Citation: | Xiao-Feng Huang, Ying Xue, Li Yong, Tian-Tian Wang, Pei Luo, Lin-Sen Qing. Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids[J]. Journal of Pharmaceutical Analysis, 2024, 14(3): 295-307. doi: 10.1016/j.jpha.2023.07.004 |
[1] |
H. Wu, S.L. Morris-Natschke, X. Xu, et al., Recent advances in natural anti-HIV triterpenoids and analogs, Med. Res. Rev. 40 (2020) 2339-2385.
|
[2] |
C. Soica, M. Voicu, R. Ghiulai, et al., Natural compounds in sex hormone-dependent cancers:The role of triterpenes as therapeutic agents, Front. Endocrinol. 11 (2021), 612396.
|
[3] |
P. Darshani, S.S. Sarma, A.K. Srivastava, et al., Anti-viral triterpenes:A review, Phytochem. Rev. 21 (2022) 1761-1842.
|
[4] |
R.S. Miranda, B.D.S.M. de Jesus, S.R. da Silva Luiz, et al., Antiinflammatory activity of natural triterpenes-An overview from 2006 to 2021, Phytother. Res. 36 (2022) 1459-1506.
|
[5] |
P. Yao, Y. Liu, Terpenoids:Natural compounds for non-alcoholic fatty liver disease (NAFLD) therapy, Molecules 28 (2022), 272.
|
[6] |
J. Luo, W. Cai, T. Wu, et al., Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities, Food Chem. 201 (2016) 350-360.
|
[7] |
T. Ren, Z. Xu, Study of isomeric pentacyclic triterpene acids in traditional Chinese medicine of Forsythiae Fructus and their binding constants with β-cyclodextrin by capillary electrophoresis, Electrophoresis 39 (2018) 1006-1013.
|
[8] |
Q. Wang, H. Huang, Y. Wang, FTIR and UV spectra for the prediction of triterpene acids in Macrohyporia cocos, Microchem. J. 158 (2020), 105167.
|
[9] |
K. Naumoska, I. Vovk, Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry, J. Chromatogr. A 1381 (2015) 229-238.
|
[10] |
L. Gadouche, A.S.M. Alsoufi, D. Pacholska, et al., Triterpenoid and steroid content of lipophilic extracts of selected medicinal plants of the mediterranean region, Molecules 28 (2023), 697.
|
[11] |
Y. Jaiswal, Z. Liang, A. Ho, et al., Tissue-based metabolite profiling and qualitative comparison of two species of Achyranthes roots by use of UHPLC-QTOF MS and laser micro-dissection, J. Pharm. Anal. 8 (2018) 10-19.
|
[12] |
Y. Li, S. Guo, Y. Zhu, et al., Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicus and Astragalus membranaceus by UPLC-MS/MS, J. Pharm. Anal. 9 (2019) 392-399.
|
[13] |
J. Xie, J. Xiong, L. Ding, et al., A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation, J. Chromatogr. A 1576 (2018) 10-18.
|
[14] |
C. Chen, L. Dai, H. Feng, et al., A new strategy for the preparation of antibody against natural glycoside:With astragaloside IV as an example, Fitoterapia 142 (2020), 104488.
|
[15] |
M. Ali Farajzadeh, N. Nouri, P. Khorram, Derivatization and microextraction methods for determination of organic compounds by gas chromatography, Trac Trends Anal. Chem. 55 (2014) 14-23.
|
[16] |
R. Dogra, M. Kumar, A. Kumar, et al., Derivatization, an applicable asset for conventional HPLC systems without MS detection in food and miscellaneous analysis, Crit. Rev. Anal. Chem. (2022) 1-21.
|
[17] |
R. Dogra, U.K. Mandal, Recent applications of derivatization techniques for pharmaceutical and bioanalytical analysis through high-performance liquid chromatogra-phy, Curr. Anal. Chem. 18 (2022) 217-243.
|
[18] |
S.N. Atapattu, J.M. Rosenfeld, Analytical derivatizations in environmental analysis, J. Chromatogr. A 1678 (2022), 463348.
|
[19] |
S. Zhao, L. Li, Chemical derivatization in LC-MS-based metabolomics study, Trac Trends Anal. Chem. 131 (2020), 115988.
|
[20] |
B. Qi, P. Liu, Q. Wang, et al., Derivatization for liquid chromatography-mass spectrometry, Trac Trends Anal. Chem. 59 (2014) 121-132.
