Volume 13 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
Yanhe Zhou, Xinyi Jiang, Xiangyi Wang, Jianpeng Huang, Tong Li, Hongtao Jin, Jiuming He. Promise of spatially resolved omics for tumor research[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 851-861. doi: 10.1016/j.jpha.2023.07.003
Citation: Yanhe Zhou, Xinyi Jiang, Xiangyi Wang, Jianpeng Huang, Tong Li, Hongtao Jin, Jiuming He. Promise of spatially resolved omics for tumor research[J]. Journal of Pharmaceutical Analysis, 2023, 13(8): 851-861. doi: 10.1016/j.jpha.2023.07.003

Promise of spatially resolved omics for tumor research

doi: 10.1016/j.jpha.2023.07.003
Funds:

This study was supported by the National Natural Science Foundation of China (Grant No.: 81974500) and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, China (Grant No.: 2022-I2M-2-001).

  • Received Date: Nov. 18, 2022
  • Rev Recd Date: Jul. 01, 2023
  • Tumors are spatially heterogeneous tissues that comprise numerous cell types with intricate structures. By interacting with the microenvironment, tumor cells undergo dynamic changes in gene expression and metabolism, resulting in spatiotemporal variations in their capacity for proliferation and metastasis. In recent years, the rapid development of histological techniques has enabled efficient and high-throughput biomolecule analysis. By preserving location information while obtaining a large number of gene and molecular data, spatially resolved metabolomics (SRM) and spatially resolved transcriptomics (SRT) approaches can offer new ideas and reliable tools for the in-depth study of tumors. This review provides a comprehensive introduction and summary of the fundamental principles and research methods used for SRM and SRT techniques, as well as a review of their applications in cancer-related fields.
  • loading
  • S. Srivastava, E.J. Koay, A.D. Borowsky, et al., Cancer overdiagnosis: A biological challenge and clinical dilemma, Nat. Rev. Cancer 19 (2019) 349-358.
    D.C. Hinshaw, L.A. Shevde, The tumor microenvironment innately modulates cancer progression, Cancer Res. 79 (2019) 4557-4566.
    D. Pe’er, S. Ogawa, O. Elhanani, et al., Tumor heterogeneity, Cancer Cell 39 (2021) 1015-1017.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: The next generation, Cell 144 (2011) 646-674.
    Q. Li, X. Zhang, R. Ke, Spatial transcriptomics for tumor heterogeneity analysis, Front. Genet. 13 (2022), 906158.
    L. Wang, C. Wu, N. Rajasekaran, et al., Loss of tumor suppressor gene function in human cancer: An overview, Cell. Physiol. Biochem. 51 (2018) 2647-2693.
    D.R. Schmidt, R. Patel, D.G. Kirsch, et al., Metabolomics in cancer research and emerging applications in clinical oncology, CA Cancer J. Clin. 71 (2021) 333-358.
    L. Tang, Multiomics sequencing goes spatial, Nat. Methods 18 (2021), 31.
    B.W. Fox, F.C. Schroeder, Toward spatially resolved metabolomics, Nat. Chem. Biol. 16 (2020) 1039-1040.
    B. Spengler, Mass spectrometry imaging of biomolecular information, Anal. Chem. 87 (2015) 64-82.
    Y. Xiao, J. Deng, Y. Yao, et al., Recent advances of ambient mass spectrometry imaging for biological tissues: A review, Anal. Chim. Acta 1117 (2020) 74-88.
    R.M. Caprioli, Imaging mass spectrometry: A perspective, J. Biomol. Tech. 30 (2019) 7-11.
    A.R. Buchberger, K. DeLaney, J. Johnson, et al., Mass spectrometry imaging: A review of emerging advancements and future insights, Anal. Chem. 90 (2018) 240-265.
    S.N. Nerurkar, D. Goh, C.C.L. Cheung, et al., Transcriptional spatial profiling of cancer tissues in the era of immunotherapy: The potential and promise, Cancers 12 (2020), 2572.
    G.C. Bingham, F. Lee, A. Naba, et al., Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology, Matrix Biol. 91-92 (2020) 152-166.
