Volume 13 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
Jaime Millán-Santiago, Rafael Lucena, Soledad Cárdenas. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1346-1352. doi: 10.1016/j.jpha.2023.06.015
Citation: Jaime Millán-Santiago, Rafael Lucena, Soledad Cárdenas. Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device[J]. Journal of Pharmaceutical Analysis, 2023, 13(11): 1346-1352. doi: 10.1016/j.jpha.2023.06.015

Nylon 6-cellulose composite hosted in a hypodermic needle: Biofluid extraction and analysis by ambient mass spectrometry in a single device

doi: 10.1016/j.jpha.2023.06.015
Funds:

The grant “Biopolymer substrates for the determination of opioids in biofluids by ambient mass spectrometry” (Grant No.: PID2020-112862RB-I00) funded by MCIN/AEI/10.13039/501100011033 (Feder “Una manera de hacer Europa”) is gratefully acknowledged.

  • Received Date: Jan. 27, 2023
  • Accepted Date: Jun. 27, 2023
  • Rev Recd Date: May 28, 2023
  • Publish Date: Jun. 29, 2023
  • This study proposes a hypodermic needle (HN) as a sorbent holder and an electrospray (ESI) emitter, thus combining extraction and analysis in a single device. A novel nylon 6-cellulose (N6-Cel) composite sorbent is proposed to extract methadone from oral fluid samples. The cellulosic substrate provides the composite with high porosity, permitting the flow-through of the sample, while the polyamide contributes to the extraction of the analyte. The low price of the devices (considering the holder and the sorbent) contributes to the affordability of the method, and their small size allows easy transportation, opening the door to on-site extractions. Under the optimum conditions, the analyte can be determined by high-resolution ambient ionization mass spectrometry at a limit of detection (LOD) as low as 0.3 μg/L and precision (expressed as relative standard deviation, RSD) better than 9.3%. The trueness, expressed as relative recovery (RR), ranged from 90% to 109%. As high-resolution mass spectrometers are not available in many laboratories, the method was also adapted to low-resolution spectrometers. In this sense, the direct infusion of the eluates in a triple quadrupole-mass spectrometry provided an LOD of 2.2 μg/L. The RSD was better than 5.3%, and the RR ranged from 96% to 121%.
  • loading
  • A. Coloma-Carmona, J.L. Carballo, J. Rodriguez-Marin, et al., Use and dependence on opioid drugs in the Spanish population with chronic pain: prevalence and differences according to sex, Rev. Clin. Esp. (Barc.) 217 (2017) 315-319.
    Substance Abuse and Mental Health Services Administration, Behavioral Health Barometer, Vol. 5, Rockville, 2019.
    R.N. Xu, L. Fan, M.J. Rieser, et al., Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS, J. Pharm. Biomed. Anal. 44 (2007) 342-355.
    E. Bassotti, G.M. Merone, A. D’Urso, et al., A new LC-MS/MS confirmation method for the determination of 17 drugs of abuse in oral fluid and its application to real samples, Forensic Sci. Int. 312 (2020), 110330.
    G.M. Merone, A. Tartaglia, S. Rossi, et al., Fast LC-MS/MS screening method for the evaluation of drugs, illicit drugs, and other compounds in biological matrices, Talanta Open 5 (2022), 100105.
    R.M. Alberici, R.C. Simas, G.B. Sanvido, et al., Ambient mass spectrometry: Bringing MS into the “real world”, Anal. Bioanal. Chem. 398 (2010) 265-294.
    G.A. Gomez-Rios, M. Tascon, J. Pawliszyn, Coated blade spray: Shifting the paradigm of direct sample introduction to MS, Bioanalysis 10 (2018) 257-271.
    M.C. Diaz-Linan, M.T. Garcia-Valverde, A.I. Lopez-Lorente, et al., Silver nanoflower-coated paper as dual substrate for surface-enhanced Raman spectroscopy and ambient pressure mass spectrometry analysis, Anal. Bioanal. Chem. 412 (2020) 3547-3557.
    B.S. Frey, D.E. Damon, A.K. Badu-Tawiah, The effect of the physical morphology of dried biofluids on the chemical stability of analytes stored in paper and direct analysis by mass spectrometry, Anal. Chem. 94 (2022) 9618-9626.