|
[21] |
I.S. Azenha, M.M.Q. Simoes, A. Mendes, et al., Adsorbents, mobile phases, and strategies for the chromatographic separation of betulinic, oleanolic, and ursolic acids, Biomass Convers. Biorefin. (2023) 1-32.
|
[22] |
Y. Wang, Y. Ma, L. Tao, et al., Recent advances in separation and analysis of saponins in natural products, Separations 9 (2022), 163.
|
[23] |
C. Xu, B. Wang, Y. Pu, et al., Techniques for the analysis of pentacyclic triterpenoids in medicinal plants, J. Sep. Sci. 41 (2018) 6-19.
|
[24] |
I. D'Acquarica, M.C. Di Giovanni, F. Gasparrini, et al., Isolation and structure elucidation of four new triterpenoid estersaponins from fruits of Pittosporum tobira ait, Tetrahedron 58 (2002) 10127-10136.
|
[25] |
N. Vervoort, D. Daemen, G. Torok, Performance evaluation of evaporative light scattering detection and charged aerosol detection in reversed phase liquid chromatography, J. Chromatogr. A 1189 (2008) 92-100.
|
[26] |
L. Shi, W. Qin, Z. Zhu, et al., RP-HPLC determination of panaxadiol in ginseng with pre-column derivatization, Phys. Test. Chem. Anal. 46 (2010) 482-484.
|
[27] |
H. Besso, Y. Saruwatari, K. Futamura, et al., High performance liquid chromatographie determination of ginseng saponin by ultraviolet derivatisation, Planta Med. 37 (1979) 226-333.
|
[28] |
M. Yao, Y. Qi, K. Bi, et al., A precolumn derivatization high-performance liquid chromatographic method with improved sensitivity and specificity for the determination of astragaloside IV in Radix Astragali, J. Chromatogr. Sci. 38 (2000) 325-328.
|
[29] |
W. Liu, D. Cai, L. Liu, et al., HPLC determination of astragaloside IV in Danggui Buxue tablets, Chin. J. Pharm. Anal. 29 (2009) 1553-1555.
|
[30] |
L. Zhu, Z. Wang, D. Yang, Study on the determination method of the astragaloside IV in health food, J. Hyg. Res. 38 (2009) 203-206.
|
[31] |
E. Mochizuki, T. Yamamoto, Y. Mimaki, et al., Ultraviolet derivatization of steroidal saponin in garlic and commercial garlic products as p-nitrobenzoate for liquid chromatographic determination, J. AOAC Int. 87 (2004) 1063-1069.
|
[32] |
J. Sun, J. Zhang, X. Qin, et al., A pre-column derivatization HPLC-UV method for the determination of oleanolic acid in achyranthes bidentata Bl, Chin. J. Mod. Appl. Pharm. 27 (2010) 49-53.
|
[33] |
Z. Li, X. Xu, C. Feng, et al., Determination of ginsenediol and ginsentriol in Red ginseng and Shengmai Injection by high performance liquid chromatography derivatization, West China J. Pharm. Sci. 14 (1999) 271-273.
|
[34] |
G. Wang, Z. Zhu, M. Lin, et al., A pre-column derivation HPLC method for the determination of astragaloside IV in Radix Astragali, Chin. J. Anal. Lab. 28 (2009) 108-111.
|
[35] |
M. Wada, Y. Tojoh, S. Nakamura, et al., Quantification of three triterpenic acids in dried rosemary using HPLC-fluorescence detection and 4-(4, 5-diphenyl-1H-imidazole-2-yl) benzoyl chloride derivatization, Lumin. 34 (2019) 130-132.
|
[36] |
A. Aksamija, C. Mathe, C. Vieillescazes, Liquid chromatography of triterpenic resins after derivatization with dansyl chloride, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 1222-1237.
|
[37] |
X. Zhao, T. Lu, N. Wei, et al., Sensitive determination of panaxadiol using rhodamine B as sensitizing derivatization reagent by ultrahigh performance liquid chromatography triple quadrupole mass spectrometry, Chin. J. Anal. Chem. 42 (2014) 1629-1633.
|
[38] |
X. Zhao, T. Lv, S. Zhu, et al., Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry, J. Chromatogr. A 1437 (2016) 49-57.
|
[39] |
S. Zhu, Z. Zheng, H. Peng, et al., Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high-performance liquid chromatography tandem mass spectrometry, J. Chromatogr. A 1616 (2020), 460794.
