Volume 13 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Shengsuo Ma, Bing Yang, Yang Du, Yiwen Lv, Jiarong Liu, Yucong Shi, Ting Huang, Huachong Xu, Li Deng, Xiaoyin Chen. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 984-998. doi: 10.1016/j.jpha.2023.07.001
Citation: Shengsuo Ma, Bing Yang, Yang Du, Yiwen Lv, Jiarong Liu, Yucong Shi, Ting Huang, Huachong Xu, Li Deng, Xiaoyin Chen. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex[J]. Journal of Pharmaceutical Analysis, 2023, 13(9): 984-998. doi: 10.1016/j.jpha.2023.07.001

1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex

doi: 10.1016/j.jpha.2023.07.001
Funds:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 81830114, 82004232, 82174253, and 82104707), Guangdong Basic and Applied Basic Research Foundation, China (Grant Nos.: 2021A1515011215 and 2022A1515110827), Guangzhou Basic and Applied Basic Research Foundation, China (Grant No.: 2023A1515011149), China Postdoctoral Science Foundation (Grant Nos.: 2020M683206 and 2021M701443), the Key Area Research and Development Program of Guangdong Province, China (Grant No.: 2020B1111100010), Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, China (Grant No.: 202102010014), the Cross-disciplinary Special Project of Jinan University, China (Grant No.: 21621115), the State Key Laboratory of Dampness Syndrome of Chinese Medicine, China (Grant No.: SZ2021KF13), and the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University, China (Grant No.: 2021CXB024).