    R. Ahmed, T. Zaman, F. Chowdhury, et al., Single-cell RNA sequencing with spatial transcriptomics of cancer tissues, Int. J. Mol. Sci. 23 (2022), 3042.
    F. von Eggeling, F. Hoffmann, Microdissection - An essential prerequisite for spatial cancer omics, Proteomics 20 (2020), 2000077.
    M.R. Emmert-Buck, R.F. Bonner, P.D. Smith, et al., Laser capture microdissection, Science 274 (1996) 998-1001.
    K. DeCarlo, A. Emley, O.E. Dadzie, et al., Laser capture microdissection: Methods and applications, Methods Mol. Biol. 755 (2011) 1-15.
    J.G. Gall, M.L. Pardue, Formation and detection of RNA-DNA hybrid molecules in cytological preparations, Proc. Natl. Acad. Sci. U S A 63 (1969) 378-383.
    R. Ke, M. Mignardi, A. Pacureanu, et al., In situ sequencing for RNA analysis in preserved tissue and cells, Nat. Methods 10 (2013) 857-860.
    A. Rao, D. Barkley, G.S. Franca, et al., Exploring tissue architecture using spatial transcriptomics, Nature 596 (2021) 211-220.
    S.M. Lewis, M.L. Asselin-Labat, Q. Nguyen, et al., Spatial omics and multiplexed imaging to explore cancer biology, Nat. Methods 18 (2021) 997-1012.
    Y.N. Ho, L. Shu, Y. Yang, Imaging mass spectrometry for metabolites: Technical progress, multimodal imaging, and biological interactions, Wiley Interdiscip Rev. Syst. Biol. Med. 9 (2017), e1387.
    S. Vickovic, G. Eraslan, F. Salmen, et al., High-definition spatial transcriptomics for in situ tissue profiling, Nat. Methods 16 (2019) 987-990.
    L. Larsson, J. Frisen, J. Lundeberg, Spatially resolved transcriptomics adds a new dimension to genomics, Nat. Methods 18 (2021) 15-18.
    R.M. Caprioli, T.B. Farmer, J. Gile, Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS, Anal. Chem. 69 (1997) 4751-4760.
    T. Kuo, E.P. Dutkiewicz, J. Pei, et al., Ambient ionization mass spectrometry today and tomorrow: Embracing challenges and opportunities, Anal. Chem. 92 (2020) 2353-2363.
    A.L. Dill, D.R. Ifa, N.E. Manicke, et al., Mass spectrometric imaging of lipids using desorption electrospray ionization, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 877 (2009) 2883-2889.
    M.L. Kraft, H.A. Klitzing, Imaging lipids with secondary ion mass spectrometry, Biochim. Biophys. Acta 1841 (2014) 1108-1119.
    M. Tuck, F. Grelard, L. Blanc, et al., MALDI-MSI towards multimodal imaging: Challenges and perspectives, Front. Chem. 10 (2022), 904688.
    T. Wang, X. Cheng, H. Xu, et al., Perspective on advances in laser-based high-resolution mass spectrometry imaging, Anal. Chem. 92 (2020) 543-553.
    R. Van de Plas, J. Yang, J. Spraggins, et al., Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping, Nat. Methods 12 (2015) 366-372.
    C.S. Clendinen, M.E. Monge, F.M. Fernandez, Ambient mass spectrometry in metabolomics, Analyst 142 (2017) 3101-3117.
    L.J. Gamble, C.R. Anderton, Secondary ion mass spectrometry imaging of tissues, cells, and microbial systems, Micros. Today 24 (2016) 24-31.
    Z. Yuan, Q. Zhou, L. Cai, et al., SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment, Nat. Methods 18 (2021) 1223-1232.
    T. Porta Siegel, G. Hamm, J. Bunch, et al., Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues, Mol. Imaging Biol. 20 (2018) 888-901.
    B. Fuchs, R. Suss, J. Schiller, An update of MALDI-TOF mass spectrometry in lipid research, Prog. Lipid Res. 49 (2010) 450-475.
    X. Zhu, T. Xu, C. Peng, et al., Advances in MALDI mass spectrometry imaging single cell and tissues, Front. Chem. 9 (2022), 782432.