    B. Hu, P.K. So, Y. Yang, et al., Surface-modified wooden-tip electrospray ionization mass spectrometry for enhanced detection of analytes in complex samples, Anal. Chem. 90 (2018) 1759-1766.
    C. Ling, Q. Shi, Z. Wei, et al., Rapid analysis of quinones in complex matrices by derivatization-based wooden-tip electrospray ionization mass spectrometry, Talanta 237 (2022), 122912.
    D.A. Rickert, G.A. Gomez-Rios, E. Nazdrajic, et al., Evaluation of a coated blade spray-tandem mass spectrometry assay as a new tool for the determination of immunosuppressive drugs in whole blood, Anal. Bioanal. Chem. 412 (2020) 5067-5076.
    A. Kasperkiewicz, J. Pawliszyn, Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry, Food Chem. 339 (2021), 127815.
    S. Jackson, D.J. Swiner, P.C. Capone, et al., Thread spray mass spectrometry for direct analysis of capsaicinoids in pepper products, Anal. Chim. Acta 1023 (2018) 81-88.
    D.J. Swiner, S. Jackson, G.R. Durisek 3rd, et al., Microsampling with cotton thread: Storage and ultra-sensitive analysis by thread spray mass Spectrometry, Anal. Chim. Acta 1082 (2019) 98-105.
    S. Jackson, B.S. Frey, M.N. Bates, et al., Direct differentiation of whole blood for forensic serology analysis by thread spray mass spectrometry, Analyst 145 (2020) 5615-5623.
    K. Usui, H. Kobayashi, Y. Fujita, et al., An ultra-rapid drug screening method for acetaminophen in blood serum based on probe electrospray ionization-tandem mass spectrometry, J. Food Drug Anal. 27 (2019) 786-792.
    W. Huang, W. Shao, Y. Ji, et al., Covalent organic framework-based solid phase microextraction coupled with electrospray ionization mass spectrometry for sensitive screening and quantitative evaluation of carbamazepine and its metabolite in mice, Talanta 243 (2022), 123341.
    G.A. Gomez-Rios, N. Reyes-Garces, B. Bojko, et al., Biocompatible solid-phase microextraction nanoelectrospray ionization: An unexploited tool in bioanalysis, Anal. Chem. 88 (2016) 1259-1265.
    R. Narayanan, X. Song, H. Chen, et al., Teflon spray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 31 (2020) 234-239.
    T.P.P. Mendes, G.S. Lobon, L.A.S. Lima, et al., Mass spectrometry-based biosensing using pencil graphite rods, Microchem. J. 164 (2021), 106077.
    N.M. Morato, V. Pirro, P.W. Fedick, et al., Quantitative swab touch spray mass spectrometry for oral fluid drug testing, Anal. Chem. 91 (2019) 7450-7457.
    G.L. de Araujo, D.V.A. de Aguiar, I. Pereira, et al., Polypyrrole-coated needle as an electrospray emitter for ambient mass spectrometry, Anal. Methods 12 (2020) 3235-3241.
    C. Vejar-Vivar, J. Millan-Santiago, C. Mardones, et al., Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry, Talanta 249 (2022), 123693.
    J. Feng, M. Sun, S. Han, et al., Polydopamine-coated cotton fibers as the adsorbent for in-tube solid-phase microextraction, J. Sep. Sci. 42 (2019) 2163-2170.
    C. Khamkhajorn, S. Pencharee, J. Jakmunee, et al., Smartphone-based colorimetric method for determining sulfites in wine using a universal clamp sample holder and microfluidic cotton swab-based analytical device, Microchem. J. 174 (2022), 107055.
    M.C. Prieto-Blanco, S. Penafiel Barba, Y. Moliner-Martinez, et al., Footprint of carbonyl compounds in hand scent by in-tube solid-phase microextraction coupled to nano-liquid chromatography/diode array detection, J. Chromatogr. A 1596 (2019) 241-249.
    W. Han, N. Shi, X. Wang, et al., Application of natural cotton fibers as an extraction sorbent for the detection of trans-resveratrol in adulterated peanut oils, Food Chem. 339 (2021), 127885.
    J. Feng, S. Han, X. Ji, et al., A green extraction material - natural cotton fiber for in-tube solid-phase microextraction, J. Sep. Sci. 42 (2019) 1051-1057.