|
[40] |
Z. Hu, N. Guo, Z. Wang, et al., Development and validation of an LC-ESI/MS/MS method with precolumn derivatization for the determination of betulin in rat plasma, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 939 (2013) 38-44.
|
[41] |
Z. Wang, Y. Wang, T. Yu, et al., An LC-ESI/MS/MS method for the determination of lupeol via precolumn derivatization and its application to pharmacokinetic studies in rat plasma, Biomed. Chromatogr. 35 (2021), e5005.
|
[42] |
G. Li, X. Zhang, J. You, et al., Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species:Optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology, Anal. Chim. Acta 688 (2011) 208-218.
|
[43] |
G. Li, J. You, C. Song, et al., Development of a new HPLC method with precolumn fluorescent derivatization for rapid, selective and sensitive detection of triterpenic acids in fruits, J. Agric. Food Chem. 59 (2011) 2972-2979.
|
[44] |
Z. Sun, J. You, C. Song, et al., Identification and determination of carboxylic acids in food samples using 2-(2-(anthracen-10-yl)-1H-phenanthro[9, 10-d] imidazol-1-yl) ethyl 4-methylbenzenesulfonate (APIETS) as labeling reagent by HPLC with FLD and APCI/MS, Talanta 85 (2011) 1088-1099.
|
[45] |
H. Wu, G. Li, S. Liu, et al., Simultaneous determination of six triterpenic acids in some Chinese medicinal herbs using ultrasound-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 107 (2015) 98-107.
|
[46] |
Y. Wang, Y. Suo, Y. Sun, et al., Determination of triterpene acids from 37 different varieties of raspberry using pre-column derivatization and HPLC fluorescence detection, Chromatographia 79 (2016) 1515-1525.
|
[47] |
T. Ma, N. Hu, Q. Zhang, et al., Simultaneous determination of five triterpenic acids in four Corydalisherb medicines by reversed-phase high performance liquid chromatography-fluorescence-mass spectrometer (RP-HPLC-FLD-MS) based on pre-column derivatization, J. Liq. Chromatogr. Relat.Technol. 41 (2018) 49-57.
|
[48] |
N. Hu, Y. Suo, Q. Zhang, et al., Rapid, selective, and sensitive analysis of triterpenic acids inHippophae rhamnoides L. using HPLC with pre-column fluorescent derivatization and identification with post-column APCI-MS, J. Liq. Chromatogr. Relat. Technol. 38 (2015) 451-458.
|
[49] |
W. Zhou, N. Hu, Y. Wang, et al., Determination of five kinds of triterpene acid in the fruits of seabuckthorn in Qinghai-Tibet plateau by HPLC-FLD-APCI/MS, West China J. Pharm. Sci. 33 (2018) 535-538.
|
[50] |
E. Yuan, G. Li, H. Wu, et al., Determination of 4 tritepenoidic acids in pomegranate by precolumn fluorescent derivatization coupled with HPLC-FLD, Nat. Pro. Res. Dev. 27 (2015) 214-220.
|
[51] |
G. Chen, J. Li, C. Song, et al., A sensitive and efficient method for simultaneous trace detection and identification of triterpene acids and its application to pharmacokinetic study, Talanta 98 (2012) 101-111.
|
[52] |
S. Zhang, Y. Sun, Z. Sun, et al., Determination of triterpenic acids in fruits by a novel high performance liquid chromatography method with high sensitivity and specificity, Food Chem. 146 (2014) 264-269.
|
[53] |
W. Ma, H. Wang, H. Zhang, Determination of ursolic acid in Xiasangju by HPLC after pre-derivazation with p-toluidine, Can. J. Anal. Sci. Spectros. 20 (2004) 284-286.
|
[54] |
X. Zheng, S. Wang, Determination of Asiatic acid in beagle dog plasma after oral administration of Centella asiatica extract by precolumn derivatization RP-HPLC, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (2009) 477-481.
|
[55] |
Y. Zhang, L. Yin, Z. Liang, et al., Study on pharmacokinetics of asiatic acid in rats, Chin. J. Mod. Appl. Pharm. 32 (2015) 314-317.
|
[56] |
X. Huang, Y. Zhang, L. Yin, et al., Oral absorption of asiatic acid lipid nanoparticles in rats, Chin. J. Mod. Appl. Pharm. 33 (2016) 444-448.
|
[57] |
L. Yin, Y. Zhang, Y. Zhou, et al., Preparation and pharmacokinetic study of asiatic acid loaded chitosan-deoxycholic acid polymeric micelles in rats, Chin. Tradit. Herb. Drugs 48 (2017) 4891-4896.