    C. Sun, T. Li, X. Song, et al., Spatially resolved metabolomics to discover tumor-associated metabolic alterations, Proc. Natl. Acad. Sci. U S A 116 (2019) 52-57.
    J. He, F. Tang, Z. Luo, et al., Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application, Rapid Commun. Mass Spectrom. 25 (2011) 843-850.
    S. Eliuk, A. Makarov, Evolution of orbitrap mass spectrometry instrumentation, Annual Rev. Anal. Chem. 8 (2015) 61-80.
    Y. Lv, T. Li, C. Guo, et al., A high-performance bio-tissue imaging method using air flow-assisted desorption electrospray ionization coupled with a high-resolution mass spectrometer, Chin. Chem. Lett. 30 (2019) 461-464.
    J. Huang, S. Gao, K. Wang, et al., Design and characterizing of robust probes for enhanced mass spectrometry imaging and spatially resolved metabolomics, Chin. Chem. Lett. 34 (2023), 107865.
    J. He, C. Sun, T. Li, et al., A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology, Adv. Sci. 5 (2018), 1800250.
    D.J. Burgess, Spatial transcriptomics coming of age, Nat. Rev. Genet. 20 (2019), 317.
    J. Fernandez Navarro, J. Lundeberg, P.L. Stahl, ST viewer: A tool for analysis and visualization of spatial transcriptomics datasets, Bioinformatics 35 (2019) 1058-1060.
    X. Wang, W.E. Allen, M.A. Wright, et al., Three-dimensional intact-tissue sequencing of single-cell transcriptional states, Science 361 (2018), eaat5691.
    J. Liao, X. Lu, X. Shao, et al., Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics, Trends Biotechnol. 39 (2021) 43-58.
    P. Civita, S. Franceschi, P. Aretini, et al., Laser capture microdissection and RNA-seq analysis: High sensitivity approaches to explain histopathological heterogeneity in human glioblastoma FFPE archived tissues, Front. Oncol. 9 (2019), 482.
    D. Gyllborg, C.M. Langseth, X. Qian, et al., Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue, Nucleic Acids Res. 48 (2020), e112.
    K.S. Burke, K.A. Antilla, D.A. Tirrell, A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome-mRNA interactions in single cells, ACS Cent. Sci. 3 (2017) 425-433.
    K.H. Chen, A.N. Boettiger, J.R. Moffitt, et al., RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells, Science 348 (2015), aaa6090.
    S. Codeluppi, L.E. Borm, A. Zeisel, et al., Spatial organization of the somatosensory cortex revealed by osmFISH, Nat. Methods 15 (2018) 932-935.
    C.L. Eng, M. Lawson, Q. Zhu, et al., Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH, Nature 568 (2019) 235-239.
    P.L. Stahl, F. Salmen, S. Vickovic, et al., Visualization and analysis of gene expression in tissue sections by spatial transcriptomics, Science 353 (2016) 78-82.
    L. Bergenstrahle, B. He, J. Bergenstrahle, et al., Super-resolved spatial transcriptomics by deep data fusion, Nat. Biotechnol. 40 (2022) 476-479.
    S. Maniatis, J. Petrescu, H. Phatnani, Spatially resolved transcriptomics and its applications in cancer, Curr. Opin. Genet. Dev. 66 (2021) 70-77.
    Y. Liu, M. Yang, Y. Deng, et al., High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue, Cell 183 (2020) 1665-1681.e18.
    S. Nichterwitz, G. Chen, J. Aguila Benitez, et al., Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling, Nat. Commun. 7 (2016), 12139.
    J. Chen, S. Suo, P.P. Tam, et al., Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq, Nat. Protoc. 12 (2017) 566-580.
    C.R. Merritt, G.T. Ong, S.E. Church, et al., Multiplex digital spatial profiling of proteins and RNA in fixed tissue, Nat. Biotechnol. 38 (2020) 586-599.
    S. Shah, E. Lubeck, M. Schwarzkopf, et al., Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing, Development 143 (2016) 2862-2867.