  • Received Date: Feb. 18, 2023
  • Accepted Date: Jul. 01, 2023
  • Rev Recd Date: Jun. 08, 2023
  • Publish Date: Jul. 06, 2023
  • Ulcerative colitis (UC) is characterized by chronic relapsing intestinal inflammation. Currently, there is no effective treatment for the disease. According to our preliminary data, 1,8-cineole, which is the main active compound of Amomum compactum Sol. ex Maton volatile oil and an effective drug for the treatment of pneumonia, showed remarkable anti-inflammatory effects on colitis pathogenesis. However, its mechanism of action and direct targets remain unclear. This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model. The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells. In addition, 1,8-cineole targets were revealed by drug affinity responsive target stability, thermal shift assay, cellular thermal shift assay, and heat shock protein 90 (HSP90) adenosine triphosphatases (ATPase) activity assays. The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function. Mechanistically, 1,8-cineole directly interacted with HSP90 and decreased its ATPase activity, also inhibited nucleotide-binding and oligomerization domain-, leucine rich repeat-, and pyrin domain-containing 3 (NLRP3) binding to HSP90 and suppressor of G-two allele of SKP1 (SGT1) and suppressed NLRP3 inflammasome activation in macrophages. These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.
  • loading
  • I. Ordas, L. Eckmann, M. Talamini, et al., Ulcerative colitis, Lancet 380 (2012) 1606-1619.
    J.D. Feuerstein, A.C. Moss, F.A. Farraye, Ulcerative colitis, Mayo Clin. Proc. 94 (2019) 1357-1373.
    R.J. Xavier, D.K. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease, Nature 448 (2007) 427-434.
    M. Saleh, G. Trinchieri, Innate immune mechanisms of colitis and colitis-associated colorectal cancer, Nat. Rev. Immunol. 11 (2011) 9-20.
    B. Rodenak-Kladniew, A. Castro, P. Starkel, et al., 1,8-cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs, Life Sci. 243 (2020), 117271.
    Y. Wang, D. Zhen, D. Fu, et al., 1,8-cineole attenuates cardiac hypertrophy in heart failure by inhibiting the miR-206-3p/SERP1 pathway, Phytomedicine 91 (2021), 153672.
    C. Yin, B. Liu, P. Wang, et al., Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis, Br. J. Pharmacol. 177 (2020) 2042-2057.
    N. Yadav, H. Chandra, Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB, PLoS One 12 (2017), e0188232.
    B. Lomenick, R. Hao, N. Jonai, et al., Target identification using drug affinity responsive target stability (DARTS), Proc. Natl. Acad. Sci. U S A 106 (2009) 21984-21989.
    M.Y. Pai, B. Lomenick, H. Hwang, et al., Drug affinity responsive target stability (DARTS) for small-molecule target identification, Methods Mol. Biol. 1263 (2015) 287-298.
    G. Xu, S. Fu, X. Zhan, et al., Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90, JCI Insight 6 (2021), e134601.
    M.D.C. Ponce de Leon-Rodriguez, J.P. Guyot, C. Laurent-Babot, Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation, Crit. Rev. Food Sci. Nutr. 59 (2019) 3648-3666.
    K. Horst, M. Rychlik, Quantification of 1,8-cineole and of its metabolites in humans using stable isotope dilution assays, Mol. Nutr. Food Res. 54 (2010) 1515-1529.
    A. Mayor, F. Martinon, T. De Smedt, et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses, Nat. Immunol. 8 (2007) 497-503.
    R.P. Hirten, B.E. Sands, New therapeutics for ulcerative colitis, Annu. Rev. Med. 72 (2021) 199-213.
    S.Y. Salim, J.D. Soderholm, Importance of disrupted intestinal barrier in inflammatory bowel diseases, Inflamm. Bowel Dis. 17 (2011) 362-381.
    W.-T. Kuo, L. Shen, L. Zuo, et al., Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression, Gastroenterology 157 (2019) 1323-1337.
    P. Marincola Smith, Y.A. Choksi, N.O. Markham, et al., Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice, Am. J. Physiol. Gastrointest. Liver Physiol. 320 (2021) G936-G957.
    S. Thanaraj, P.J. Hamlin, A.C. Ford, Systematic review: Granulocyte/monocyte adsorptive apheresis for ulcerative colitis, Aliment. Pharmacol. Ther. 32 (2010) 1297-1306.
    D.M. Hardbower, L.A. Coburn, M. Asim, et al., EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis, Oncogene 36 (2017) 3807-3819.
    L. Liu, Y. Wu, B. Wang, et al., DA-DRD5 signaling controls colitis by regulating colonic M1/M2 macrophage polarization, Cell Death Dis. 12 (2021), 500.
    J.A. Hamilton, GM-CSF in inflammation, J. Exp. Med. 217 (2020), e20190945.
    C.B. Crayne, S. Albeituni, K.E. Nichols, et al., The immunology of macrophage activation syndrome, Front. Immunol. 10 (2019), 119.
    U. Widmer, K.R. Manogue, A. Cerami, et al., Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines, J. Immunol. 150 (1993) 4996-5012.
    L.W. Kaminsky, R. Al-Sadi, T.Y. Ma, IL-1β and the intestinal epithelial tight junction barrier, Front. Immunol. 12 (2021), 767456.
    M. Rawat, M. Nighot, R. Al-Sadi, et al., IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA, Gastroenterology 159 (2020) 1375-1389.
    F. Wang, B.T. Schwarz, W.V. Graham, et al., IFN-γ-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction, Gastroenterology. 131 (2006) 1153-1163.
    K. Nakamura, M. Zhang, S. Kageyama, et al., Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury, J. Hepatol. 67 (2017) 1232-1242.
    M. Zhang, L. Zhou, Y. Xu, et al., A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis, Nature 586 (2020) 434-439.
    E. Zhang, Q. Chen, J. Wang, et al., Protective role of microRNA-27a upregulation and HSP90 silencing against cerebral ischemia-reperfusion injury in rats by activating PI3K/AKT/mTOR signaling pathway, Int. Immunopharmacol. 86 (2020), 106635.
    C. Zhang, H. Chen, Q. He, et al., Fibrinogen/AKT/microfilament axis promotes colitis by enhancing vascular permeability, Cell Mol. Gastroenterol. Hepatol. 11 (2021) 683-696.
    B. Liu, X. Piao, W. Niu, et al., Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota, Front. Pharmacol. 11 (2020), 1036.
    Y. Shi, W. Su, L. Zhang, et al., TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation, Front. Immunol. 11 (2021), 609060.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (314) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return