|
[58] |
J. You, D. Wu, M. Zhao, et al., Development of a facile and sensitive HPLC-FLD method via fluorescence labeling for triterpenic acid bioavailability investigation, Biomed. Chromatogr. 31 (2017), e3894.
|
[59] |
Z. Zeng, W. Zhou, N. Hu, et al., Comparison of using two different labeling reagents for rapid analysis of triterpenic acids by pre-column derivatization with RP-HPLC-FLD and application to plant samples, Anal. Methods 11 (2019) 4354-4361.
|
[60] |
O.J. Pozo, M. Pujadas, S.B. Gleeson, et al., Liquid chromatography tandem mass spectrometric determination of triterpenes in human fluids:Evaluation of markers of dietary intake of olive oil and metabolic disposition of oleanolic acid and maslinic acid in humans, Anal. Chim. Acta 990 (2017) 84-95.
|
[61] |
Z. Zheng, X. Zhao, S. Zhu, et al., Simultaneous determination of oleanolic acid and ursolic acid by in vivo microdialysis via UHPLC-MS/MS using magnetic dispersive solid phase extraction coupling with microwave-assisted derivatization and its application to a pharmacokinetic study of arctiumlappa L. root extract in rats, J. Agric. Food Chem. 66 (2018) 3975-3982.
|
[62] |
D. Luo, Y. Feng, J. Yao, et al., Determination of oleanolic acid and ursolic acid in loquat leaf extract by chemical derivatization coupled with liquid chromatography-tandem mass spectrometry, Chin. J. Chromatogr. 35 (2017), 27.
|
[63] |
J. Adamec, A. Jannasch, S. Dudhgaonkar, et al., Development of a new method for improved identification and relative quantification of unknown metabolites in complex samples:Determination of a triterpenoid metabolic fingerprint for the in situ characterization of Ganoderma bioactive compounds, J. Sep. Sci. 32 (2009) 4052-4058.
|
[64] |
Y. Zheng, S. Liu, J. Xing, et al., Equivalently quantitative ion strategy with quaternary ammonium cation derivatization for highly sensitive quantification of lanostane-type triterpene acids without standards by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), Anal. Chem. 90 (2018) 13946-13952.
|
[65] |
H. Zhang, Z. Zhu, Y. Zhang, et al., Determination of glycyrrhizic acid in Radix Glycyrrhizae by high performance liquid chromatography with pre-column derivatization, J. Anal. Sci. 29 (2013) 265-267.
|
[66] |
L. Wozniak, K. Marszalek, S. Skapska, et al., Novel method for HPLC analysis of triterpenic acids using 9-anthryldiazomethane derivatization and fluorescence detection, Chromatographia 80 (2017) 1527-1533.
|
[67] |
D. Shangguan, H. Han, R. Zhao, et al., New method for high-performance liquid chromatographic separation and fluorescence detection of ginsenosides, J. Chromatogr. A 910 (2001) 367-372.
|
[68] |
P. Dong, C. Xue, L. Yu, et al., Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography, J. Agric. Food Chem. 56 (2008) 4937-4942.
|
[69] |
J. Cai, K. Huang, S. Han, et al., A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re:Recent advances and future perspectives, Phytomedicine 102 (2022), 154119.
|
[70] |
Y. Sun, Y. Yang, S. Liu, et al., New therapeutic approaches to and mechanisms of ginsenoside Rg1 against neurological diseases, Cells 11 (2022), 2529.
|
[71] |
H.J. Kim, P. Kim, C.Y. Shin, A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system, J. Ginseng Res. 37 (2013) 8-29.
|
[72] |
Y. Wu, Z. Li, J. Li, et al., Elucidation of the binding mechanism of astragaloside IV derivative with human serum albumin and its cardiotoxicity in zebrafish embryos, Front. Pharmacol. 13 (2022), 987882.
|
[73] |
H.L. Alvarado, G. Abrego, M.L. Garduno-Ramirez, et al., Development and validation of a high-performance liquid chromatography method for the quantification of ursolic/oleanic acids mixture isolated from Plumeria obtusa, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 983-984 (2015) 111-116.
|
[74] |
S. Liu, J. Xu, C. Ma, et al., A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC, Food Chem. 266 (2018) 275-283.
|
[75] |
R.E. Nelson, S.K. Grebe, D.J. OKane, et al., Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma, Clin. Chem. 50 (2004) 373-384.