    E. Lubeck, L. Cai, Single-cell systems biology by super-resolution imaging and combinatorial labeling, Nat. Methods 9 (2012) 743-748.
    H. Zeng, J. Huang, H. Zhou, et al., Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer’s disease, Nat. Neurosci. 26 (2023) 430-446.
    J.H. Lee, E.R. Daugharthy, J. Scheiman, et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc. 10 (2015) 442-458.
    D. Lovatt, B.K. Ruble, J. Lee, et al., Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue, Nat. Methods 11 (2014) 190-196.
    N.R. Powell, R.M. Silvola, J.S. Howard, et al., Quantification of spatial pharmacogene expression heterogeneity in breast tumors, Cancer Rep. 6 (2023), e1686.
    G. Su, X. Qin, A. Enninful, et al., Spatial multi-omics sequencing for fixed tissue via DBiT-seq, STAR Protoc. 2 (2021), 100532.
    S.G. Rodriques, R.R. Stickels, A. Goeva, et al., Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution, Science 363 (2019) 1463-1467.
    R.R. Stickels, E. Murray, P. Kumar, et al., Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2, Nat. Biotechnol. 39 (2021) 313-319.
    C.S. Cho, J. Xi, Y. Si, et al., Microscopic examination of spatial transcriptome using Seq-Scope, Cell 184 (2021) 3559-3572.e22.
    A. Chen, S. Liao, M. Cheng, et al., Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays, Cell 185 (2022) 1777-1792.e21.
    I. Kleino, P. Frolovaite, T. Suomi, et al., Computational solutions for spatial transcriptomics, Comput. Struct. Biotechnol. J. 20 (2022) 4870-4884.
    T. Falk, D. Mai, R. Bensch, et al., U-Net: Deep learning for cell counting, detection, and morphometry, Nat. Methods 16 (2019) 67-70.
    C. Stringer, T. Wang, M. Michaelos, et al., Cellpose: A generalist algorithm for cellular segmentation, Nat. Methods 18 (2021) 100-106.
    D. Bannon, E. Moen, M. Schwartz, et al., DeepCell Kiosk: Scaling deep learning-enabled cellular image analysis with Kubernetes, Nat. Methods 18 (2021) 43-45.
    K. Chen, D. Baluya, M. Tosun, et al., Imaging mass spectrometry: A new tool to assess molecular underpinnings of neurodegeneration, Metabolites 9 (2019), 135.
    M. Niehaus, J. Soltwisch, M.E. Belov, et al., Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution, Nat. Methods 16 (2019) 925-931.
    X. Li, R. Yin, H. Hu, et al., An integrated microfluidic probe for mass spectrometry imaging of biological samples, Angew. Chem. Int. Ed. Engl. 59 (2020) 22388-22391.
    R. Dries, Q. Zhu, R. Dong, et al., Giotto: A toolbox for integrative analysis and visualization of spatial expression data, Genome Biol. 22 (2021), 78.
    V. Wu, J. Tillner, E. Jones, et al., High resolution ambient MS imaging of biological samples by desorption electro-flow focussing ionization, Anal. Chem. 94 (2022) 10035-10044.
    Q. Zhou, A. Fulop, C. Hopf, Recent developments of novel matrices and on-tissue chemical derivatization reagents for MALDI-MSI, Anal. Bioanal. Chem. 413 (2021) 2599-2617.
    S. Guo, W. Tang, Y. Hu, et al., Enhancement of on-tissue chemical derivatization by laser-assisted tissue transfer for MALDI MS imaging, Anal. Chem. 92 (2020) 1431-1438.
    R. Angelini, E. Yutuc, M.F. Wyatt, et al., Visualizing cholesterol in the brain by on-tissue derivatization and quantitative mass spectrometry imaging, Anal. Chem. 93 (2021) 4932-4943.
    A.P. Bowman, J.F.J. Bogie, J.J.A. Hendriks, et al., Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation, Anal. Bioanal. Chem. 412 (2020) 2277-2289.
    I. Dagogo-Jack, A.T. Shaw, Tumour heterogeneity and resistance to cancer therapies, Nat. Rev. Clin. Oncol. 15 (2018) 81-94.
