, ACS Nano 6 (2012) 5174-5189.
    N.R.S. Sibuyi, K.L. Moabelo, A.O. Fadaka, et al., Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A review, Nanoscale Res. Lett. 16 (2021) 1-27.
    F. da Silva Bruckmann, F.B. Nunes, T. da Rosa Salles, et al., Biological applications of silica-based nanoparticles, Magnetochemistry 8 (2022), 131.
    L. Wang, W. Zhao, W. Tan, Bioconjugated silica nanoparticles: Development and applications, Nano Res. 1 (2008) 99-115.
    J. Fan, S. Wang, W. Sun, et al., Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers, AlChE. J. 64 (2018) 835-859.
    J.M. Rosenholm, E. Peuhu, L.T. Bate-Eya, et al., Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors, Small 6 (2010) 1234-1241.
    O. Ahmed, N.R.S. Sibuyi, A.O. Fadaka, et al., Plant extract-synthesized silver nanoparticles for application in dental therapy, Pharmaceutics 14 (2022), 380.
    A.O. Fadaka, S. Meyer, O. Ahmed, et al., Broad spectrum anti-bacterial activity and non-selective toxicity of gum Arabic silver nanoparticles, Int. J. Mol. Sci. 23 (2022), 1799.
    Z. Shi, Y. Zhou, T. Fan, et al., Inorganic nano-carriers based smart drug delivery systems for tumor therapy, Smart Mater. Med. 1 (2020) 32-47.
    M.B. Gawande, A. Goswami, F.-X. Felpin, et al., Cu and Cu-based nanoparticles: Synthesis and applications in catalysis, Chem. Rev. 116 (2016) 3722-3811.
    Z. Cheng, Y. Dai, X. Kang, et al., Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI, Biomaterials 35 (2014) 6359-6368.
    V. Chandrakala, V. Aruna, G. Angajala, Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems, Emergent Mater. 5 (2022) 1593-1615.
    A.O. Fadaka, N.R.S. Sibuyi, A.M. Madiehe, et al., Nanotechnology-based delivery systems for antimicrobial peptides, Pharmaceutics 13 (2021), 1795.
    J.P. Oliveira, A.R. Prado, W.J. Keijok, et al., Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol, Sci. Rep. 9 (2019), 13859.
    R. Wu, H. Peng, J.-J Zhu, et al., Attaching DNA to gold nanoparticles with a protein Corona, Front. Chem. 8 (2020), 121.
    E. Crew, S. Rahman, A. Razzak-Jaffar, et al., microRNA conjugated gold nanoparticles and cell transfection, Anal. Chem. 84 (2012) 26-29.
    R. Chaudhari, S. Nasra, N. Meghani, et al., miR-206 conjugated gold nanoparticle based targeted therapy in breast cancer cells, Sci. Rep. 12 (2022), 4713.
    Y. Liu, J.T. Bailey, M. Abu-Laban, et al., Photocontrolled miR-148b nanoparticles cause apoptosis, inflammation and regression of Ras induced epidermal squamous cell carcinomas in mice, Biomaterials 256 (2020), 120212.
    P.N. Navya, A. Kaphle, S.P. Srinivas, et al., Current trends and challenges in cancer management and therapy using designer nanomaterials, Nano Converg. 6 (2019), 23.
    M.S. Hashemi, S. Gharbi, S. Jafarinejad-Farsangi, et al., Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines, Toxicol. Vitro 65 (2020), 104796.
    A. Celluzzi, A. Paolini, V. D’Oria, et al., Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells, Int. J. Nanomed. 13 (2018) 1-18.
    N.W.S. Kam, Z. Liu, H. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc. 127 (2005) 12492-12493.
    R. Imani, F. Mohabatpour, F. Mostafavi, Graphene-based Nano-Carrier modifications for gene delivery applications, Carbon 140 (2018) 569-591.
    S. Gurunathan, M.-H. Kang, M. Jeyaraj, et al., Differential cytotoxicity of different sizes of graphene oxide nanoparticles in Leydig (TM3) and Sertoli (TM4) cells, Nanomaterials 9 (2019), 139.