|
[76] |
H. Lv, S. Huang, B. Zhao, et al., A new rhodamine B-based lysosomal pH fluorescent indicator, Anal. Chim. Acta 788 (2013) 177-182.
|
[77] |
L. Qi, J. Zhang, Y. Gao, et al., Peptide-RNA complexation-induced fluorescence "turn on" displacement assay for the recognition of small ligands targeting HIV-1 RNA, J. Pharm. Anal. 12 (2022) 923-928.
|
[78] |
N. Wei, X. Zhao, S. Zhu, et al., Determination of dopamine, serotonin, biosynthesis precursors and metabolites in rat brain microdialysates by ultrasonic-assisted in situ derivatization-dispersive liquid-liquid microextraction coupled with UHPLC-MS/MS, Talanta 161 (2016) 253-264.
|
[79] |
X. Wang, J. Sun, X. Zhao, et al., Stable isotope labeling derivatization coupled with magnetic dispersive solid phase extraction for the determination of hydroxyl-containing cholesterol and metabolites by in vivo microdialysis and ultra-high performance liquid chromatography tandem mass spectrometry, J. Chromatogr. A 1594 (2019) 23-33.
|
[80] |
L. Yang, Y. Liu, X. Zeng, et al., HPLC-MS/MS determination ginsenoside Rg1 in Shenmai injection and in human plasma, Chin. J. Pharm. Anal. 25 (2005) 905-908.
|
[81] |
T.K. Davis, M.E. Jennings 2nd, Site-specific conjugation quantitation of a cysteine-conjugated antibody-drug conjugate using stable isotope labeling peptide mapping LC-MS/MS analysis, Anal. Chem. 94 (2022) 2772-2778.
|
[82] |
R. Gajula, R. Maddela, V.B. Ravi, et al., A rapid and sensitive liquid chromatography-tandem mass spectrometric assay for duloxetine in human plasma:Its pharmacokinetic application, J. Pharm. Anal. 3 (2013) 36-44.
|
[83] |
S.K. Gudlawar, N.R. Pilli, S. Siddiraju, et al., Highly sensitive assay for the determination of therapeutic peptide desmopressin in human plasma by UPLC-MS/MS, J. Pharm. Anal. 7 (2017) 196-202.
|
[84] |
S. Glowienke, W. Frieauff, T. Allmendinger, et al., Structure-activity considerations and in vitro approaches to assess the genotoxicity of 19 methane-, benzene- and toluenesulfonic acid esters, Mutat. Res. 581 (2005) 23-34.
|
[85] |
S. Song, R. Wang, Z. Li, et al., Role of simulated in vitro gastrointestinal digestion on biotransformation and bioactivity of astragalosides from Radix Astragali, J. Pharm. Biomed. Anal. 231 (2023), 115414.
|
[86] |
L. Qing, T. Chen, W. Sun, et al., Pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble astragaloside IV derivative (astragalosidic acid, LS-102), Eur. J. Drug Metab. Pharmacokinet. 44 (2019) 251-259.
|
[87] |
W. Sun, Z. Zhang, J. Xie, et al., Determination of a astragaloside IV derivative LS-102 in plasma by ultra-performance liquid chromatography-tandem mass spectrometry in dog plasma and its application in a pharmacokinetic study, Phytomed. 53 (2019) 243-251.
|
[88] |
C. Chen, Y. Xue, Q. Li, et al., Neutral loss scan-based strategy for integrated identification of amorfrutin derivatives, new peroxisome proliferator-activated receptor gamma agonists, from Amorpha fruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS, J. Am. Soc. Mass Spectrom. 29 (2018) 685-693.
|
[89] |
L. Qing, Y. Xue, J. Zhang, et al., Identification of flavonoid glycosides in Rosa chinensis flowers by liquid chromatography-tandem mass spectrometry in combination with 13C nuclear magnetic resonance, J. Chromatogr. A 1249 (2012) 130-137.
|
[90] |
S. Kumar, A. Singh, B. Kumar, Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS, J. Pharm. Anal. 7 (2017) 214-222.
|
[91] |
Q. Wang, J. Li, X. Li, et al., A simple nano-SiO2-based ELISA method for residue detection of 2, 4-dichlorophenoxyacetic acid in bean sprouts, Food Anal. Meth. 10 (2017) 1500-1506.
|
[92] |
Q. Wang, J. Li, X. Li, et al., An efficient direct competitive nano-ELISA for residual BSA determination in vaccines, Anal. Bioanal. Chem. 409 (2017) 4607-4614.