    A. Strickaert, M. Saiselet, G. Dom, et al., Cancer heterogeneity is not compatible with one unique cancer cell metabolic map, Oncogene 36 (2017) 2637-2642.
    B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression, Science 368 (2020), eaaw5473.
    P. Vaupel, H. Schmidberger, A. Mayer, The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression, Int. J. Radiat. Biol. 95 (2019) 912-919.
    J. Lu, The Warburg metabolism fuels tumor metastasis, Cancer Metastasis Rev. 38 (2019) 157-164.
    Y. Wang, C. Bai, Y. Ruan, et al., Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia, Nat. Commun. 10 (2019), 201.
    M. Gawin, A. Kurczyk, J. Niemiec, et al., Intra-tumor heterogeneity revealed by mass spectrometry imaging is associated with the prognosis of breast cancer, Cancers 13 (2021), 4349.
    Y. Zhang, C. Guillermier, T. De Raedt, et al., Imaging mass spectrometry reveals tumor metabolic heterogeneity, iScience 23 (2020), 101355.
    X. Song, Q. Zang, R.N. Zare, Hydrogen-deuterium exchange desorption electrospray ionization mass spectrometry visualizes an acidic tumor microenvironment, Anal. Chem. 93 (2021) 10411-10417.
    A.S. Nam, R. Chaligne, D.A. Landau, Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics, Nat. Rev. Genet. 22 (2021) 3-18.
    J. Qian, S. Olbrecht, B. Boeckx, et al., A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling, Cell Res. 30 (2020) 745-762.
    Y. Wu, Y. Cheng, X. Wang, et al., Spatial omics: Navigating to the golden era of cancer research, Clin. Transl. Med. 12 (2022), e696.
    K. Thrane, H. Eriksson, J. Maaskola, et al., Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma, Cancer Res. 78 (2018) 5970-5979.
    M.V. Hunter, R. Moncada, J.M. Weiss, et al., Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface, Nat. Commun. 12 (2021), 6278.
    J. Liao, J. Qian, Y. Fang, et al., De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution, Nat. Commun. 13 (2022), 6498.
    R. Moncada, D. Barkley, F. Wagner, et al., Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas, Nat. Biotechnol. 38 (2020) 333-342.
    H. Massalha, K. Bahar Halpern, S. Abu-Gazala, et al., A single cell atlas of the human liver tumor microenvironment, Mol. Syst. Biol. 16 (2020), e9682.
    M. Woolman, L. Katz, G. Gopinath, et al., Mass spectrometry imaging reveals a gradient of cancer-like metabolic states in the vicinity of cancer not seen in morphometric margins from microscopy, Anal. Chem. 93 (2021) 4408-4416.
    C. Zhao, J. Dong, L. Deng, et al., Molecular network strategy in multi-omics and mass spectrometry imaging, Curr. Opin. Chem. Biol. 70 (2022), 102199.
    B. He, L. Bergenstrahle, L. Stenbeck, et al., Integrating spatial gene expression and breast tumour morphology via deep learning, Nat. Biomed. Eng. 4 (2020) 827-834.
    S. Banerjee, R.N. Zare, R.J. Tibshirani, et al., Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids, Proc. Natl. Acad. Sci. U S A 114 (2017) 3334-3339.
    F. Roudnicky, C. Poyet, L. Buser, et al., Characterization of tumor blood vasculature expression of human invasive bladder cancer by laser capture microdissection and transcriptional profiling, Am. J. Pathol. 190 (2020) 1960-1970.
    C. Sun, F. Wang, Y. Zhang, et al., Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer, Theranostics 10 (2020) 7070-7082.
    F.N. Loch, O. Klein, K. Beyer, et al., Peptide signatures for prognostic markers of pancreatic cancer by MALDI mass spectrometry imaging, Biology 10 (2021), 1033.
    K. Margulis, A.S. Chiou, S.Z. Aasi, et al., Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging, Proc. Natl. Acad. Sci. U S A 115 (2018) 6347-6352.
    E. Berglund, J. Maaskola, N. Schultz, et al., Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity, Nat. Commun. 9 (2018), 2419.