    X. He, G. Zhu, Y. Zhu, et al., Facile preparation of biocompatible sulfhydryl cotton fiber-based sorbents by “thiol-ene” click chemistry for biological analysis, ACS Appl. Mater. Interfaces 6 (2014) 17857-17864.
    X. He, G. Zhu, W. Lu, et al., Nickel(II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins, J. Chromatogr. A 1405 (2015) 188-192.
    A.R. Ghiasvand, N. Heidari, S. Abdolhosseini, et al., Evaluation of a cooling/heating-assisted microextraction instrument using a needle trap device packed with aminosilica/graphene oxide nanocomposites, covalently attached to cotton, Analyst 143 (2018) 2632-2640.
    M. Ghani, K. Haghdoostnejad, Woven cotton yarn-graphene oxide-layered double hydroxide composite as a sorbent for thin film microextraction of nonsteroidal anti-inflammatory drugs followed by quantitation through high performance liquid chromatography, Anal. Chim. Acta 1097 (2020) 94-102.
    Z. Liu, W. Zhou, C. Wang, et al., Cotton thread modified with ionic liquid copolymerized polymer for online in-tube solid-phase microextraction and HPLC analysis of nonsteroidal anti-inflammatory drugs, J. Sep. Sci. 43 (2020) 2827-2833.
    M.T. Garcia-Valverde, M.L. Soriano, R. Lucena, et al., Cotton fibers functionalized with β-cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples, Anal. Chim. Acta 1126 (2020) 133-143.
    W. Li, R. Wang, Z. Chen, Zr-based metal-organic framework-modified cotton for solid phase micro-extraction of non-steroidal anti-inflammatory drugs, J. Chromatogr. A 1576 (2018) 19-25.
    N. Mehmandost, M.L. Soriano, R. Lucena, et al., Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation, J. Environ. Chem. Eng. 7 (2019), 103424.
    M.T. Garcia-Valverde, R. Lucena, S. Cardenas, et al., In-syringe dispersive micro-solid phase extraction using carbon fibres for the determination of chlorophenols in human urine by gas chromatography/mass spectrometry, J. Chromatogr. A 1464 (2016) 42-49.
    D. Chen, M. Zhang, X. Bu, et al., In-syringe cotton fiber-supported liquid extraction coupled with gas chromatography-tandem mass spectrometry for the determination of free 3-mono-chloropropane-1, 2-diol in edible oils, J. Chromatogr. A 1673 (2022), 463081.
    R.A. Lugo, K.L. Satterfield, S.E. Kern, Pharmacokinetics of methadone, J. Pain Palliat. Care Pharmacother. 19 (2005) 13-24.
    S. Jickells, A. Negrusz, Clarke’s analytical forensic toxicology, Ann. De Toxicol. Anal. 20 (2008) 233-234.
    L. Brunton, Goodman & Gilman’s The Pharmacological basis of therapeutics, eleventh ed., McGraw-Hill, New York, 2005.
    C. Vejar-Vivar, M.T. Garcia-Valverde, C. Mardones, et al., Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS, RSC Adv. 11 (2021) 22683-22690.
    M. Cirrincione, R. Lucena, M. Protti, et al., Potential of hydrophobic paper-based sorptive phase prepared by in situ thermal imidization for the extraction of methadone from oral fluid samples, J. Chromatogr. A 1675 (2022), 463166.
    A. Azizi, F. Shahhoseini, C.S. Bottaro, Biological matrix compatible porous thin film for quick extraction of drugs of abuse from urine prior to liquid chromatography-mass spectrometry analysis, Talanta 241 (2022), 123264.
    S. Zhang, H. Cui, Y. Zhao, et al., Preparation and application of nano petal-shaped covalent organic frameworks modified polystyrene-divinylbenzene- glycidylmethacrylate microspheres for the extraction of illicit drugs from wastewater, J. Chromatogr. A 1682 (2022), 463505.
    J. Millan-Santiago, M.T. Garcia-Valverde, R. Lucena, et al., Polyamide-coated wooden tips coupled to direct infusion mass spectrometry, a high throughput alternative for the determination of methadone, cocaine and methamphetamine in oral fluid, Microchem. J. 162 (2021), 105843.
    R.V. Emmons, E. Gionfriddo, Minimizing transient microenvironment-associated variability for analysis of environmental anthropogenic contaminants via ambient ionization, Sci. Total Environ. 775 (2021), 145789.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (205) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return