|
[93] |
Q. Wang, J. Xie, X. Li, et al., Development of a nano-SiO2 based enzyme-linked ligand binding assay for the determination of ibuprofen in human urine, Talanta 167 (2017) 617-622.
|
[94] |
Y. Yi, J. Hu, S. Ding, et al., A preparation strategy for protein-oriented immobilized silica magnetic beads with Spy chemistry for ligand fishing, J. Pharm. Anal. 12 (2022) 415-423.
|
[95] |
Y.L. Tain, L.C. Jheng, S.K.C. Chang, et al., Synthesis and characterization of novel resveratrol butyrate esters that have the ability to prevent fat accumulation in a liver cell culture model, Molecules 25 (2020), 4199.
|
[96] |
A.K. Ghosh, D. Shahabi, Synthesis of amide derivatives for electron deficient amines and functionalized carboxylic acids using EDC and DMAP and a catalytic amount of HOBt as the coupling reagents, Tetrahedron Lett. 63 (2021), 152719.
|
[97] |
J. Xie, R. Wang, L. Yong, et al., Determination of nine nucleosides in Rhizoma Paridis by quantitative analysis of multi-components via a single marker method, J. Sep. Sci. 44 (2021) 1866-1874.
|
[98] |
J. Xie, J. Li, J. Liang, et al., Determination of contents of catechins in oolong teas by quantitative analysis of multi-components via a single marker (QAMS) method, Food Anal. Meth. 10 (2017) 363-368.
|
[99] |
G.Y. Wittman, H. van Langenhove, J. Dewulf, Determination of acetic acid in aqueous samples, by water-phase derivatisation, solid-phase microextraction and gas chromatography, J. Chromatogr. A 874 (2000) 225-234.
|
[100] |
J. Salimon, T.A. Omar, N. Salih, An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography, Arab. J. Chem. 10 (2017) S1875-S1882.
|
[101] |
S. Yu, C. Cai, Y. Wang, et al., Quantification of phytic acid in baby foods by derivatization with (trimethylsilyl)diazomethane and liquid chromatography-mass spectrometry analysis, Rapid Commun. Mass Spectrom. 35 (2021), e9194.
|
[102] |
W.J. Griffiths, G. Alvelius, S. Liu, et al., High-energy collision-induced dissociation of oxosteroids derivatised to Girard hydrazones, Eur. J. Mass Spectrom. Chichester Engl. 10 (2004) 63-88.
|
[103] |
W.J. Griffiths, Y. Wang, G. Alvelius, et al., Analysis of oxysterols by electrospray tandem mass spectrometry, J. Am. Soc. Mass Spectrom. 17 (2006) 341-362.
|
[104] |
S. Gao, Z. Zhang, H.T. Karnes, Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825 (2005) 98-110.
|
[105] |
J. Li, X. Li, T. Li, Synthesis of oximes under ultrasound irradiation, Ultrason. Sonochem. 13 (2006) 200-202.
|
[106] |
X. Liu, Y. Zhou, H. Chen, et al., Detection of carbonyl groups in triterpenoids by hydroxylamine hydrochloride derivatization using electrospray ionization mass spectrometry, Rapid Commun. Mass Spectrom. 22 (2008) 1981-1992.
|
[107] |
W. Wang, F. Chen, Y. Wang, et al., Optimization of reactions between reducing sugars and 1-phenyl-3-methyl-5-pyrazolone (PMP) by response surface methodology, Food Chem. 254 (2018) 158-164.
|
[108] |
X. Wu, W. Jiang, J. Lu, et al., Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry, Food Chem. 145 (2014) 976-983.
|
[109] |
Y. Xue, X. Xu, L. Yong, et al., Optimization of Vortex-assisted dispersive liquid-liquid microextraction for the simultaneous quantitation of eleven non-anthocyanin polyphenols in commercial blueberry using the multi-objective response surface methodology and desirability function approach, Molecules 23 (2018), 2921.
|
[110] |
M. Sajid, Dispersive liquid-liquid microextraction:Evolution in design, application areas, and green aspects, Trac Trends Anal. Chem. 152 (2022), 116636.
|
[111] |
M.D. Dung, T.T.V. Nga, N.T. Lan, et al., Adsorption behavior and mechanism of As (V) on magnetic Fe3O4-graphene oxide (GO) nanohybrid composite material, Anal. Sci. 38 (2022) 427-436.
|