    B.T. Grunwald, A. Devisme, G. Andrieux, et al., Spatially confined sub-tumor microenvironments in pancreatic cancer, Cell 184 (2021) 5577-5592.e18.
    M. Holzlechner, E. Eugenin, B. Prideaux, Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer, Cancer Rep. 2 (2019), e1229.
    N. Yoosuf, J.F. Navarro, F. Salmen, et al., Identification and transfer of spatial transcriptomics signatures for cancer diagnosis, Breast Cancer Res. 22 (2020), 6.
    A.L. Santoro, R.D. Drummond, I.T. Silva, et al., In situ DESI-MSI lipidomic profiles of breast cancer molecular subtypes and precursor lesions, Cancer Res. 80 (2020) 1246-1257.
    A.M. Porcari, J. Zhang, K.Y. Garza, et al., Multicenter study using desorption-electrospray-ionization-mass-spectrometry imaging for breast-cancer diagnosis, Anal. Chem. 90 (2018) 11324-11332.
    J. Zhang, S.Q. Li, J.Q. Lin, et al., Mass spectrometry imaging enables discrimination of renal oncocytoma from renal cell cancer subtypes and normal kidney tissues, Cancer Res. 80 (2020) 689-698.
    P.L. Bedard, A.R. Hansen, M.J. Ratain, et al., Tumour heterogeneity in the clinic, Nature 501 (2013) 355-364.
    N. Wang, X. Li, R. Wang, et al., Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment, Biotechnol. J. 16 (2021), 2100041.
    E.C. Madden, A.M. Gorman, S.E. Logue, et al., Tumour cell secretome in chemoresistance and tumour recurrence, Trends Cancer 6 (2020) 489-505.
    R.J.A. Goodwin, Z. Takats, J. Bunch, A critical and concise review of mass spectrometry applied to imaging in drug discovery, SLAS Discov. 25 (2020) 963-976.
    L. Lamont, D. Hadavi, B. Viehmann, et al., Quantitative mass spectrometry imaging of drugs and metabolites: a multiplatform comparison, Anal. Bioanal. Chem. 413 (2021) 2779-2791.
    P.Y. Lee, Y. Yeoh, N. Omar, et al., Molecular tissue profiling by MALDI imaging: Recent progress and applications in cancer research, Crit. Rev. Clin. Lab Sci. 58 (2021) 513-529.
    J.H. Park, W.Y. Pyun, H.W. Park, Cancer metabolism: Phenotype, signaling and therapeutic targets, Cells 9 (2020), 2308.
    L. Morosi, C. Matteo, T. Ceruti, et al., Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging, Int. J. Biol. Sci. 16 (2020) 1363-1375.
    F. Tobias, J.C. McIntosh, G.J. LaBonia, et al., Developing a drug screening platform: MALDI-mass spectrometry imaging of paper-based cultures, Anal. Chem. 91 (2019) 15370-15376.
    J. Zhang, Q. Du, X. Song, et al., Evaluation of the tumor-targeting efficiency and intratumor heterogeneity of anticancer drugs using quantitative mass spectrometry imaging, Theranostics 10 (2020) 2621-2630.
    X. Song, Q. Zang, J. Zhang, et al., Metabolic perturbation score-based mass spectrometry imaging spatially resolves a functional metabolic response, Anal. Chem. 95 (2023) 6775-6784.
    X. Wang, J. Zhang, K. Zheng, et al., Discovering metabolic vulnerability using spatially resolved metabolomics for antitumor small molecule-drug conjugates development as a precise cancer therapy strategy, J. Pharm. Anal. 2023. https://doi.org/10.1016/j.jpha.2023.02.010.
    J.R. Quesada, E.M. Hersh, J. Manning, et al., Treatment of hairy cell leukemia with recombinant alpha-interferon, Blood 68 (1986) 493-497.
    J. Qi, H. Sun, Y. Zhang, et al., Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer, Nat. Commun. 13 (2022), 1742.
    A.L. Ji, A.J. Rubin, K. Thrane, et al., Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma, Cell 182 (2020) 497-514.e22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (215) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return