    P. Elvati, E. Baumeister, A. Violi, Graphene quantum dots: Effect of size, composition and curvature on their assembly, RSC Adv. 7 (2017) 17704-17710.
    S. Deng, E. Zhang, Y. Zhao, et al., Integrated mRNA and microRNA transcriptomic analysis reveals the common and individual responses of zebrafish embryos exposed to four types of graphene quantum dots (GQDs), Research Square, (2021). https://doi.org/10.21203/rs.3.rs-604090/v1.
    F. Wang, B. Zhang, L. Zhou, et al., Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter, ACS Appl. Mater. Interfaces 8 (2016) 9014-9021.
    A. Assali, O. Akhavan, M. Adeli, et al., Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery, Nanomed. 14 (2018) 1891-1903.
    C. Wang, Z. Zhang, B. Chen, et al., Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system, J. Colloid Interface Sci. 516 (2018) 332-341.
    B. Zhang, Y. Yan, Q. Shen, et al., A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis, Mater. Sci. Eng. C 79 (2017) 185-190.
    M. Kutwin, M.E. Sosnowska, B. Strojny-Cieslak, et al., microRNA delivery by graphene-based complexes into glioblastoma cells, Molecules 26 (2021), 5804.
    X.-M. Han, K.-W. Zheng, R.-L. Wang, et al., Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery, Am. J. Transl. Res. 12 (2020), 1515.
    R. Kurapati, A.M. Raichur, Near-infrared light-responsive graphene oxide composite multilayer capsules: A novel route for remote controlled drug delivery, Chem. Commun. 49 (2013) 734-736.
    D. Diaz-Diestra, B. Thapa, D. Badillo-Diaz, et al., Graphene oxide/ZnS: Mn nanocomposite functionalized with folic acid as a nontoxic and effective theranostic platform for breast cancer treatment, Nanomaterials 8 (2018), 484.
    H. Huang, H. Ge, Z. Ren, et al., Controllable synthesis of biocompatible fluorescent carbon dots from cellulose hydrogel for the specific detection of Hg2+, Front. Bioeng. Biotechnol. 9 (2021), 617097.
    L. Cui, X. Ren, M. Sun, et al., Carbon dots: Synthesis, properties and applications, Nanomaterials 11 (2021), 3419.
    J. Luo, Z. Sun, W. Zhou, et al., Hydrothermal synthesis of bright blue-emitting carbon dots for bioimaging and fluorescent determination of baicalein, Opt. Mater. 113 (2021), 110796.
    S. Mohammadi, A. Salimi, Z. Hoseinkhani, et al., Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform, J. Nanobiotechnology 20 (2022), 73.
    L. Yang, S. Xue, M. Du, et al., Highly efficient microRNA delivery using functionalized carbon dots for enhanced conversion of fibroblasts to cardiomyocytes, Int. J. Nanomed. 16 (2021) 3741-3754.
    N.R.S. Sibuyi, A. Mbengashe, Z.B. Nqakala, et al., Chapter 13 Carbon dots in drug delivery. E.T., Berdimurodov V.D., Kumar, Carbon Dots in Biology. De Gruyter, Berlin, Boston (2023) 283-312.
    T. Xia, M. Kovochich, M. Liong, et al., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs, ACS Nano 3 (2009) 3273-3286.
    N. Prabhakar, J. Zhang, D. Desai, et al., Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery, Int. J. Nanomed. 11 (2016) 6591-6608.
    N. Han, Q. Zhao, L. Wan, et al., Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance, ACS Appl. Mater. Interfaces 7 (2015) 3342-3351.
    J. Xu, G. Zhang, X. Luo, et al., Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts, Theranostics 11 (2021) 2475-2489.
    B. Gupta, H.B. Ruttala, B.K. Poudel, et al., Polyamino acid layer-by-layer (LbL) constructed silica-supported mesoporous titania nanocarriers for stimuli-responsive delivery of microRNA 708 and paclitaxel for combined chemotherapy, ACS Appl. Mater. Interfaces 10 (2018) 24392-24405.
    J. Zhai, Y. Zhu, J. Liu, et al., Enhanced suppression of disulfide cross-linking micelles nanocarriers loaded miR-145 delivering system via down-regulation of MYC and FSCN1 in colon cancer cells, J. Biomed. Nanotechnol. 16 (2020) 1183-1195.
    C. Chan, N. Guo, X. Duan, et al., Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer, Biomaterials 210 (2019) 94-104.
    J. Li, Y. Meng, X. Wu, et al., Polyamines and related signaling pathways in cancer, Cancer Cell Int. 20 (2020), 539.
    Y. Xie, T. Murray-Stewart, Y. Wang, et al., Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy, J. Control. Release 246 (2017) 110-119.
    T.Y. Wang, J.W. Choe, K. Pu, et al., Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer, J. Control. Release 203 (2015) 99-108.
    G. Liang, Y. Zhu, A. Jing, et al., Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model, Gene Ther. 23 (2016) 829-838.
    Y. Wang, F. Costanza, C. Li, et al., PEG-poly(amino acid)s/MicroRNA complex nanoparticles effectively arrest the growth and metastasis of colorectal cancer, J. Biomed. Nanotechnol. 12 (2016) 1510-1519.
    Y. Sun, L. Zheng, Y. Yang, et al., Metal-organic framework nanocarriers for drug delivery in biomedical applications, Nanomicro Lett. 12 (2020), 103.
    Z. Luo, L. Jiang, S. Yang, et al., Light-induced redox-responsive smart drug delivery system by using selenium-containing Polymer@MOF shell/core nanocomposite, Adv. Healthcare Mater. 8 (2019), 1900406.
    H. Zhao, T. Li, C. Yao, et al., Dual roles of metal-organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy, ACS Appl. Mater. Interfaces 13 (2021) 6034-6042.
    S. Peng, M. Liu, B. Bie, et al., Multiplexed microRNA detection using metal-organic framework for signal output, ACS Appl. Bio Mater. 3 (2020) 2604-2609.
    H. Yang, M. Han, J. Li, et al., Delivery of miRNAs through metal-organic framework nanoparticles for assisting neural stem cell therapy for ischemic stroke, ACS Nano 16 (2022) 14503-14516.
    Q. Han, D. Zhang, R. Zhang, et al., DNA-functionalized metal-organic framework ratiometric nanoprobe for microRNA detection and imaging in live cells, Sens. Actuat. B 361 (2022), 131676.
    M.A. Najafabadi, F. Yousefi, M.J. Rasaee, et al., Metal-organic frameworks-based biosensor for microRNA detection in prostate cancer cell lines, RSC Adv. 12 (2022) 34910-34920.
    M. Al Sharabati, R. Sabouni, G.A. Husseini, Biomedical applications of metal-organic frameworks for disease diagnosis and drug delivery: A review, Nanomaterials 12 (2022), 277.
    N. Pujara, S. Jambhrunkar, K.Y. Wong, et al., Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate, J. Colloid Interface Sci. 488 (2017) 303-308.
    T. Walle, Bioavailability of resveratrol, Ann. N Y Acad. Sci. 1215 (2011) 9-15.
    I. Alfaras, M. Perez, M.E. Juan, et al., Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-Resveratrol in knockout mice, J. Agric. Food Chem. 58 (2010) 4523-4528.
    B. Rousseau, B. Chibaudel, J.-B. Bachet, et al., Stage II and stage III colon cancer, Cancer J. 16 (2010) 202-209.
    L. Dai, R. Liu, L. Hu, et al., Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol, ACS Sustainable Chem. Eng. 5 (2017) 8241-8249.
    J. Wang, J. Sun, Q. Chen, et al., Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance, Biomaterials 33 (2012) 6877-6888.
    J. Iqbal, J. Hombach, B. Matuszczak, et al., Design and in vitro evaluation of a novel polymeric P-glycoprotein (P-gp) inhibitor, J. Control Release 147 (2010) 62-69.
    J. Neuzil, T. Weber, N. Gellert, et al., Selective cancer cell killing by α-tocopheryl succinate, Br. J. Cancer 84 (2001) 87-89.
    J.W. Salameh, L. Zhou, S.M. Ward, et al., Polymer-mediated gene therapy: Recent advances and merging of delivery techniques, Wiley Interdiscip. Rev. vol. 12 (2020), e1598.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (323) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return